Submitted:
26 September 2023
Posted:
29 September 2023
Read the latest preprint version here
Abstract
Keywords:
Introduction
Continuous Glucose Monitors overview
CGM accuracy
Parameters for measuring glycaemia
Establishing clinical targets: What is “normal glycaemia”?
CGMs for predicting postprandial glycaemic responses to food as part of personalised nutrition
Behavioural Change
CGM regulation
Discussion
Conclusion
Author Contributions
Acknowledgments
Conflict of Interest
References
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Penn, L.; Rodrigues, A.; Haste, A.; et al. NHS Diabetes Prevention Programme in England: formative evaluation of the programme in early phase implementation. BMJ Open 2018, 8, e019467. [Google Scholar] [CrossRef] [PubMed]
- Sitasuwan, T.; Lertwattanarak, R. Prediction of type 2 diabetes mellitus using fasting plasma glucose and HbA1c levels among individuals with impaired fasting plasma glucose: a cross-sectional study in Thailand. BMJ Open 2020, 10, e041269. [Google Scholar] [CrossRef] [PubMed]
- Kumar Das, S.; Nayak, K.K.; Krishnaswamy, P.R.; Kumar, V.; Bhat, N. Review- Electrochemistry and Other Emerging Technologies for Continuous Glucose Monitoring Devices. ECS Sens Plus 2022, 1, 031601. [Google Scholar] [CrossRef]
- Acciaroli, G.; Sparacino, G.; Hakaste, L.; et al. Diabetes and Prediabetes Classification Using Glycemic Variability Indices From Continuous Glucose Monitoring Data. J Diabetes Sci Technol 2017, 12, 105–113. [Google Scholar] [CrossRef]
- Goel, P.; Parkhi, D.; Barua, A.; Shah, M.; Ghaskadbi, S. A Minimal Model Approach for Analyzing Continuous Glucose Monitoring in Type 2 Diabetes. Front Physiol 2018, 9, 673. [Google Scholar] [CrossRef]
- Longato, E.; Acciaroli, G.; Facchinetti, A.; Maran, A.; Sparacino, G. Simple Linear Support Vector Machine Classifier Can Distinguish Impaired Glucose Tolerance Versus Type 2 Diabetes Using a Reduced Set of CGM-Based Glycemic Variability Indices. J Diabetes Sci Technol 2020, 14, 297–302. [Google Scholar] [CrossRef]
- NHS King’s College Hospital, NHS Foundation Trust. Flash and real time continuous glucose monitoring: NICE diabetes guidance update 2022. Available online: https://www.kch.nhs.uk/wp-content/uploads/2023/01/pl-1038.1-flash-and-real-time-continuous-glucose-monitoring-nice-diabetes-guidance-update.pdf (accessed on 22 September 2023).
- Corindia, A. Introducing Metabolic Healthspan 2023. Available online: https://www.veri.co/learn/introducing-metabolic-healthspan (accessed on 22 September 2023).
- Diabetes Prevention Program Research Group. Long-term Effects of Lifestyle Intervention or Metformin on Diabetes Development and Microvascular Complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol 2015, 3, 866–875. [Google Scholar] [CrossRef]
- Teo, E.; Hassan, N.; Tam, W.; Koh, S. Effectiveness of continuous glucose monitoring in maintaining glycaemic control among people with type 1 diabetes mellitus: a systematic review of randomised controlled trials and meta-analysis. Diabetologia 2022, 65, 604–619. [Google Scholar] [CrossRef]
- Ceriello, A.; Colagiuri, S. International Diabetes Federation guideline for management of postmeal glucose: a review of recommendations. Diabet Med 2008, 25, 1151–6. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence (NICE). Type 1 diabetes in adults: diagnosis and management 2015. Available online: https://www.nice.org.uk/guidance/ng17 (accessed on 24 September 2023).
- National Institute for Health and Care Excellence (NICE). Type 2 diabetes in adults: management 2015. Available online: https://www.nice.org.uk/guidance/ng28 (accessed on 24 September 2023).
- Meurant, R.; Freckmann, G.; Pleus, S. Regulatory Profile for glucose self-monitoring tools 2021. Available online: https://haiweb.org/wp-content/uploads/2021/10/Self_Monitoring-Devices-Regulatory-Profile-1.pdf (accessed on 22 September 2023).
