Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

An intelligent technique for initial distribution in stochastic optimization methods

Version 1 : Received: 18 September 2023 / Approved: 19 September 2023 / Online: 20 September 2023 (07:35:05 CEST)

A peer-reviewed article of this Preprint also exists.

Charilogis, V.; Tsoulos, I.G.; Stavrou, V.N. An Intelligent Technique for Initial Distribution of Genetic Algorithms. Axioms 2023, 12, 980. Charilogis, V.; Tsoulos, I.G.; Stavrou, V.N. An Intelligent Technique for Initial Distribution of Genetic Algorithms. Axioms 2023, 12, 980.

Abstract

The need to find the global minimum in multi-dimensional functions is a critical problem in many fields of science and technology. Effectively solving this problem requires the creation of initial solution estimates, which are subsequently used by the optimization algorithm to search for the best solution in the solution space. In the context of this article, a novel approach to generating the initial solution distribution is presented which is applied to a genetic optimization algorithm. Using the k-means clustering algorithm, a distribution based on data similarity is created. This helps in generating initial estimates that may be more tailored to the problem. Additionally, the proposed method employs a rejection sampling algorithm to discard samples that do not yield better solution estimates in the optimization process. This allows the algorithm to focus on potentially optimal solutions, thus improving its performance. Finally, the article presents experimental results from the application of this approach to various optimization problems, providing the scientific community with a new method for addressing this significant problem.

Keywords

optimization; genetic algorithm methods; initialization distribution; evolutionary techniques; stochastic methods; termination rules

Subject

Computer Science and Mathematics, Artificial Intelligence and Machine Learning

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.