Submitted:
30 August 2023
Posted:
31 August 2023
Read the latest preprint version here
Abstract
Keywords:
- Spatio-temporal variability in data availability over Europe is substantial
- Data availability in 1980s-90s throttles compositing windows for long-term analyses
- For most geographies, data availability is greater during the growing season
- Joint use of Landsat and Sentinel-2 data reduces temporal granularity of composites
- Data interpolation is often essential to ensure temporally consistent time series
1. Introduction
| Temporal resolution | Enhancement | Application | References | Dataset |
|---|---|---|---|---|
| Annual | Land cover classification: urban areas | (Z. Zhang et al., 2021) | Landsat 8 | |
| Land cover monitoring: forest disturbance | (Y. Zhang et al., 2021) | Landsat 7, 8, Sentinel-2 | ||
| Annual with target period/day | Land cover classification | (Hermosilla et al., 2022) | Landsat time series | |
| Land cover monitoring: forest disturbance | (Senf et al., 2022) (Senf and Seidl, 2021) |
Landsat time series | ||
| Infill interpolation | (Coops et al., 2020) | Landsat time series | ||
| Land cover monitoring: forest health | (Franklin and Robitaille, 2020) | Landsat time series | ||
| Land cover monitoring: shrub dynamics | (Suess et al., 2018) | Landsat time series | ||
| Seasonal | Land cover classification | (Nasiri et al., 2022) | Landsat 8, Sentinel-2 | |
| Land cover monitoring: land cover composition | (Okujeni et al., 2021) | Landsat 7, 8 | ||
| Land cover monitoring: cover crops | (Thieme et al., 2020) | Landsat time series, HLS Seninel-2 | ||
| Land cover monitoring: forest encroachment | (Filippelli et al., 2020) | Landsat time series | ||
| Land cover monitoring: forest disturbance | (De Marzo et al., 2021) | Landsat time series | ||
| Derivation of updated Tasseled cap transformation coefficients | (Zhai et al., 2022) | Landsat 8 | ||
| Seasonal and monthly | Land cover monitoring: surface water extend | (Yang et al., 2020) | Sentinel-2 | |
| 48-day | Land cover classification: crop type | (Johnson and Mueller, 2021) | Landsat 7, 8 | |
| 31-day | Savitzky–Golay | Land cover monitoring: biomass of herbaceous vegetation | (Kearney et al., 2022) | HLS: Landsat 8, Sentinel 2 |
| (six) phenological periods | Land cover classification: crop classification | (Xu et al., 2020) | Landsat 8, Sentinel-2 | |
| Varied pre- and post-event composites | Land cover monitoring: forest fire disturbances | (Kato et al., 2020) | Landsat time series | |
| Monthly and annual | Land cover classification: crop type | (Ghassemi et al., 2022) | Sentinel-2 | |
| Monthly | Land cover classification | (Phan et al., 2020) | Landsat 8 | |
| Land cover monitoring: crop monitoring | (Kim and Eun, 2021) | Sentinel-2 | ||
| Land cover monitoring: agriculture | (Defourny et al., 2019) | Landsat 8, Sentinel-2 | ||
| Whittaker | Land cover monitoring: grasslands | (Lewińska et al., 2021) | Landsat time series | |
| Habitat modeling: bird species richness | (Silveira et al., 2023) | Landsat 8, Sentinel-2 | ||
| 16-day | Land cover and land use dynamism | (Potapov et al., 2022) | Landsat time series | |
| 10-day | linear interpolation | Land cover monitoring: mowing detection | (Griffiths et al., 2020) | HLS: Landsat 8, Sentinel-2 |
| linear interpolation and Savitzky–Golay | Land cover monitoring: croplands | (Liu et al., 2020) | Landsat 5, 7, 8, Seninel-2 | |