- Bailey, T.S.; Alva, S. Landscape of continuous glucose monitoring (CGM) and integrated CGM: Accuracy considerations. Diabetes Technol Ther 2021, 23, S5–S11. [Google Scholar] [CrossRef] [PubMed]
- CLSI Performance Metrics for Continuous Interstitial Glucose Monitoring. 2nd ed. CLSI guideline POCT05. Clinical and Laboratory Standards Institute 2020. Available online: https://clsi.org/media/tqkj5mmn/poct05ed2_sample.pdf (accessed on 23 September 2023).
- Heinemann, L.; Schoemaker, M.; Schmelzeisen-Redecker, G.; et al. Benefits and Limitations of MARD as a Performance Parameter for Continuous Glucose Monitoring in the Interstitial Space. J Diabetes Sci Technol 2020, 14, 135–150. [Google Scholar] [CrossRef] [PubMed]
- Freckmann, G.; Pleus, S.; Grady, M.; Setford, S.; Levy, B. Measures of Accuracy for Continuous Glucose Monitoring and Blood Glucose Monitoring Devices. J Diabetes Sci Technol 2019, 13, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. CFR - Code of Federal Regulations Title 21 2022. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=862.1355 (accessed on 23 September 2023).
- Pemberton, J.S.; Wilmot, E.G.; Barnard-Kelly, K.; et al. CGM accuracy: Contrasting CE marking with the governmental controls of the USA (FDA) and Australia (TGA): A narrative review. Diabetes Obes Metab 2023, 25, 916–939. [Google Scholar] [CrossRef]
- Akintola, A.A.; Noordam, R.; Jansen, S.W. Accuracy of Continuous Glucose Monitoring Measurements in Normo-Glycemic Individuals. PLoS ONE 2015, 0, e0139973. [Google Scholar] [CrossRef]
- Ghane, N.; Broadney, M.M.; Davis, E.K.; et al. Estimating plasma glucose with the FreeStyle Libre Pro continuous glucose monitor during oral glucose tolerance tests in youth without diabetes. Pediatr Diabetes 2019, 20, 1072–1079. [Google Scholar] [CrossRef]
- Röhling, M.; Martin, T.; Wonnemann, M.; et al. Determination of Postprandial Glycemic Responses by Continuous Glucose Monitoring in a Real-World Setting. Nutrients. 2019, 11, 2305. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, F.; Wongpipit, W.; Huang, W.Y.J.; Wong, S.H.S. Accuracy of Flash Glucose Monitoring During Postprandial Rest and Different Walking Conditions in Overweight or Obese Young Adults. Front Physiol 2021, 12, 732751. [Google Scholar] [CrossRef]
- Biagi, L.; Bertachi, A.; Quirós, C.; et al. Accuracy of Continuous Glucose Monitoring before, during, and after Aerobic and Anaerobic Exercise in Patients with Type 1 Diabetes Mellitus. Biosensors 2018, 8, 22. [Google Scholar] [CrossRef]
- Clavel, P.; Tiollier, E.; Leduc, C.; Fabre, M.; Lacome, M.; Buchheit, M. Concurrent Validity of a Continuous Glucose-Monitoring System at Rest and During and Following a High-Intensity Interval Training Session. Int J Sports Physiol Perform 2022, 17, 627–633. [Google Scholar] [CrossRef]
- Mian, Z.; Hermayer, K.L.; Jenkins, A. Continuous Glucose Monitoring: Review of an Innovation in Diabetes Management. Am J Med Sci 2019, 358, 332–339. [Google Scholar] [CrossRef]
- Basu, A.; Slama, M.Q.; Nicholson, W.T.; et al. Continuous Glucose Monitor Interference With Commonly Prescribed Medications: A Pilot Study. J Diabetes Sci Technol 2017, 11, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Luo, W.; Li, M. The Impact of Recent Developments in Electrochemical POC Sensor for Blood Sugar Care. Front Chem 2021, 9, 723186. [Google Scholar] [CrossRef] [PubMed]
