Submitted:
31 August 2023
Posted:
05 September 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
- Both the rehabilitation group with DPT used (S0) and GAIT used (S1) show significant improvement in the severity of symptoms related to depression and state anxiety.
- Patients in the experimental group (S1) will achieve greater improvements in psychological indicators (severity of depression-related symptoms and state anxiety) compared to those in the control group (S0).
- The improvement in psychological parameters (i.e., the decrease in symptoms related to depression and anxiety - state) is observed to have a significant relationship with the improvement in gait function and functional independence after SCI.
2. Materials and Methods
2.1. Study Protocol
2.2. Physiotherapy and psychological intervention
2.3. Participants
| Group | S0 (N = 31; 28.2%) | S1 (N = 79; 71.8%) | p-Value |
|---|---|---|---|
| Sex | |||
| Women | 4 (12.9%) | 17 (21.5%) | 0.301 |
| Men | 27 (87.1%) | 62 (78.5%) | |
| Education | |||
| In the course of education | 2 (6.5%) | 4 (5.1%) | 0.554* |
| Elementary | 0 (0.0%) | 2 (2.5%) | |
| Vocational | 6 (19.4%) | 7 (8.9%) | |
| Secondary | 6 (19.4%) | 19 (24.1%) | |
| Higher | 17 (54.8%) | 47 (59.5%) | |
| Accommodation | |||
| Countryside | 8 (25.8%) | 22 (28.6%) | 0.912 |
| Small town | 7 (22.6%) | 20 (26.0%) | |
| Medium-size town | 6 (19.4%) | 11 (14.3%) | |
| Big city | 10 (32.3%) | 24 (31.2%) | |
| Marital status | |||
| Lack of partner | 5 (16.1%) | 22 (27.8%) | 0.338 |
| Informal relationship | 5 (16.1%) | 15 (19%) | |
| Formal relationship | 21 (67.7%) | 42 (53.2%) | |
| Cause of injury | |||
| Vehicle accident | 12 (38.7%) | 24 (30.8%) | 0.089* |
| Fall < 1 m | 2 (6.5%) | 5 (6.4%) | |
| Fall > 1 m | 8 (25.8%) | 29 (37.2%) | |
| Dive | 2 (6.5%) | 2 (2.6%) | |
| Violence-related trauma | 0 (0.0%) | 1 (1.3%) | |
| Body crushing | 4 (12.9%) | 1 (1.3%) | |
| Others | 3 (9.7%) | 16 (20.5%) | |
| Level of neurological impairment | |||
| Cervical | 8 (25.8%) | 16 (20.3%) | 0.811 |
| Thoracic | 15 (48.4%) | 42 (53.2%) | |
| Lumbar | 8 (25.8%) | 21 (26.6%) | |
| Age | |||
| Median (IQR) | 37.0 (22) | 36 (23) | 0.666 |
| Time from accident (months) | |||
| Median (IQR) | 13 (13) | 12 (11) | 0.433 |

2.4. Outcome measures
2.4.1. Primary outcome measures
2.4.2. Secondary outcome measures
2.5. Statistical analyses
3. Results
3.1. Severity of anxiety-state and depression after 7-weeks rehabilitation program.
3.1.1. Differences in anxiety-state, depression and functionality in comparison to the type of rehabilitation.
3.1.2. Functional and mental status correlation
3.2. Severity of anxiety-state and depression according to neurological impairment (AIS).
3.3. Severity of anxiety-state and depression according to the type of paralysis.
4. Discussion
4.1. The impact of 7-weeks rehabilitation programme on severity of depression, anxiety-state and functionality
4.2. Anxiety-state and depression status and neurological impairment, depth of injury and type of paralysis
4.3. General discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
References
- Kumar, R., Lim, L., Mekary, R.A., Rattani, A., Dewan, M.C., Sharif, Y.S., Osorio-Fonseca, E., Park, K.B. (2018).Traumatic Spinal Injury: Global Epidemiology and Worldwide Volume. World Neurosurgery, 113: 345-363. [CrossRef]
- Tederko, P., Jagodziński, R., Krasuski, M., Tarnacka, B. (2017). People with Spinal Cord Injury in Poland, Country Report. American Journal of Physical Medicine & Rehabilitation, 96(2): 102–105.