| 10-day, monthly, seasonal | linear interpolation | Land cover classification: crop and land cover mapping | (Griffiths et al., 2019) | HLS: Landsat 8, Sentinel-2 |
| 8-day | Whittaker | Land cover monitoring: change detection in grasslands | (Mardian et al., 2021) | Landsat time series |
| 5-day | Radial Basis Function | Land cover classification: tree species | (Hemmerling et al., 2021) | Sentinel-2 |
| Radial Basis Function | Land cover classification: crop types mapping | (Blickensdörfer et al., 2022) | Landsat 8, Sentinel-2, Sentinel-1 | |
| 1-day | penalized cubic smoothing splines | Land cover phenology | (Bolton et al., 2020) | HLS: Landsat 8, Sentinel-2 |
2. Materials and methods
2.1. Study area
2.2. Landsat and Sentinel-2 time series and their preprocessing
2.3. Auxiliary data
2.4. Data availability analysis
3. Results
3.1. Overall 1984-2021 data availability per calendar year
3.2. Data availability across biogeographical regions per calendar year
3.3. Overall 1984-2021 data availability per growing season
3.4. Data availability across biogeographical regions per growing season
3.5. Growing season annual composites for forest monitoring
3.6. Growing season monthly composites for land cover monitoring
3.7. 10-day composites for agricultural monitoring
3.8. Feasible compositing windows for single-year analyses
3.9. Feasible compositing windows for medium- and long-term analyses
3.10. Spatial patterns of temporal granularity
4. Discussion
4.1. Data availability over Europe
4.2. Impact of the processing workflow on the results
4.3. Implications for time-series analyses
5. Conclusions
Data Availability
Supplementary Materials
Acknowledgements
References
- Andrefouet, S., E, B. de C., Brown de Colstoun, E., E.C., C., 2003. Preliminary Assessment of the Value of Landsat 7 ETM+ Data following Scan Line Corrector Malfunction (No. J., Doorn, B., Hall, D.K., Holifield, C., Howard, S., Kranenburg, C., Lee, S., Masek, J.B., Moran, M., Mueller-Karger, F., Ohlen, D., Palandro, D., Price, J., Qi, J., Reed, B.C., Samek, J., Scaramuzza, P., Skole, D., Schott, J., Storey, J., Thome, K., Torres-Pulliza, D., Vogelmann, J., Williams, D.L., Woodcock, C., Wylie, B.,). USGS.
- Atkinson, P.M., Jeganathan, C., Dash, J., Atzberger, C., 2012. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sensing of Environment 123, 400–417. [CrossRef]
- Azzari, G., Lobell, D.B., 2017. Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover monitoring. Remote Sensing of Environment 202, 64–74. [CrossRef]
- Baetens, L., Desjardins, C., Hagolle, O., 2019. Validation of Copernicus Sentinel-2 Cloud Masks Obtained from MAJA, Sen2Cor, and FMask Processors Using Reference Cloud Masks Generated with a Supervised Active Learning Procedure. Remote Sensing 11, 433. [CrossRef]
- Belgiu, M., Csillik, O., 2018. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment 204, 509–523. [CrossRef]
- Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., Hostert, P., 2022. Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment 269, 112831. [CrossRef]
- Bolton, D.K., Gray, J.M., Melaas, E.K., Moon, M., Eklundh, L., Friedl, M.A., 2020. Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery. Remote Sensing of Environment 240, 111685. [CrossRef]
- Bullock, E.L., Woodcock, C.E., Olofsson, P., 2020. Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis. Remote Sensing of Environment 238, 110968. [CrossRef]
