Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Semiarid Lakes of the Southwestern Siberia as Sentinels of On-going Climate Change: Hydrochemistry, Carbon Cycle, and Modern Carbonate Mineral Formation

Version 1 : Received: 25 September 2023 / Approved: 26 September 2023 / Online: 26 September 2023 (08:30:03 CEST)

A peer-reviewed article of this Preprint also exists.

Novoselov, A.; Konstantinov, A.; Konstantinova, E.; Simakova, Y.; Lim, A.; Kurasova, A.; Loiko, S.; Pokrovsky, O.S. Semiarid Lakes of Southwestern Siberia as Sentinels of On-Going Climate Change: Hydrochemistry, the Carbon Cycle, and Modern Carbonate Mineral Formation. Atmosphere 2023, 14, 1624. Novoselov, A.; Konstantinov, A.; Konstantinova, E.; Simakova, Y.; Lim, A.; Kurasova, A.; Loiko, S.; Pokrovsky, O.S. Semiarid Lakes of Southwestern Siberia as Sentinels of On-Going Climate Change: Hydrochemistry, the Carbon Cycle, and Modern Carbonate Mineral Formation. Atmosphere 2023, 14, 1624.

Abstract

Towards better understanding of factors controlling carbon (C) exchange between inland waters and atmosphere, we addressed inorganic carbon cycle in semi-arid lakes of Central Eurasia, subjected to strong impact of on-going climate change. For this, we assessed the hydrochemical vari-ability and quantified its control on formation of authigenic carbonate minerals, occurring within the upper layer of sediments in 43 semiarid lakes located in the southwest of Western Siberia (Central Eurasia). Based on measurements of pH, total dissolved solids (TDS), cationic and anionic composition, dissolved organic and inorganic C, as well as textural and mineralogical characterization of bottom sediments using X-ray diffraction and scanning electron microscopy, we demonstrate that lake water pH and TDS are primarily controlled by both lithological and climatic context of the lake watershed. We have not revealed any direct relationships between lake morphology and water chemistry. The most common authigenic carbonates scavenging atmospheric CO2 in the form of insoluble minerals in lake sediments were calcite, aragonite, Mg-calcite, dolomite and hydro-magnesite. The calcite was the most common component, aragonite mainly appears in lakes with sediments enriched in gastropod shells or artemia cysts, while hydromagnesite was most common in lakes with high Mg/Ca molar ratios, as well at high DIC concentrations. The relationships between mineral formation and water chemistry established in this study can be generalized to a wide suite of arid and semi-arid lakes in order to characterize current status of inorganic C cycle and predict its possible modification under on-going climate warming such as water temperature rise and change of hydrological connectivity, primary productivity and nutrient regime.

Keywords

lakes; semi-arid region; Western Siberia; inorganic C; CO2; water chemistry; carbonates

Subject

Environmental and Earth Sciences, Environmental Science

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.