- Wysocka, B.; Ślusarz, R., Haor, B. (2012). Epidemiology of spinal cord injury in the own material of the Emergency Room in Włocławek: A retrospective study. Neurological and Neurological Nursing [online], 1(3): 109-118.
- Holanda, L.J., Silva, P.M.M., Amorim, T.C., Lacerda, M.O., Simão, C.R., Morya, E.(2017). Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: a systematic review. Journal of NeuroEngineering and Rehabilitation, 14:126.
- Maggio, M.G., Naro, A., De Luca, R., Latella, D., Balletta, T., Caccamo, L., Pioggia, G., Bruschetta, D., Calabrò, R.S. (2022). Body Representation in Patients with Severe Spinal Cord Injury: A Pilot Study on the Promising Role of Powered Exoskeleton for Gait Training. Journal of Personalized Medicine, 12(4): 619. [CrossRef]
- Van Diemen, T., van Leeuwen, C., van Nes, I., Geertzen, J., Post M. (2017).Body Image in Patients with Spinal Cord Injury during Inpatient Rehabilitation. Archives of Physical Medicine and Rehabilitation, 98:1126–1131. [CrossRef]
- Craig, A., Tran, Y., Wijesuriya, N., Middleton, J. (2012). Fatigue and tiredness in people with spinal cord injury. Journal of Psychosomatic Research, 73(3):205-210. [CrossRef]
- Kalpakjian, C.Z., Toussaint, L.T., Albright, K.J., Bombardier, Ch.H., Krause, J.K., Tate, D.G. (2009). Patient health Questionnaire-9 in spinal cord injury: an examination of factor structure as related to gender. The Journal of Spinal Cord Medicine, 32(2):147-56. [CrossRef]
- Anderson, K.D. (2004). Targeting Recovery: Priorities of the Spinal Cord-Injured Population. Journal of Neurotrauma, 21(10): 1371-1383. [CrossRef]
- Le, J., Dorstyn, D. (2016). Anxiety prevalence following spinal cord injury: a meta-analysis. Spinal Cord, 54(8): 570–578. [CrossRef]
- Craig, A., Tran, Y., Middleton, J., (2009). Psychological morbidity and spinal cord injury: a systematic review. Spinal Cord, 47(2):108–114.
- Hicks, A.L., Martin, K.A., Ditor, D.S., Latimer, A.E., Craven, C., Bugaresti, J., McCartney, N. (2003). Long-term exercise training in persons with spinal cord injury: effects on strength, arm ergometry performance and psychological well-being. Spinal Cord, 41(1): 34 – 43.
- Swank, Ch., Holden, A., McDonald, L., Driver, S., Callender, L., Bennett, M., Sikka, S. (2022). Foundational ingredients of robotic gait training for people with incomplete spinal cord injury during inpatient rehabilitation (FIRST): A randomized controlled trial protocol. PLOS One,10;17(5):0267013. [CrossRef]
- Ong, B., Wilson, J.R., Henzel, M.K. (2020). Management of the Patient with Chronic Spinal Cord Injury. Medical Clinics of North America, 104(2):263-278. [CrossRef]
- Alizo, G., Sciarretta, J. D., Gibson, S., Muertos, K., Holmes, S., Denittis, F., Cheatle J., Davis J., Pepe, A. (2018). Multidisciplinary team approach to traumatic spinal cord injuries: a single institution’s quality improvement project. European Journal of Trauma and Emergency Surgery, 44(2), 245–250. [CrossRef]
- Craig, A., Perry K.N., Guest R., Tran Y., Dezarnaulds A., Hales A., Ephraums C., Middleton J. (2015). Prospective Study of the Occurrence of Psychological Disorders and Comorbidities After Spinal Cord Injury. Physical Medicine and rehabilitation, 96(8):1426-1434. [CrossRef]
- Fleerkotte, B. M., Koopman, B., Buurke, J. H., van Asseldonk, E. H. F., van der Kooij, H., & Rietman, J. S. (2014). The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study. Journal of NeuroEngineering and Rehabilitation, 11(1):26. [CrossRef]
- Ditunno, P. L., Patrick, M., Stineman, M., & Ditunno, J. F. (2008). Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study. Spinal Cord, 46(7): 500–506. [CrossRef]
- Daunoraviciene, K., Adomaviciene, A., Svirskis, D., Griškevičius, J., Juocevicius, A. (2018). Necessity of early-stage verticalization in patients with brain and spinal cord injuries: Preliminary study. Technology and Health Care, 26(S2): 613–623. [CrossRef]
