Submitted:
08 September 2023
Posted:
12 September 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methods
3. Results
4. Conclusions
Acknowledgments
References
- Corkum, P.B.; Krausz, F. Attosecond science. Nat. Phys. 2007, 3, 381–387. [Google Scholar] [CrossRef]
- Krausz, F.; Ivanov, M. Attosecond physics. Rev. Mod. Phys. 2009, 81, 163–234. [Google Scholar] [CrossRef]
- Villeneuve, D.M. Attosecond science. Contemp. Phys. 2018, 59, 47–61. [Google Scholar] [CrossRef]
- Ryabikin, M.Y.; Emelin, M.Y.; Strelkov, V.V. Attosecond electromagnetic pulses: generation, measurement, and application. Attosecond metrology and spectroscopy. Phys.-Usp. 2023, 66, 360. [Google Scholar] [CrossRef]
- Hentschel, M.; Kienberger, R.; Spielmann, Ch.; Reider, G.A.; Milosevic, N.; Brabec, T.; Corkum, P.; Heinzmann, U.; Drescher, M.; Krausz, F. Attosecond metrology. Nature 2001, 414, 509. [Google Scholar] [CrossRef]
- Goulielmakis, E.; Uiberacker, M.; Kienberger, R.; Baltuska, A.; Yakovlev, V.; Scrinzi, A.; Westerwalbesloh, Th.; Kleineberg, U.; Heinzmann, U.; Drescher, M.; Krausz, F. Direct Measurement of Light Waves. Science 2004, 305, 1267. [Google Scholar] [CrossRef]
- Schultze, M.; Fieß, M.; Karpowicz, N.; Gagnon, J.; Korbman, M.; Hofstetter, M.; Neppl, S.; Cavalieri, A.L.; Komninos, Y.; Mercouris, Th.; Nicolaides, C.A.; Pazourek, R.; Nagele, S.; Feist, J.; Burgdörfer, J.; Azzeer, A.M.; Ernstorfer, R.; Kienberger, R.; Kleineberg, U.; Goulielmakis, E.; Krausz, F.; Yakovlev, V.S. Delay in Photoemission. Science 2010, 328, 1658. [Google Scholar] [CrossRef]
- Argenti, L.; Jiménez-Galán, A.; Marante, C.; Ott, C.; Pfeifer, T.; Martín, F. Dressing effects in the attosecond transient absorption spectra of doubly excited states in helium. Phys. Rev. A 2015, 91, 061403. [Google Scholar] [CrossRef]
- Gruson, V.; Barreau, L.; Jiménez-Galan, Á.; Risoud, F.; Caillat, J.; Maquet, A.; Carré, B.; Lepetit, F.; Hergott, J.F.; Ruchon, T.; Argenti, L.; Taïeb, R.; Martín, F.; Salières, P. Attosecond dynamics through a Fano resonance: Monitoring the birth of a photoelectron. Science 2016, 354, 734. [Google Scholar] [CrossRef]
- Geneaux, R.; Marroux, H.J.B.; Guggenmos, A.; Neumark, D.M.; Leone, S.R. Transient absorption spectroscopy using high harmonic generation: a review of ultrafast X-ray dynamics in molecules and solids. Phil. Trans. R. Soc. A. 2019, 377, 20170463. [Google Scholar] [CrossRef]
- Kretschmar, M.; Svirplys, E.; Volkov, M.; Witting, T.; Nagy, T.; Vrakking, M.J.J.; Schütte, B. Compact realization of all-attosecond pump-probe spectroscopy. arXiv 2023, arXiv:2306.16212 2023. [Google Scholar]
- Chini, M.; Zhao, K.; Chang, Z. The generation, characterization and applications of broadband isolated attosecond pulses. Nat. Photonics 2014, 8, 178. [Google Scholar] [CrossRef]
- Goulielmakis, E.; Schultze, M.; Hofstetter, M.; Yakovlev, V.S.; Gagnon, J.; Uiberacker, M.; Aquila, A.L.; Gullikson, E.M.; Attwood, D.T.; Kienberger, R.; Krausz, F.; Kleineberg, U. Single-Cycle Nonlinear Optics. Science 2008, 320, 1614. [Google Scholar] [CrossRef]
- Xue, B.; Xue, B.; Xue, B.; Midorikawa, K.; Takahashi, E.J.; Takahashi, E.J. Gigawatt-class, tabletop, isolated-attosecond-pulse light source. Optica 2022, 9, 360. [Google Scholar] [CrossRef]
- Witting, T.; Osolodkov, M.; Schell, F.; Morales, F.; Patchkovskii, S.; Šušnjar, P.; Cavalcante, F.H.M.; Menoni, C.S.; Schulz, C.P.; Furch, F.J.; Furch, F.J.; Vrakking, M.J.J. Generation and characterization of isolated attosecond pulses at 100kHz repetition rate. Optica 2022, 9, 145–151. [Google Scholar] [CrossRef]
- Zaïr, A.; Tcherbakoff, O.; Mével, E.; Constant, E.; Lopez-Martens, R.; Mauritsson, J.; Johnsson, P.; L’Huillier, A. Time-resolved measurements of high order harmonics confined by polarization gating. Appl. Phys. B 2004, 78, 869–872. [Google Scholar] [CrossRef]
- Sola, I.J.; Mével, E.; Elouga, L.; Constant, E.; Strelkov, V.; Poletto, L.; Villoresi, P.; Benedetti, E.; Caumes, J.P.; Stagira, S.; Vozzi, C.; Sansone, G.; Nisoli, M. Controlling attosecond electron dynamics by phase-stabilized polarization gating. Nat. Phys. 2006, 2, 319. [Google Scholar] [CrossRef]