- Chen, S., Woodcock, C.E., Bullock, E.L., Arévalo, P., Torchinava, P., Peng, S., Olofsson, P., 2021. Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis. Remote Sensing of Environment 265, 112648. [CrossRef]
- Chu, D., Shen, H., Guan, X., Chen, J.M., Li, X., Li, J., Zhang, L., 2021. Long time-series NDVI reconstruction in cloud-prone regions via spatio-temporal tensor completion. Remote Sensing of Environment 264, 112632. [CrossRef]
- Cihlar, J., Manak, D., D’Iorio, M., 1994. Evaluation of compositing algorithms for AVHRR data over land. IEEE Trans. Geosci. Remote Sensing 32, 427–437. [CrossRef]
- Claverie, M., Ju, J., Masek, J.G., Dungan, J.L., Vermote, E.F., Roger, J.-C., Skakun, S.V., Justice, C., 2018. The Harmonized Landsat and Sentinel-2 surface reflectance data set. REMOTE SENSING OF ENVIRONMENT 219, 145–161. [CrossRef]
- Coluzzi, R., Imbrenda, V., Lanfredi, M., Simoniello, T., 2018. A first assessment of the Sentinel-2 Level 1-C cloud mask product to support informed surface analyses. Remote Sensing of Environment 217, 426–443. [CrossRef]
- Coops, N.C., Shang, C., Wulder, M.A., White, J.C., Hermosilla, T., 2020. Change in forest condition: Characterizing non-stand replacing disturbances using time series satellite imagery. Forest Ecology and Management 474, 118370. [CrossRef]
- De Marzo, T., Pflugmacher, D., Baumann, M., Lambin, E.F., Gasparri, I., Kuemmerle, T., 2021. Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series. International Journal of Applied Earth Observation and Geoinformation 98, 102310. [CrossRef]
- Defourny, P., Bontemps, S., Bellemans, N., Cara, C., Dedieu, G., Guzzonato, E., Hagolle, O., Inglada, J., Nicola, L., Rabaute, T., Savinaud, M., Udroiu, C., Valero, S., Bégué, A., Dejoux, J.-F., El Harti, A., Ezzahar, J., Kussul, N., Labbassi, K., Lebourgeois, V., Miao, Z., Newby, T., Nyamugama, A., Salh, N., Shelestov, A., Simonneaux, V., Traore, P.S., Traore, S.S., Koetz, B., 2019. Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world. Remote Sensing of Environment 221, 551–568. [CrossRef]
- Dennison, P.E., Roberts, D.A., Peterson, S.H., 2007. Spectral shape-based temporal compositing algorithms for MODIS surface reflectance data. Remote Sensing of Environment 109, 510–522. [CrossRef]
- Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., Bargellini, P., 2012. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment 120, 25–36. [CrossRef]
- EEA, 2016. Biogeographical regions [WWW Document]. URL https://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3.
- Estel, S., Mader, S., Levers, C., Verburg, P.H., Baumann, M., Kuemmerle, T., 2018. Combining satellite data and agricultural statistics to map grassland management intensity in Europe. Environ. Res. Lett. 13, 074020. [CrossRef]
- European Commission, 2011. COM (2011) 152 final. European Comission, Brussels.
- European Space Agency, 2021. Sentinel-2 MSI Level-1C TOA Reflectance, Collection 0. [CrossRef]
- Feng Gao, Masek, J., Schwaller, M., Hall, F., 2006. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sensing 44, 2207–2218. [CrossRef]
- Filippelli, S.K., Vogeler, J.C., Falkowski, M.J., Meneguzzo, D.M., 2020. Monitoring conifer cover: Leaf-off lidar and image-based tracking of eastern redcedar encroachment in central Nebraska. Remote Sensing of Environment 248, 111961. [CrossRef]
- Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Joseph Hughes, M., Laue, B., 2017. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment 194, 379–390.