- Nordström, B., Nyberg, L., Ekenberg, L., Näslund, A. (2014). The psychosocial impact on standing devices. Disability and Rehabilitation: Assistive Technology, 9(4): 299–306. [CrossRef]
- Mirbagheri, M. M., Kindig, M., Xun Niu, Varoqui, D., Conaway, P. (2013). Robotic-locomotor training as a tool to reduce neuromuscular abnormality in spinal cord injury: The application of system identification and advanced longitudinal modeling. 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR). [CrossRef]
- Moll, F., Kessel, A., Bonetto, A., Stresow, J., Herten, M., Dudda, M., Adermann, J. (2022). Use of Robot-Assisted Gait Training in Pediatric Patients with Cerebral Palsy in an Inpatient Setting—A Randomized Controlled Trial. Sensors, 22(24): 9946. [CrossRef]
- Ustinova, K., Chernikova, L., Bilimenko, A., Telenkov, A., Epstein, N.(2011). 85Effect of robotic locomotor training in an individual with Parkinson’s disease: a case report. Disability and Rehabilitation: Assistive Technology, 6(1): 77– 85. [CrossRef]
- Raigoso, D., Céspedes, N., Cifuentes, C.A., del-Ama, A.J., Múnera1, M. (2021). A Survey on Socially Assistive Robotics: Clinicians’ and Patients’ Perception of a Social Robot within Gait Rehabilitation Therapies. Brain Sciences., 11(6): 738. [CrossRef]
- https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPCD/classification.cfm?ID=PHL; 02 june 2023.
- Duddy, D., Doherty, R.,Connolly,J., Loughrey,J., Condell,J., Hassan,D.,Faulkner, M. (2022). The Cardiorespiratory Demands of Treadmill Walking with and without the Use of Ekso GT™ within Able-Bodied Participants: A Feasibility Study. International Journal of Environmental Research and Public Health, 19(10): 6176. [CrossRef]
- Høyer, E., Opheim, A., & Jørgensen, V. (2020). Implementing the exoskeleton Ekso GTTM for gait rehabilitation in a stroke unit – feasibility, functional benefits and patient experiences. Disability and Rehabilitation: Assistive Technology, 17(4):1–7. [CrossRef]
- Swank, Ch., Sikka, S., Driver, S., Bennett, M., Callender, L. (2020). Feasibility of integrating robotic exoskeleton gait training in inpatient rehabilitation. Disabil Rehabil Assist Technol, 15(4):409-417. [CrossRef]
- Toderita, A., Vlase, S. (2020). Reliability Study on PUR Injection Machine. Procedia Manufacturing, 46: 885–890. [CrossRef]
- Federici, S., Meloni, F., Bracalenti, M., De Filippis, M. L. (2015). The effectiveness of powered, active lower limb exoskeletons in neurorehabilitation: A systematic review. NeuroRehabilitation, 37(3): 321–340. [CrossRef]
- Donati, A.R.C, Shokur, S., Morya, E., Campos, D.S.F., Moioli, R.C., Gitti, C.M., Augusto, P.B., Tripodi, S., Pires, C.G., Pereira, G.A., Brasil, F.L., Gallo, S., Lin, A.A., Takigami, A.K., Aratanha, M.A., Joshi, S., Bleuler, H., Cheng, G., Rudolph A., Nicolelis, M.A.L. (2016). Long-term training with a brain-machine Interface-based gait protocol induces partial neurological recovery in paraplegic patients. Scientific Reports, 6(1): 30383. [CrossRef]
- Hartigan, C., Kandilakis, C., Dalley, S., Clausen, M., Wilson, E., Morrison, S., Etheridge, S., Farris, R. (2015). Mobility Outcomes Following Five Training Sessions with a Powered Exoskeleton. Top Spinal Cord Inj Rehabil, 21(2):93-99. [CrossRef]
- Juszczak, M., Gallo, E., Bushnik, T. (2018). Examining the Effects of a Powered Exoskeleton on Quality of Life and Secondary Impairments in People Living With Spinal Cord Injury. Top Spinal Cord Inj Rehabil, 24(4): 336–342. [CrossRef]
- Rodríguez-Fernández, A., Lobo-Prat, J., & Font-Llagunes, J. M. (2021). Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. Journal of NeuroEngineering and Rehabilitation, 18(1):22. [CrossRef]
- Bragoni, M., Broccoli, M., Iosa, M., Morone, G., De Angelis, D., Venturiero, V., Coiro, P., Pratesi, L., Mezzetti, G., Fusco, A., Paolucci, S. (2013). Influence of psychologic features on rehabilitation outcomes in patients with subacute stroke trained with robotic-aided walking therapy. American Journal of Physical Medicine & Rehabilitation, 92(10):16 - 25. 10.1097/phm.0b013e3182a20a34.