- Sansone, G.; Benedetti, E.; Calegari, F.; Vozzi, C.; Avaldi, L.; Flammini, R.; Poletto, L.; Villoresi, P.; Altucci, C.; Velotta, R.; Stagira, S.; De Silvestri, S.; Nisoli, M. Isolated Single-Cycle Attosecond Pulses. Science 2006, 314, 443. [Google Scholar] [CrossRef]
- Mashiko, H.; Gilbertson, S.; Li, C.; Khan, S.D.; Shakya, M.M.; Moon, E.; Chang, Z. Double Optical Gating of High-Order Harmonic Generation with Carrier-Envelope Phase Stabilized Lasers. Phys. Rev. Lett. 2008, 100, 103906. [Google Scholar] [CrossRef]
- Takahashi, E.J.; Lan, P.; Mücke, O.D.; Nabekawa, Y.; Midorikawa, K. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses. Nat. Commun. 2013, 4, 1. [Google Scholar] [CrossRef]
- Vincenti, H.; Quéré, F. Attosecond Lighthouses: How To Use Spatiotemporally Coupled Light Fields To Generate Isolated Attosecond Pulses. Phys. Rev. Lett. 2012, 108, 113904. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.T.; Zhang, C.; Ruchon, T.; Hergott, J.F.; Auguste, T.; Villeneuve, D.M.; Corkum, P.B.; Quéré, F. Photonic streaking of attosecond pulse trains. Nat. Photonics 2013, 7, 651. [Google Scholar] [CrossRef]
- Hammond, T.J.; Brown, G.G.; Kim, K.T.; Villeneuve, D.M.; Corkum, P.B. Attosecond pulses measured from the attosecond lighthouse. Nat. Photonics 2016, 10, 171–175. [Google Scholar] [CrossRef]
- Kennedy, J.P.; Dromey, B.; Yeung, M. Isolated ultra-bright attosecond pulses via non-collinear gating. New J. Phys. 2022, 24, 113004. [Google Scholar] [CrossRef]
- Sandhu, A.S.; Gagnon, E.; Paul, A.; Thomann, I.; Lytle, A.; Keep, T.; Murnane, M.M.; Kapteyn, H.C.; Christov, I.P. Generation of sub-optical-cycle, carrier-envelope-phase—insensitive, extreme-uv pulses via nonlinear stabilization in a waveguide. Phys. Rev. A 2006, 74, 061803. [Google Scholar] [CrossRef]
- Jullien, A.; Pfeifer, T.; Abel, M.J.; Nagel, P.M.; Bell, M.J.; Neumark, D.M.; Leone, S.R. Ionization phase-match gating for wavelength-tunable isolated attosecond pulse generation. Appl. Phys. B 2008, 93, 433. [Google Scholar] [CrossRef]
- Strelkov, V.V.; Mével, E.; Constant, E. Generation of isolated attosecond pulses by spatial shaping of a femtosecond laser beam. New J. Phys. 2008, 10, 083040. [Google Scholar] [CrossRef]
- Hernández-García, C.; Popmintchev, T.; Murnane, M.M.; Kapteyn, H.C.; Plaja, L.; Becker, A.; Jaron-Becker, A. Isolated broadband attosecond pulse generation with near- and mid-infrared driver pulses via time-gated phase matching. Opt. Express 2017, 25, 11855–11866. [Google Scholar] [CrossRef]
- Schötz, J.; Förg, B.; Schweinberger, W.; Liontos, I.; Masood, H.A.; Kamal, A.M.; Jakubeit, C.; Kling, N.G.; Paasch-Colberg, T.; Biswas, S.; Högner, M.; Pupeza, I.; Alharbi, M.; Azzeer, A.M.; Kling, M.F. Phase-Matching for Generation of Isolated Attosecond XUV and Soft-X-Ray Pulses with Few-Cycle Drivers. Phys. Rev. X 2020, 10, 041011. [Google Scholar] [CrossRef]
- Khokhlova, M.A.; Strelkov, V.V. Highly efficient XUV generation via high-order frequency mixing. New J. Phys. 2020, 22, 093030. [Google Scholar] [CrossRef]
- Khokhlova, M.; Strelkov, V. Role of blue-shift length in macroscopic properties of high-harmonic generation. arXiv 2023, arXiv:2306.14715 2023. [Google Scholar]
- Constant, E.; Dubrouil, A.; Hort, O.; Petit, S.; Descamps, D.; Mével, E. Spatial shaping of intense femtosecond beams for the generation of high-energy attosecond pulses. J. Phys. B: At. Mol. Opt. Phys. 2012, 45, 074018. [Google Scholar] [CrossRef]
- Veyrinas, K.; Plach, M.; Peschel, J.; Hoflund, M.; Catoire, F.; Valentin, C.; Smorenburg, P.; Dacasa, H.; Maclot, S.; Guo, C.; Wikmark, H.; Zaïr, A.; Strelkov, V.; Picot, C.; Arnold, C.; Eng-Johnsson, P.; L’Huillier, A.; Mével, E.; Constant, E. Chromatic aberrations correction of attosecond high-order harmonic beams by flat-top spatial shaping of the fundamental beam. New J. Phys. 2023, 25, 023017. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