- Beck, R.W.; Connor, C.G.; Mullen, D.M.; Wesley, D.M.; Bergenstal, R.M. The Fallacy of Average: How Using HbA1c Alone to Assess Glycemic Control Can Be Misleading. Diabetes Care 2017, 40, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Bergenstal, R.M.; Dunn, T.C.; Ajjan, R.A. Addressing shortfalls of laboratory HbA1c using a model that incorporates red cell lifespan. eLife 2021, 10, e69456. [Google Scholar] [CrossRef]
- Olawsky, E.; Zhang, Y.; Eberly, L.E.; Helgeson, E.S.; Chow, L.S. A New Analysis Tool for Continuous Glucose Monitor Data. J Diabetes Sci Technol 2022, 16, 1496–1504. [Google Scholar] [CrossRef]
- Lind, M.; Tuomilehto, J.; Uusitupa, M. The Association between HbA1c, Fasting Glucose, 1-Hour Glucose and 2-Hour Glucose during an Oral Glucose Tolerance Test and Cardiovascular Disease in Individuals with Elevated Risk for Diabetes. PLoS ONE 2014, 9, e109506. [Google Scholar] [CrossRef]
- Jang, J.Y.; Moon, S.; Cho, S.; Cho, K.H.; Oh, C.M. Visit-to-visit HbA1c and glucose variability and the risks of macrovascular and microvascular events in the general population. Sci Rep 2019, 9, 1374. [Google Scholar] [CrossRef]
- Kovatchev, B.P. Metrics for glycaemic control — from HbA1c to continuous glucose monitoring. Nat Rev Endocrinol 2017, 13, 425–436. [Google Scholar] [CrossRef]
- Hall, H.; Perelman, D.; Breschi, A. Glucotypes reveal new patterns of glucose dysregulation. PLoS Biol 2018, 16, e2005143. [Google Scholar] [CrossRef]
- Nguyen, M.; Han, J.; Spanakis, E.K.; Kovatchev, B.P.; Klonoff, D.C. A Review of Continuous Glucose Monitoring-Based Composite Metrics for Glycemic Control. Diabetes Technol Ther 2020, 22, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Kröger, J.; Reichel, A.; Siegmund, T.; Ziegler, R. Clinical Recommendations for the Use of the Ambulatory Glucose Profile in Diabetes Care. J Diabetes Sci Technol 2019, 14, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef] [PubMed]
- Klonoff, D.C.; Wang, J.; Rodbard, D.; et al. A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings. J Diabetes Sci Technol 2023, 17, 1226–1242. [Google Scholar] [CrossRef]
- Borg, R.; Kuenen, J.C.; Carstensen, B.; et al. Real-life glycaemic profiles in non-diabetic individuals with low fasting glucose and normal HbA1c: the A1C-Derived Average Glucose (ADAG) study. Diabetologia 2010, 53, 1608–1611. [Google Scholar] [CrossRef]
- Rodriguez-Segade, S.; Rodriguez, J.; Camiña, F.; et al. Continuous glucose monitoring is more sensitive than HbA1c and fasting glucose in detecting dysglycaemia in a Spanish population without diabetes. Diabetes Res Clin Pract 2018, 142, 100–109. [Google Scholar] [CrossRef]
- Deiss, D.; Abtahi, T.; Rastogi, R.; Kelley, E.L. Glucose Variability of Individuals without Diabetes Using a Long-Term Continuous Glucose Monitoring System. Diabetes 2018, 67 (Supplement 1), 1542-P. [Google Scholar] [CrossRef]
- Vedantam, D.; Poman, D.S.; Motwani, L.; Asif, N.; Patel, A.; Anne, K.K. Stress-Induced Hyperglycemia: Consequences and Management. Cureus 2022, 14, e26714. [Google Scholar] [CrossRef]
- Umpierrez, G.E.; Kovatchev, B. Glycemic Variability: How to Measure and Its Clinical Implication for Type 2 Diabetes. Am J Med Sci 2018, 356, 518–527. [Google Scholar] [CrossRef]
- de Hoogh, I.M.; Oosterman, J.E.; Otten, W.; et al. The Effect of a Lifestyle Intervention on Type 2 Diabetes Pathophysiology and Remission: The Stevenshof Pilot Study. Nutrients 2021, 13, 2193. [Google Scholar] [CrossRef]
- de Hoogh, I.M.; Pasman, W.J.; Boorsma, A.; van Ommen, B.; Wopereis, S. Effects of a 13-Week Personalized Lifestyle Intervention Based on the Diabetes Subtype for People with Newly Diagnosed Type 2 Diabetes. Biomedicines 2022, 10, 643. [Google Scholar] [CrossRef] [PubMed]