- Kozlowski, A.J., Fabian, M., Lad, D., Delgado, A.D.. (2017). Feasibility and Safety of a Powered Exoskeleton for Assisted Walking for Persons With Multiple Sclerosis: A Single-Group Preliminary Study. Archives of Physical Medicine and Rehabilitation, 98(7):1300-1307. [CrossRef]
- Ozsoy-Unubol, T., Ata, E., Cavlak, M., Demir, S., Candan, Z., Yilmaz, F. (2021). Effects of Robot-Assisted Gait Training in Patients With Multiple Sclerosis: A Single-Blinded Randomized Controlled Study. Am J Phys Med Rehabi. 101(8):768-774. [CrossRef]
- Alashram, A. R., Annino, G., & Padua, E. (2021). Robot-assisted gait training in individuals with spinal cord injury: A systematic review for the clinical effectiveness of Lokomat. Journal of Clinical Neuroscience, 91: 260–269. [CrossRef]
- Straudi, S., Fanciullacci, Ch., Martinuzzi, C., Pavarelli, C., Rossi, B., Chisari, C., Basaglia, N. (2016). The effects of robot-assisted gait training in progressive multiple sclerosis: A randomized controlled trial. Mult Scler, 22(3):373-84. [CrossRef]
- Wier, L.M., Hatcher, M.S., Triche, E.W., Lo, A.C. (2011). Effect of Robot-Assisted Versus Conventional Body-Weight-Supported Treadmill Training on Quality of Life for People With Multiple Sclerosis. J. Rehabil. Res. Dev.48(4):483-92. [CrossRef]
- Middleton, J., Tran, Y., Craig, A. (2007). Relationship between quality of life and self-efficacy in persons with spinal cord injuries. Archives of Physical Medicine and Rehabilitation, 88(12):1643-8. [CrossRef]
- Shin, J. C., Kim, J. Y., Park, H. K., & Kim, N. Y. (2014). Effect of Robotic-Assisted Gait Training in Patients With Incomplete Spinal Cord Injury. Annals of Rehabilitation Medicine, 38(6): 719. [CrossRef]
- Ma, D.-N., Zhang, X.-Q., Ying, J., Chen, Z.-J., Li, L.-X. (2017). Efficacy and safety of 9 nonoperative regimens for the treatment of spinal cord injury. Medicine, 96(47): 8679. [CrossRef]
- Çinar, Ç., Yildirim, M.A., Öneş, K., Gökşenoğlu. G. (2021). Effect of robotic-assisted gait training on functional status, walking and quality of life in complete spinal cord injury. International Journal of Rehabilitation Research, 44(3): 262-268. [CrossRef]
- Mustafaoglu, R., Erhan, B., Yeldan, I., Gunduz, B., & Tarakci, E. (2020). Does robot-assisted gait training improve mobility, activities of daily living and quality of life in stroke? A single-blinded, randomized controlled trial. Acta Neurologica Belgica. 120(2):335-344. [CrossRef]
- Calabrò, R. S., Billeri, L., Ciappina, F., Balletta, T., Porcari, B., Cannavò, A., Pignolo, L., Manuli, A., Naro, A. (2022). Toward improving functional recovery in spinal cord injury using robotics: a pilot study focusing on ankle rehabilitation. Expert Review of Medical Devices, 19(1):83-95. [CrossRef]
- Miller, L., Zimmermann, A., & Herbert, W. (2016). Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Medical Devices: Evidence and Research, 22(9):455-66. [CrossRef]
- Nam, K. Y., Kim, H. J., Kwon, B. S., Park, J.-W., Lee, H. J., & Yoo, A. (2017). Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: a systematic review. Journal of NeuroEngineering and Rehabilitation, 14(1):24. [CrossRef]
- Schwartz, I., Meiner, Z. (2015). Robotic-Assisted Gait Training in Neurological Patients: Who May Benefit? Annals of Biomedical Engineering, 43(5): 1260–1269. [CrossRef]