- Francini, S., Hermosilla, T., Coops, N.C., Wulder, M.A., White, J.C., Chirici, G., 2023. An assessment approach for pixel-based image composites. ISPRS Journal of Photogrammetry and Remote Sensing 202, 1–12. [CrossRef]
- Franklin, S., Robitaille, S., 2020. Forest insect defoliation and mortality classification using annual Landsat time series composites: a case study in northwestern Ontario, Canada. Remote Sensing Letters 11, 1175–1180. [CrossRef]
- Frantz, D., 2019. FORCE—Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sensing 11, 1124. [CrossRef]
- Frantz, D., Haß, E., Uhl, A., Stoffels, J., Hill, J., 2018. Improvement of the Fmask algorithm for Sentinel-2 images: Separating clouds from bright surfaces based on parallax effects. Remote Sensing of Environment 215, 471–481. [CrossRef]
- Frantz, D., Hostert, P., Rufin, P., Ernst, S., Röder, A., van der Linden, S., 2022. Revisiting the Past: Replicability of a Historic Long-Term Vegetation Dynamics Assessment in the Era of Big Data Analytics. Remote Sensing 14, 597. [CrossRef]
- Friedl, M., Josh, G., Sulla-Menashe, D., 2019. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V006. [CrossRef]
- Friedl, M., Sulla-Menashe, D., 2019. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006. [CrossRef]
- Gascon, F., Biasutti, R., Ferrara, R., Fischer, P., Galli, L., Hoersch, B., Hopkins, S., Jackson, J., Lavender, S., Mica, S., Northrop, A., Paciucci, A., Paul, F., Pinori, S., Saunier, S., 2014. European Space Agency (ESA) Landsat MSS/TM/ETM+ Archive Bulk-Processing: processor improvements and data quality, in: Butler, J.J., Xiong, X. (Jack), Gu, X. (Eds.),. San Diego, California, United States, p. 92181C. [CrossRef]
- Ghassemi, B., Dujakovic, A., Żółtak, M., Immitzer, M., Atzberger, C., Vuolo, F., 2022. Designing a European-Wide Crop Type Mapping Approach Based on Machine Learning Algorithms Using LUCAS Field Survey and Sentinel-2 Data. Remote Sensing 14, 541. [CrossRef]
- Goldblatt, R., Stuhlmacher, M.F., Tellman, B., Clinton, N., Hanson, G., Georgescu, M., Wang, C., Serrano-Candela, F., Khandelwal, A.K., Cheng, W.-H., Balling, R.C., 2018. Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sensing of Environment 205, 253–275. [CrossRef]
- Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202, 18–27. [CrossRef]
- Griffiths, P., Nendel, C., Hostert, P., 2019. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sensing of Environment 220, 135–151. [CrossRef]
- Griffiths, P., Nendel, C., Pickert, J., Hostert, P., 2020. Towards national-scale characterization of grassland use intensity from integrated Sentinel-2 and Landsat time series. Remote Sensing of Environment 238, 111124. [CrossRef]
- Halabisky, M., Moskal, L.M., Gillespie, A., Hannam, M., 2016. Reconstructing semi-arid wetland surface water dynamics through spectral mixture analysis of a time series of Landsat satellite images (1984–2011). Remote Sensing of Environment 177, 171–183. [CrossRef]
- Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.G., 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 342, 850–853. [CrossRef]
- Hemmerling, J., Pflugmacher, D., Hostert, P., 2021. Mapping temperate forest tree species using dense Sentinel-2 time series. Remote Sensing of Environment 267, 112743. [CrossRef]
- Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., 2022. Land cover classification in an era of big and open data: Optimizing localized implementation and training data selection to improve mapping outcomes. Remote Sensing of Environment 268, 112780. [CrossRef]
- Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Campbell, L.B., 2016. Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. International Journal of Digital Earth 9, 1035–1054. [CrossRef]
- Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass, L., Funk, M., Wickham, J., Stehman, S., Auch, R., Riitters, K., 2020. Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database. ISPRS Journal of Photogrammetry and Remote Sensing 162, 184–199. [CrossRef]