- Bancks, M.P.; Chen, H.; Balasubramanyam, A.; et al. Type 2 Diabetes Subgroups, Risk for Complications, and Differential Effects Due to an Intensive Lifestyle Intervention. Diabetes Care 2021, 44, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Zeevi, D.; Korem, T.; Zmora, N.; et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef] [PubMed]
- Mendes-Soares, H.; Raveh-Sadka, T.; Azulay, S.; et al. Assessment of a Personalized Approach to Predicting Postprandial Glycemic Responses to Food Among Individuals Without Diabetes. JAMA Netw Open 2019, 2, e188102. [Google Scholar] [CrossRef] [PubMed]
- Berciano, S.; Figueiredo, J.; Brisbois, T.D.; et al. Precision nutrition: Maintaining scientific integrity while realizing market potential. Front Nutr 2022, 9, 979665. [Google Scholar] [CrossRef]
- Kharmats, A.Y.; Popp, C.; Hu, L.; Berube, L.; et al. A randomized clinical trial comparing low-fat with precision nutrition-based diets for weight loss: impact on glycemic variability and HbA1c. Am J Clin Nutr 2023, 118, 443–451. [Google Scholar] [CrossRef]
- Zoe Global Limited. The PREDICT program 2023. Available online: https://zoe.com/whitepapers/the-predict-program (accessed on 24 September 2023).
- Ben-Yacov, O.; Godneva, A.; Rein, M.; et al. Personalized Postprandial Glucose Response-Targeting Diet Versus Mediterranean Diet for Glycemic Control in Prediabetes. Diabetes care 2021, 44, 1980–1991. [Google Scholar] [CrossRef]
- Berry, S.E.; Valdes, A.M.; Drew, D.A.; et al. Human postprandial responses to food and potential for precision nutrition. Nat Med 2020, 26, 964–973. [Google Scholar] [CrossRef]
- Van den Brink, W.J.; van den Broek, T.J.; Palmisano, S.; Wopereis, S.; de Hoogh, I.M. Digital Biomarkers for Personalized Nutrition: Predicting Meal Moments and Interstitial Glucose with Non-Invasive, Wearable Technologies. Nutrients 2022, 14, 4465. [Google Scholar] [CrossRef]
- Hengist, A.; Gue, J.; Hall, K.D. Imprecision nutrition? Duplicate meals result in unreliable individual glycemic responses measured by continuous glucose monitors across three dietary patterns in adults without diabetes. MedRxiv 2023. [Google Scholar] [CrossRef]
- Howard, R.; Guo, J.; Hall, K.D. Imprecision nutrition? Different simultaneous continuous glucose monitors provide discordant meal rankings for incremental postprandial glucose in subjects without diabetes. Am J Clin Nutr 2023, 112, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Merino, J.; Linenberg, I.; Bermingham, K.M.; et al. Validity of continuous glucose monitoring for categorizing glycemic responses to diet: implications for use in personalized nutrition. Am J Clin Nutr 2022, 115, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
- Ehrhardt, N.; Al Zaghal, E. Behavior Modification in Prediabetes and Diabetes: Potential Use of Real-Time Continuous Glucose Monitoring. J Diabetes Sci Technol 2019, 13, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Ajjan, R.A.; Jackson, N.; Thomson, S.A. Reduction in HbA1c using professional flash glucose monitoring in insulin-treated type 2 diabetes patients managed in primary and secondary care settings: A pilot, multicentre, randomised controlled trial. Diab Vasc Dis Res 2019, 16, 385–395. [Google Scholar] [CrossRef]
- Martens, T.; Beck, R.W.; Bailey, R.; et al. Effect of Continuous Glucose Monitoring on Glycemic Control in Patients With Type 2 Diabetes Treated With Basal Insulin. JAMA 2021, 325, 2262–2272. [Google Scholar] [CrossRef]