- Stampacchia, G., Olivieri, M., Rustici, A., D’Avino, C., Gerini, A., Mazzoleni, S. (2020). Gait rehabilitation in persons with spinal cord injury using innovative technologies: an observational study. Spinal Cord, 58(9):988-997. [CrossRef]
- Zhang, L., Lin, F., Sun, L., Chen, Ch.(2022). Comparison of Efficacy of Lokomat and Wearable Exoskeleton-Assisted Gait Training in People With Spinal Cord Injury: A Systematic Review and Network Meta-Analysis. Front Neurol.13: 772660. [CrossRef]
- Calabrò, R.S., Reitano, S., Leo, A., De Luca, R., Melegari, C., PT, Bramanti, P. (2014). Can robot-assisted movement training (Lokomat) improve functional recovery and psychological well-being in chronic stroke? Promising findings from a case study. Functional Neurology, 29(2): 139–141.
- Hayes, S. C., James Wilcox, C. R., Forbes White, H. S., Vanicek, N. (2018). The effects of robot assisted gait training on temporal-spatial characteristics of people with spinal cord injuries: A systematic review. The Journal of Spinal Cord Medicine, 41(5): 529–543. [CrossRef]
- Mıdık, M., Paker, N., Buğdaycı, D., Mıdık, A.C. (2020). Effects of robot-assisted gait training on lower extremity strength, functional independence, and walking function in men with incomplete traumatic spinal cord injury. Turk J Phys Med Rehabil, 66(1):54-59. [CrossRef]
- Wan, Ch., Huang, S., Wang, X., Ge, P., Wang, Z., Zhang, Y., Li, Y., Su, B. (2023). Effects of robot-assisted gait training on cardiopulmonary function and lower extremity strength in individuals with spinal cord injury: A systematic review and meta-analysis. J Spinal Cord Med., 27:1-9. [CrossRef]
- Contreras-Vidal, J. L., A Bhagat, N., Brantley, J., Cruz-Garza, J. G., He, Y., Manley, Q., Nakagome Sh., Nathan K., Tan S.H., Zhu F., Pons, J. L. (2016). Powered exoskeletons for bipedal locomotion after spinal cord injury. Journal of Neural Engineering, 13(3): 031001. [CrossRef]
- den Brave, M., Beaudart, Ch., de Noordhout, B.M., Gillot, V., Kaux J-F. (2023). Effect of robot-assisted gait training on quality of life and depression in neurological impairment: A systematic review and meta-analysis. Clinical Rehabilitation, 37(7):876-890. [CrossRef]
- Rosado-Rivera, D., Radulovic, M., Handrakis, J. P., Cirnigliaro, C. M., Jensen, A. M., Kirshblum, S., Bauman, W.A., Wecht, J. M. (2011). Comparison of 24-hour cardiovascular and autonomic function in paraplegia, tetraplegia, and control groups: Implications for cardiovascular risk. The Journal of Spinal Cord Medicine, 34(4): 395–403. [CrossRef]
- Goulet, J., Richard-Denis, A., Thompson, C., Mac-Thiong, J.-M. (2018). Relationships between Specific Functional Abilities and Health-Related Quality of Life in Chronic Traumatic Spinal Cord Injury. American Journal of Physical Medicine & Rehabilitation, 98(1):14-19. [CrossRef]
- O’Shea, T. M., Burda, J. E., Sofroniew, M. V. (2017). Cell biology of spinal cord injury and repair. Journal of Clinical Investigation, 127(9): 3259–3270. [CrossRef]
- Łojek, E, Stańczak, J, Wójcik, A. The Depression Assessment Questionarie. Manual. Labolatory of Psychological Testing of the Polish Psychological Association: Warsaw, Poland, 2015.