- Houborg, R., McCabe, M.F., 2018. A Cubesat enabled Spatio-Temporal Enhancement Method (CESTEM) utilizing Planet, Landsat and MODIS data. Remote Sensing of Environment 209, 211–226. [CrossRef]
- Huamin, T., Qiuqun, D., Shanzhu, X., 2020. Reconstruction of time series with missing value using 2D representation-based denoising autoencoder. J. of Syst. Eng. Electron. 31, 1087–1096. [CrossRef]
- Hunt, M.L., Blackburn, G.A., Carrasco, L., Redhead, J.W., Rowland, C.S., 2019. High resolution wheat yield mapping using Sentinel-2. Remote Sensing of Environment 233, 111410. [CrossRef]
- Ives, A.R., Zhu, L., Wang, F., Zhu, J., Morrow, C.J., Radeloff, V.C., 2021. Statistical inference for trends in spatiotemporal data. Remote Sensing of Environment 266, 112678. [CrossRef]
- Johnson, D.M., Mueller, R., 2021. Pre- and within-season crop type classification trained with archival land cover information. Remote Sensing of Environment 264, 112576. [CrossRef]
- Kandasamy, S., Baret, F., Verger, A., Neveux, P., Weiss, M., 2013. A comparison of methods for smoothing and gap filling time series of remote sensing observations – application to MODIS LAI products. Biogeosciences 10, 4055–4071. [CrossRef]
- Kato, A., Thau, D., Hudak, A.T., Meigs, G.W., Moskal, L.M., 2020. Quantifying fire trends in boreal forests with Landsat time series and self-organized criticality. Remote Sensing of Environment 237, 111525. [CrossRef]
- Kearney, S.P., Porensky, L.M., Augustine, D.J., Gaffney, R., Derner, J.D., 2022. Monitoring standing herbaceous biomass and thresholds in semiarid rangelands from harmonized Landsat 8 and Sentinel-2 imagery to support within-season adaptive management. Remote Sensing of Environment 271, 112907. [CrossRef]
- Kennedy, R.E., Yang, Z., Cohen, W.B., 2010. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation algorithms. Remote Sensing of Environment 114, 2897–2910. [CrossRef]
- Kim, S., Eun, J., 2021. Reflectance composites from multispectral satellite imagery for crop monitoring, in: Neale, C.M., Maltese, A. (Eds.), Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIII. SPIE, Online Only, Spain, p. 53. [CrossRef]
- Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World Map of the Köppen-Geiger climate classification updated. metz 15, 259–263. [CrossRef]
- Kovalskyy, V., Roy, D.P., 2013. The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30m Landsat data product generation. Remote Sensing of Environment 130, 280–293. [CrossRef]
- Kowalski, K., Okujeni, A., Brell, M., Hostert, P., 2022. Quantifying drought effects in Central European grasslands through regression-based unmixing of intra-annual Sentinel-2 time series. Remote Sensing of Environment 268, 112781. [CrossRef]
- Kowalski, K., Senf, C., Hostert, P., Pflugmacher, D., 2020. Characterizing spring phenology of temperate broadleaf forests using Landsat and Sentinel-2 time series. International Journal of Applied Earth Observation and Geoinformation 92, 102172. [CrossRef]
- Lang, N., Schindler, K., Wegner, J.D., 2019. Country-wide high-resolution vegetation height mapping with Sentinel-2. Remote Sensing of Environment 233, 111347. [CrossRef]
- Lewińska, K.E., Buchner, J., Bleyhl, B., Hostert, P., Yin, H., Kuemmerle, T., Radeloff, V.C., 2021. Changes in the grasslands of the Caucasus based on Cumulative Endmember Fractions from the full 1987–2019 Landsat record. Science of Remote Sensing 4, 100035. [CrossRef]
- Li, J., Chen, B., 2020. Global Revisit Interval Analysis of Landsat-8 -9 and Sentinel-2A -2B Data for Terrestrial Monitoring. Sensors 20, 6631. [CrossRef]
- Li, X., Zhou, Y., Zhu, Z., Liang, L., Yu, B., Cao, W., 2018. Mapping annual urban dynamics (1985–2015) using time series of Landsat data. Remote Sensing of Environment 216, 674–683. [CrossRef]
- Liu, L., Xiao, X., Qin, Y., Wang, J., Xu, X., Hu, Y., Qiao, Z., 2020. Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sensing of Environment 239, 111624. [CrossRef]
- Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., Gascon, F., 2017. Sen2Cor for Sentinel-2, in: Bruzzone, L., Bovolo, F., Benediktsson, J.A. (Eds.), Image and Signal Processing for Remote Sensing XXIII. SPIE, Warsaw, Poland, p. 3. [CrossRef]