- Aronson, R.; Brown, R.E.; Chu, L.; et al. IMpact of flash glucose Monitoring in pEople with type 2 Diabetes Inadequately controlled with non-insulin Antihyperglycemic ThErapy (IMMEDIATE): A Randomized Clinical Trial. Diabetes Obes Metab 2023, 25, 1024–1031. [Google Scholar] [CrossRef]
- Dunn, T.C.; Xu, Y.; Hayter, G.; Ajjan, R.A. Real-world flash glucose monitoring patterns and associations between self-monitoring frequency and glycaemic measures: A European analysis of over 60 million glucose tests. Diabetes Res Clin Pract 2018, 137, 37–46. [Google Scholar] [CrossRef]
- Dehghani Zahedani, A.; Shariat Torbaghan, S.; Rahili, S.; et al. Improvement in Glucose Regulation Using a Digital Tracker and Continuous Glucose Monitoring in Healthy Adults and Those with Type 2 Diabetes. Diabetes Ther 2021, 12, 1871–1886. [Google Scholar] [CrossRef]
- Jospe, M.R.; de Bruin, W.E.; Haszard, J.J.; Mann, J.I.; Brunton, M.; Taylor, R.W. Teaching people to eat according to appetite – Does the method of glucose measurement matter? Appetite 2020, 151, 104691. [Google Scholar] [CrossRef]
- Aqeel, M.; Forster, A.; Richards, E.A.; et al. The Effect of Timing of Exercise and Eating on Postprandial Response in Adults: A Systematic Review. Nutrients. 2020, 12, 221. [Google Scholar] [CrossRef]
- Bailey, K.J.; Little, J.P.; Jung, M.E. Self-Monitoring Using Continuous Glucose Monitors with Real-Time Feedback Improves Exercise Adherence in Individuals with Impaired Blood Glucose: A Pilot Study. Diabetes Technol Ther 2016, 18, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Basen-Engquist, K.M.; Urbauer, D.L.; Bevers, T.B.; Hawk, E.; Schembre, S.M. Using Continuous Glucose Monitoring to Motivate Physical Activity in Overweight and Obese Adults Using: A Pilot Study. Cancer Epidemiol Biomarkers Prev 2020, 29, 761–768. [Google Scholar] [CrossRef] [PubMed]
- El Fatouhi, D.; Héritier, H.; Allémann, C.; et al. Associations Between Device-Measured Physical Activity and Glycemic Control and Variability Indices Under Free-Living Conditions. Diabetes Technol Ther 2022, 24, 167–177. [Google Scholar] [CrossRef]
- Liao, Y.; Schembre, S. Acceptability of Continuous Glucose Monitoring in Free-Living Healthy Individuals: Implications for the Use of Wearable Biosensors in Diet and Physical Activity Research. JMIR mHealth and uHealth. 2018, 6, e11181. [Google Scholar] [CrossRef] [PubMed]
- Sofizadeh, S.; Pehrsson, A.; Ólafsdóttir, A.F.; Lind, M. Evaluation of Reference Metrics for Continuous Glucose Monitoring in Persons Without Diabetes and Prediabetes. J Diabetes Sci Technol 2022, 16, 373–382. [Google Scholar] [CrossRef]
- Zisser, H.; Wagner, R.; Pleus, S.; et al. Clinical performance of three bolus calculators in subjects with type 1 diabetes mellitus: a head-to-head-to-head comparison. Diabetes Technol Ther 2010, 12, 955–61. [Google Scholar] [CrossRef]
- Kölle, J.; Eichenlaub, M.; Mende, J.; et al. Performance Assessment of Three Continuous Glucose Monitoring Systems in Adults With Type 1 Diabetes. , 0(0). J Diabetes Sci Technol 2023. [Google Scholar] [CrossRef]
- Gov.uk. Regulating medical devices in the UK 2023. Available online: https://www.gov.uk/guidance/regulating-medical-devices-in-the-uk (accessed on 24 September 2023).
- Official Journal of the European Union. Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on medical devices, amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and repealing Council Directives 90/385/EEC and 93/42/EEC 2017. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32017R0745from=EN (accessed on 24 September 2023).