- Wrześniewski, K., Jaworska, A., Sosnowski, T., Fecenec, D. State- Trait Anxiety Inventory. Polish adaptation of STAI. Manual. 4th.Laboratory of Psychological Testing of the Polish Psychological Association: Warsaw, Poland, 2011.
- Bell, W., Meyer, P.R., Edelstein, D. American Spinal Injury Association (ASIA). (1984). Paraplegia, 22 (1): 45-54. [CrossRef]
- Opera, J., Mehlich, K., Bielecki, A. Zastosowanie Indeksu Chodu po Urazie Rdzenia Kregowego- WISCI. Ortopedia. Traumatologia. Rehabilitacja, 9(2): 122-127.
- Lam, T., Noonan, V.K., Eng, J.J.A systematic review of functional ambulation outcome measures in spinal cord injury. (2008). Spinal Cord, 46(4):246–254. [CrossRef]
- Itzkovich, M., Shefler, H., Front, L., Gur-Pollack, R., Elkayam, K., Bluvshtein, V., Gelernter, I., Catz, A. (2018). SCIM III (Spinal Cord Independence Measure version III): reliability of assessment by interview and comparison with assessment by observation. Spinal Cord, 56(1): 46–51. [CrossRef]
- Itzkovich, M., Gelernter, I., Biering-Sorensen, F., Weeks, C., Laramee, M.T., Craven, B.C., Tonack, M., Hitzig, S.L., Glaser, E., Zeilig, G., Aito, S., Scivoletto, G., Mecci, M., Chadwick, R.J., El Masry, W.S., Osman, A., Glass, C.A., Silva, P., Soni, B.M., Gardner, B.P., Savic, G., Bergström, E.M., Bluvshtein, V., Ronen, J., Catz, A. (2007). The Spinal Cord Independence Measure (SCIM) version III: reliability and validity in a multi-center international study. Disability and Rehabilitation, 29(24):1926-33. [CrossRef]
- Wrona-Polanska, H. Psychological aspects of informing patients about illness. in. Kubacka-Jasiecka, D., Ostrowski, T. M. Psychological dimensions of health, crisis and disease, Jagiellonian University Publishing House, Edition I, Cracow, Polad, 2005.
- Shahin, A.A, Shawky, Sh.A., Rady, H.M., Effat, D.A., Abdelrahman, Sh.K., Mohamed, e., Awad, R. (2017). Effect of Robotic Assisted Gait Training on functional and psychological improvement in patients with Incomplete Spinal Cord Injury. Journal of Novel Physiotherapy and Physical Rehabilitation, 4(3):83-86. [CrossRef]
- Sin, N.L., Lyubomirsky, S. (2009). Enhancing well-being and alleviating depressive symptoms with positive psychology interventions: a practice-friendly meta-analysis. Journal of Clinical Psychology, 65(5):467-87. [CrossRef]
| Variables | The whole group | ||
|---|---|---|---|
| Baseline, Median (IQR) |
Final Median (IQR) |
size effect |
|
| STAI X-1 | 35.00 (13.00) | 31.00 (8.50) | 0.42*** |
| KPD | 89.00 (34.00) | 80.50 (29.50) | 0.43*** |
| DPUE | 29.00 (10.00) | 26.50 (7.50) | 0.35*** |
| MSPA | 19.00 (8.00) | 17.00 (5.50) | 0.35*** |
| PWLN | 27.00 (8.00) | 24.50 (10.00) | 0.43*** |
| OPSZ | 16.00 (7.00) | 13.00 (6.50) | 0.32*** |