- Mardian, J., Berg, A., Daneshfar, B., 2021. Evaluating the temporal accuracy of grassland to cropland change detection using multitemporal image analysis. Remote Sensing of Environment 255, 112292. [CrossRef]
- Nasiri, V., Deljouei, A., Moradi, F., Sadeghi, S.M.M., Borz, S.A., 2022. Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods. Remote Sensing 14, 1977. [CrossRef]
- Nill, L., Grünberg, I., Ullmann, T., Gessner, M., Boike, J., Hostert, P., 2022. Arctic shrub expansion revealed by Landsat-derived multitemporal vegetation cover fractions in the Western Canadian Arctic. Remote Sensing of Environment 281, 113228. [CrossRef]
- Notarnicola, C., 2020. Hotspots of snow cover changes in global mountain regions over 2000–2018. Remote Sensing of Environment 243. [CrossRef]
- Okujeni, A., Jänicke, C., Cooper, S., Frantz, D., Hostert, P., Clark, M., Segl, K., van der Linden, S., 2021. Multi-season unmixing of vegetation class fractions across diverse Californian ecoregions using simulated spaceborne imaging spectroscopy data. Remote Sensing of Environment 264, 112558. [CrossRef]
- Pahlevan, N., Sarkar, S., Franz, B.A., Balasubramanian, S.V., He, J., 2017. Sentinel-2 MultiSpectral Instrument (MSI) data processing for aquatic science applications: Demonstrations and validations. Remote Sensing of Environment 201, 47–56. [CrossRef]
- Pekel, J.-F., Cottam, A., Gorelick, N., Belward, A.S., 2016. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422. [CrossRef]
- Pflugmacher, D., Rabe, A., Peters, M., Hostert, P., 2019. Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey. REMOTE SENSING OF ENVIRONMENT 221, 583–595. [CrossRef]
- Phan, T.N., Kuch, V., Lehnert, L.W., 2020. Land Cover Classification using Google Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote Sensing 12, 2411. [CrossRef]
- Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V.R., Murayama, Y., Ranagalage, M., 2020. Sentinel-2 Data for Land Cover/Use Mapping: A Review. REMOTE SENSING 12. [CrossRef]
- Potapov, P., Hansen, M.C., Kommareddy, I., Kommareddy, A., Turubanova, S., Pickens, A., Adusei, B., Tyukavina, A., Ying, Q., 2020. Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping. Remote Sensing 12, 426. [CrossRef]
- Potapov, P., Hansen, M.C., Pickens, A., Hernandez-Serna, A., Tyukavina, A., Turubanova, S., Zalles, V., Li, X., Khan, A., Stolle, F., Harris, N., Song, X.-P., Baggett, A., Kommareddy, I., Kommareddy, A., 2022. The Global 2000-2020 Land Cover and Land Use Change Dataset Derived From the Landsat Archive: First Results. Front. Remote Sens. 3, 856903. [CrossRef]
- Potapov, P.V., Turubanova, S.A., Tyukavina, A., Krylov, A.M., McCarty, J.L., Radeloff, V.C., Hansen, M.C., 2015. Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote Sensing of Environment 159, 28–43. [CrossRef]
- Qiu, S., Zhu, Z., Olofsson, P., Woodcock, C.E., Jin, S., 2023. Evaluation of Landsat image compositing algorithms. Remote Sensing of Environment 285, 113375. [CrossRef]
- Qiu, S., Zhu, Z., Shang, R., Crawford, C.J., 2021. Can Landsat 7 preserve its science capability with a drifting orbit? Science of Remote Sensing 4, 100026. [CrossRef]
- Rega, C., Short, C., Pérez-Soba, M., Luisa Paracchini, M., 2020. A classification of European agricultural land using an energy-based intensity indicator and detailed crop description. Landscape and Urban Planning 198, 103793. [CrossRef]
- Roy, D.P., Ju, J., Kline, K., Scaramuzza, P.L., Kovalskyy, V., Hansen, M., Loveland, T.R., Vermote, E., Zhang, C., 2010. Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sensing of Environment 114, 35–49. [CrossRef]
- Roy, D.P., Wulder, M.A., Loveland, T.R., C.E., W., Allen, R.G., Anderson, M.C., Helder, D., Irons, J.R., Johnson, D.M., Kennedy, R., Scambos, T.A., Schaaf, C.B., Schott, J.R., Sheng, Y., Vermote, E.F., Belward, A.S., Bindschadler, R., Cohen, W.B., Gao, F., Hipple, J.D., Hostert, P., Huntington, J., Justice, C.O., Kilic, A., Kovalskyy, V., Lee, Z.P., Lymburner, L., Masek, J.G., McCorkel, J., Shuai, Y., Trezza, R., Vogelmann, J., Wynne, R.H., Zhu, Z., 2014. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment 145, 154–172. [CrossRef]