- Abbott MediaRoom. Abbott Laboratories. Abbott Introduces Libre Sense glucose sport biosensor in Europe, world’s first glucose biosensor designed for athletes 2020. Available online: https://abbott.mediaroom.com/2020-09-17-Abbott-Introduces-Libre-Sense-Glucose-Sport-Biosensor-in-Europe-Worlds-First-Glucose-Biosensor-Designed-for-Athletes (accessed on 24 September 2023).
- Jaklevic, M.C. Start-ups Tout Continuous Glucose Monitoring for People Without Diabetes. JAMA 2021, 325, 2140–2142. [Google Scholar] [CrossRef]
- Abbott MediaRoom. Abbott Laboratories. Abbott’s FreeStyle Libre 2, with Optional Real-Time Alarms, Secures CE Mark for Use in Europe 2018. Available online: https://abbott.mediaroom.com/2018-10-01-Abbott-s-FreeStyle-R-Libre-2-with-Optional-Real-Time-Alarms-Secures-CE-Mark-for-Use-in-Europe (accessed on 24 September 2023).
- The European Association of Medical devices Notified Bodies. Team-NB Position Paper. Data generated from ‘Off-Label’ Use of a device under the EU Medical Device Regulation 2017/745 2022. Available online: https://www.team-nb.org/wp-content/uploads/2022/10/Team-NB-PositionPaper-Off-LabelUse-V1-20221005.pdf (accessed on 24 September 2023).
- Medicines and Healthcare products Regulatory Agency. Government response to consultation on the future regulation of medical devices in the United Kingdom 2022. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1085333/Government_response_to_consultation_on_the_future_regulation_of_medical_devices_in_the_United_Kingdom.pdf (accessed on 24 September 2023).
- Freckmann, G.; Eichenlaub, M.; Waldenmaier, D.; et al. Clinical Performance Evaluation of Continuous Glucose Monitoring Systems: A Scoping Review and Recommendations for Reporting. J Diabetes Sci Technol 2023. [Google Scholar] [CrossRef]
- Huo, Z.; Mortazavi, B.J.; Chaspari, T.; Deutz, N.; Ruebush, L.; Gutierrez-Osuna, R. Predicting the meal macronutrient composition from continuous glucose monitors. 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI); pp. 1–4. [CrossRef]
- Simpson, C.C.; Mazzeo, S.E. Calorie counting and fitness tracking technology: Associations with eating disorder symptomatology. Eating Behav 2017, 26, 89–92. [Google Scholar] [CrossRef]
- Petrie, J.R.; Peters, A.L.; Bergenstal, R.M.; Holl, R.W.; Fleming, G.A.; Hainemann, L. Improving the clinical value and utility of CGM systems: issues and recommendations: A joint statement of the European Association for the Study of Diabetes and the American Diabetes Association Diabetes Technology Working Group. Diabetologia 2017, 60, 2319–2328. [Google Scholar] [CrossRef] [PubMed]
| Glycaemia target levels by type (mmol/L) | Preprandial | Postprandial |
| T1DM | 3.9-7.0 | <7.8 |
| T2DM | 3.9-7.0 | <8.5 |
| People not-living with diabetes | 3.9-5.9 | 5.0-9.0 |
| Metric | Description |
|---|---|
| MAGE | Measure of magnitude of glycaemic excursions that exceed 1 SD from the mean. |
| SD | Measure of variation of all glucose measurements. |
| CoV | Magnitude of variability relative to mean blood glucose. CoV=(SD)/(mean glucose) x 100 |
| TIR, TBR, TAR | Proportion of time spent within, below or above blood glucose levels within the target range. |
| CONGA | Combined measurement of timing and magnitude of blood glucose level fluctuations at specific time periods. |
| GMI | Estimate of HbA1c, based on average glucose. |
| 1 | Postprandial, 90 minutes after meals; mmol/L, millimoles per litre; T1DM, Type 1 diabetes; T2DM, Type 2 diabetes. |
| 2 | MAGE, mean amplitude of glycemic excursions, SD, Standard deviation of blood glucose levels; CoV, coefficient of variation for glucose; TIR, time in range. TBR, time below range; TAR, time above range; CONGA, continuous overall net glycemic action; GMI, glucose management indicator; HbA1c, glycated heamoglobin; |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