| SR | 46.00 (8.00) | 49.00 (10.00) | 0.29*** |
| Variables | S0 (n = 30) | S1 (n = 79) | S0 (n = 30) | S1 (n = 79) | size effect |
||||
|---|---|---|---|---|---|---|---|---|---|
| Baseline, Median (IQR) |
Final Median (IQR) |
size effect |
Baseline, Median (IQR) |
Final Median (IQR) |
size effect |
Change Median (IQR) |
Change Median (IQR) |
||
| STAI X-1 | 35.00 (13.00) | 31.00 (8.50) | 0.52*** | 32.00 (13.00) | 26.00 (5.00) | 0.39*** | 5.00 (0.00) | 4.00 (9.00) | 0.05 |
| KPD | 89.00 (34.00) | 80.50 (29.50) | 0.47*** | 85.00 (30.00) | 78.00 (26.00) | 0.42*** | 5.50 (12.00) | 6.00 (11.00) | 0.04 |
| DPUE | 29.00 (10.00) | 26.50 (7.50) | 0.42** | 27.00 (10.00) | 26.00 (8.00) | 0.32*** | 2.50 (5.00) | 2.00 (5.00) | 0.09 |
| MSPA | 19.00 (8.00) | 17.00 (5.50) | 0.38** | 19.00 (5.00) | 17.00 (4.00) | 0.34*** | 2.00 (3.75) | 1.00 (2.00) | 0.07 |
| PWLN | 27.00 (8.00) | 24.50 (10.00) | 0.40** | 25.00 (9.00) | 21.00 (8.00) | 0.45*** | 11.00 (8.25) | 10.00 (5.00) | 0.14 |
| OPSZ | 16.00 (7.00) | 13.00 (6.50) | 0.40** | 15.00 (6.00) | 14.00 (5.00) | 0.28*** | 1.50 (4.00) | 1.00 (4.00) | 0.12 |
| SR | 46.00 (8.00) | 49.00 (10.00) | 0.37** | 46.00 (7.00) | 47.00 (8.00) | 0.26** | 3.00 (4.25) | 2.00 (4.00) | 0.11 |
| WISCI | 0.00 (4.00) | 0.50 (5.75) | 0.26* | 2.00 (11.00) | 6.00 (15.00) | 0.41*** | 0.00 (0.00) | 0.00 (3.00) | 0.24* |
| SCIM | 63.50 (27.25) | 66.50 (22.25) | 0.50*** | 64.00 (20.00) | 70.00 (24.00) | 0.56*** | 4.00 (8.25) | 5.00 (7.00) | 0.07 |
| S0 (n = 30) | S1 (n = 79) | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Change | |||||||||
| Change, STAI X-1 |
Change, KPD |
Change, STAI X-1 |
Change, KPD |
||||||
| rs | p | rs | p | rs | p | rs | p | ||
| SCIM | -0.29 | 0.152 | -0.16 | 0.422 | 0.17 | 0.233 | 0.08 | 0.573 | |
| WISCI | 0.03 | 0.902 | 0.04 | 0.841 | -0.02 | 0.870 | -0.15 | 0.281 | |
| S0 | ASIA-A (n = 13) | ASIA-B, C, D (n = 17) | ASIA-A | ASIA-B, C, D | ||||||
|
Baseline, Median (IQR) |
Final Median (IQR) |
size effect |
Baseline, Median (IQR) |
Final Median (IQR) |
size effect |
Change, Median (IQR) |
Change, Median (IQR) |
size effect |
||
| STAI X-1 | 32.00 (7.50) | 27.00 (7.50) | 0.60** | 38.00 (8.50) | 33.00 (11.50) | 0.48** | 5.00 (0.00) | 5.00 (6.50) | 0.07 | |
| KPD | 78.00 (20.50) | 78.00 (24.00) | 0.28 | 97.00 (38.50) | 84.00 (40.00) | 0.59*** | 4.00 (10.00) | 10.00 (16.50) | 0.34 | |
| DPUE | 27.50 (8.75) | 24.00 (9.00) | 0.37 | 35.00 (13.50) | 28.00 (13.50) | 0.47** | 2.00 (3.50) | 4.00 (7.50) | 0.25 | |
| MSPA | 16.00 (5.50) | 17.00 (3.50) | 0.07 | 21.00 (13.00) | 18.00 (10.50) | 0.56** | 0.00 (3.50) | 2.00 (4.00) | 0.45* | |
| PWLN | 23.50 (5.75) | 24.00 (8.50) | 0.37 | 28.00 (6.50) | 25.00 (11.50) | 0.44* | 11.00 (7.00) | 15.00 (9.50) | 0.16 | |