- Ruefenacht, B., 2016. Comparison of Three Landsat TM Compositing Methods: A Case Study Using Modeled Tree Canopy Cover. Photogram Engng Rem Sens 82, 199–211. [CrossRef]
- Rufin, P., Frantz, D., Ernst, S., Rabe, A., Griffiths, P., Özdoğan, M., Hostert, P., 2019. Mapping Cropping Practices on a National Scale Using Intra-Annual Landsat Time Series Binning. Remote Sensing 11, 232. [CrossRef]
- Saunier, S., Louis, J., Debaecker, V., Beaton, T., Cadau, E.G., Boccia, V., Gascon, F., 2019. Sen2like, A Tool To Generate Sentinel-2 Harmonised Surface Reflectance Products - First Results with Landsat-8, in: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, Yokohama, Japan, pp. 5650–5653. [CrossRef]
- Schug, F., Frantz, D., Okujeni, A., van der Linden, S., Hostert, P., 2020. Mapping urban-rural gradients of settlements and vegetation at national scale using Sentinel-2 spectral-temporal metrics and regression-based unmixing with synthetic training data. Remote Sensing of Environment 246, 111810. [CrossRef]
- Schug, F, Frantz, D., Wiedenhofer, D., Haberl, H., Virág, D., van der Linden, S., Hostert, P., 2022. High-resolution mapping of 33 years of material stock and population growth in Germany using Earth Observation data. J of Industrial Ecology jiec.13343. [CrossRef]
- Schwieder, M., Buddeberg, M., Kowalski, K., Pfoch, K., Bartsch, J., Bach, H., Pickert, J., Hostert, P., 2020. Estimating Grassland Parameters from Sentinel-2: A Model Comparison Study. PFG 88, 379–390. [CrossRef]
- Schwieder, M., Wesemeyer, M., Frantz, D., Pfoch, K., Erasmi, S., Pickert, J., Nendel, C., Hostert, P., 2022. Mapping grassland mowing events across Germany based on combined Sentinel-2 and Landsat 8 time series. Remote Sensing of Environment 269, 112795. [CrossRef]
- Senf, C., Seidl, R., 2021. Mapping the coupled human and natural disturbance regimes of Europe’s forests. Nature Sustainability 4, 26. [CrossRef]
- Senf, C., Seidl, R., Poulter, B., 2022. Post-disturbance canopy recovery and the resilience of Europe’s forests. Global Ecol. Biogeogr. 31, 25–36. [CrossRef]
- Sfîcă, L., Beck, C., Nita, A., Voiculescu, M., Birsan, M., Philipp, A., 2021. Cloud cover changes driven by atmospheric circulation in Europe during the last decades. Int J Climatol 41. [CrossRef]
- Shang, R., Zhu, Z., Zhang, J., Qiu, S., Yang, Z., Li, T., Yang, X., 2022. Near-real-time monitoring of land disturbance with harmonized Landsats 7–8 and Sentinel-2 data. Remote Sensing of Environment 278, 113073. [CrossRef]
- Silveira, E.M.O., Pidgeon, A.M., Farwell, L.S., Hobi, M.L., Razenkova, E., Zuckerberg, B., Coops, N.C., Radeloff, V.C., 2023. Multi-grain habitat models that combine satellite sensors with different resolutions explain bird species richness patterns best. Remote Sensing of Environment 295, 113661. [CrossRef]
- Skakun, S., Wevers, J., Brockmann, C., Doxani, G., Aleksandrov, M., Batič, M., Frantz, D., Gascon, F., Gómez-Chova, L., Hagolle, O., López-Puigdollers, D., Louis, J., Lubej, M., Mateo-García, G., Osman, J., Peressutti, D., Pflug, B., Puc, J., Richter, R., Roger, J.-C., Scaramuzza, P., Vermote, E., Vesel, N., Zupanc, A., Žust, L., 2022. Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2. Remote Sensing of Environment 274, 112990. [CrossRef]
- Sudmanns, M., Tiede, D., Augustin, H., Lang, S., 2020. Assessing global Sentinel-2 coverage dynamics and data availability for operational Earth observation (EO) applications using the EO-Compass. International Journal of Digital Earth 13, 768–784. [CrossRef]
- Suess, S., van der Linden, S., Okujeni, A., Griffiths, P., Leitão, P.J., Schwieder, M., Hostert, P., 2018. Characterizing 32 years of shrub cover dynamics in southern Portugal using annual Landsat composites and machine learning regression modeling. Remote Sensing of Environment 219, 353–364. [CrossRef]
- Sulla-Menashe, D., Friedl, M.A., 2018. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product 18.
