Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Adaptive Synthesized Control for Solving The Optimal Control Problem

These authors have contributed equally to this work.
Version 1 : Received: 4 September 2023 / Approved: 5 September 2023 / Online: 5 September 2023 (10:11:12 CEST)

A peer-reviewed article of this Preprint also exists.

Diveev, A.; Shmalko, E. Adaptive Synthesized Control for Solving the Optimal Control Problem. Mathematics 2023, 11, 4035. Diveev, A.; Shmalko, E. Adaptive Synthesized Control for Solving the Optimal Control Problem. Mathematics 2023, 11, 4035.

Abstract

The development of artificial intelligence systems assumes that a machine can independently generate an algorithm of actions or a control system to solve the tasks. To do this, the machine must have a formal description of the problem and possess computational methods for solving it. The article deals with the problem of optimal control, which is the main task in the development of control systems, insofar as all systems being developed must be optimal from the point of view of a certain criterion. However, there are certain difficulties in implementing the resulting optimal control modes. The paper considers an extended formulation of the optimal control problem, which implies the creation of such systems that would have the necessary properties for its practical implementation. To solve it, an adaptive synthesized optimal control approach based on the use of numerical methods of machine learning is proposed. The method moves the control object, optimally changing the position of the stable equilibrium point in the presence of some initial position uncertainty. As a result, from all possible synthesized controls, he chooses one that is less sensitive to changes in the initial states. As an example, the optimal control problem of quadcopter with complex phase constraints is considered. To solve this problem? according to the proposed approach, the control synthesis problem is firstly solved to obtain a stable equilibrium point in the state space by a machine learning method of symbolic regression. After that optimal positions of the stable equilibrium point are searched according to source functional from the optimal control problem by particle swarm optimization algorithm. It is shown that such approach allows generating the control system automatically by computer basing on the formal statement of the problem and then directly implementing it onboard as far as they have already had a stabilization system inserted.

Keywords

stabilization; symbolic regression; synthesized control; evolutionary computations; quadcopter model

Subject

Computer Science and Mathematics, Robotics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.