| OPSZ | 15.00 (4.50) | 13.00 (5.00) | 0.34 | 19.00 (8.50) | 12.00 (9.00) | 0.43* | 1.00 (5.00) | 2.00 (4.50) | 0.05 | |
| SR | 47.50 (5.25) | 49.00 (9.00) | 0.34 | 45.00 (11.50) | 48.00 (12.50) | 0.38* | 2.00 (4.50) | 3.00 (7.50) | 0.14 | |
| ASIA-A (n = 30) | ASIA-B, C, D (n = 49) | ASIA-A | ASIA-B, C, D | |||||||
| S1 | ||||||||||
|
Baseline, Median (IQR) |
Final Median (IQR) |
size effect |
Baseline, Median (IQR) |
Final Median (IQR) |
size effect |
Change, Median (IQR) |
Change, Median (IQR) |
size effect |
||
| STAI X-1 | 31.50 (11.50) | 26.00 (2.75) | 0.41** | 33.00 (12.00) | 26.00 (6.00) | 0.38*** | 4.00 (0.00) | 3.00 (8.50) | <0.01 | |
| KPD | 80.50 (33.75) | 75.50 (23.50) | 0.44** | 86.00 (27.00) | 79.00 (31.00) | 0.40*** | 6.00 (12.25) | 6.00 (10.00) | <0.01 | |
| DPUE | 26.50 (10.25) | 26.00 (5.75) | 0.30** | 28.00 (10.50) | 26.00 (10.50) | 0.33** | 2.00 (5.50) | 2.00 (4.00) | 0.04 | |
| MSPA | 17.00 (5.00) | 16.00 (4.00) | 0.39** | 19.00 (5.50) | 18.00 (4.50) | 0.32** | 1.00 (2.00) | 1.00 (2.00) | <0.01 | |
| PWLN | 24.50 (7.50) | 19.00 (7.50) | 0.44** | 26.00 (10.00) | 22.00 (10.00) | 0.44*** | 9.50 (6.00) | 11.00 (4.50) | 0.11 | |
| OPSZ | 14.00 (7.50) | 14.00 (5.25) | 0.30** | 15.00 (5.50) | 14.00 (5.50) | 0.27** | 1.00 (4.00) | 1.00 (4.00) | 0.02 | |
| SR | 47.00 (6.00) | 47.50 (9.00) | 0.26* | 44.00 (8.00) | 46.00 (9.50) | 0.25* | 1.50 (4.25) | 2.00 (4.50) | 0.04 | |
| Variables | Paraplegia (n = 89) | Tetraplegia (n = 20) | Paraplegia (n = 89) | Tetraplegia (n = 20) | size effect |
||||
|---|---|---|---|---|---|---|---|---|---|
| Baseline, Median (IQR) |
Final Median (IQR) |
size effect |
Baseline, Median (IQR) |
Final Median (IQR) |
size effect |
Change Median (IQR) |
Change Median (IQR) |
||
| STAI X-1 | 33.00 (13.00) | 26.00 (7.00) | 0.40*** | 35.00 (13.50) | 28.00 (6.75) | 0.49** | 4.00 (0.00) | 3.50 (8.75) | <0.01 |
| KPD | 86.00 (29.00) | 79.00 (25.50) | 0.42*** | 92.00 (35.50) | 81.50 (31.00) | 0.49** | 6.00 (13.00) | 7.00 (8.50) | <0.01 |
| DPUE | 28.00 (9.50) | 26.00 (7.00) | 0.36*** | 27.00 (13.00) | 25.00 (13.50) | 0.28 | 2.00 (4.50) | 1.50 (5.50) | 0.06 |
| MSPA | 19.00 (5.50) | 17.00 (4.00) | 0.35*** | 18.00 (6.50) | 18.00 (4.00) | 0.32* | 1.00 (2.00) | 0.50 (3.50) | 0.06 |
| PWLN | 26.00 (8.50) | 22.00 (8.50) | 0.43*** | 25.00 (11.00) | 23.00 (10.75) | 0.47** | 10.00 (6.00) | 10.50 (7.00) | 0.03 |
| OPSZ | 15.00 (6.50) | 13.00 (5.00) | 0.30*** | 16.00 (7.50) | 14.00 (5.50) | 0.41** | 1.00 (4.00) | 2.00 (3.75) | 0.11 |
| SR | 46.00 (9.00) | 47.00 (10.00) | 0.22** | 46.00 (7.00) | 49.00 (8.75) | 0.55*** | 1.00 (4.00) | 3.00 (5.50) | 0.20* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