- Sulla-Menashe, D., Gray, J.M., Abercrombie, S.P., Friedl, M.A., 2019. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sensing of Environment 222, 183–194. [CrossRef]
- Tang, X., Bullock, E.L., Olofsson, P., Woodcock, C.E., 2020. Can VIIRS continue the legacy of MODIS for near real-time monitoring of tropical forest disturbance? Remote Sensing of Environment 249, 112024. [CrossRef]
- Thieme, A., Yadav, S., Oddo, P.C., Fitz, J.M., McCartney, S., King, L., Keppler, J., McCarty, G.W., Hively, W.D., 2020. Using NASA Earth observations and Google Earth Engine to map winter cover crop conservation performance in the Chesapeake Bay watershed. Remote Sensing of Environment 248, 111943. [CrossRef]
- Tian, F., Cai, Z., Jin, H., Hufkens, K., Scheifinger, H., Tagesson, T., Smets, B., Van Hoolst, R., Bonte, K., Ivits, E., Tong, X., Ardö, J., Eklundh, L., 2021. Calibrating vegetation phenology from Sentinel-2 using eddy covariance, PhenoCam, and PEP725 networks across Europe. Remote Sensing of Environment 260, 112456. [CrossRef]
- Tucker, C.J., Pinzon, J.E., Brown, M.E., Slayback, D.A., Pak, E.W., Mahoney, R., Vermote, E.F., El Saleous, N., 2005. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing 26, 4485–4498. [CrossRef]
- Tzallas, V., Hatzianastassiou, N., Benas, N., Meirink, J., Matsoukas, C., Stackhouse, P., Vardavas, I., 2019. Evaluation of CLARA-A2 and ISCCP-H Cloud Cover Climate Data Records over Europe with ECA&D Ground-Based Measurements. Remote Sensing 11, 212. [CrossRef]
- USGS, 2020. Landsat Thematic Mapper No-Payload Correction Data U.S. Geological Survey [WWW Document]. URL https://www.usgs.gov/landsat-missions/landsat-thematic-mapper-no-payload-correction-data (accessed 12.2.22).
- Van doninck, J., Tuomisto, H., 2017. Influence of Compositing Criterion and Data Availability on Pixel-Based Landsat TM/ETM+ Image Compositing Over Amazonian Forests. IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 10, 857–867. [CrossRef]
- Vermote, E., 2021. MODIS/Terra Surface Reflectance 8-Day L3 Global 250m SIN Grid V061. NASA EOSDIS Land Processes DAAC. [CrossRef]
- Vogelmann, J.E., Gallant, A.L., Shi, H., Zhu, Z., 2016. Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data. Remote Sensing of Environment 185, 258–270. [CrossRef]
- Wang, Q., Atkinson, P.M., 2018. Spatio-temporal fusion for daily Sentinel-2 images. Remote Sensing of Environment 204, 31–42. [CrossRef]
- Wang, Z., Liu, J., Li, J., Meng, Y., Pokhrel, Y., Zhang, H., 2021. Basin-scale high-resolution extraction of drainage networks using 10-m Sentinel-2 imagery. Remote Sensing of Environment 255, 112281. [CrossRef]
- Wilson, A.M., Jetz, W., 2016. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions. PLoS Biol 14, e1002415. [CrossRef]
- Wolfe, R.E., Roy, D.P., Vermote, E., 1998. MODIS land data storage, gridding, and compositing methodology: Level 2 grid. IEEE Trans. Geosci. Remote Sensing 36, 1324–1338. [CrossRef]
- Woodcock, C.E., Loveland, T.R., Herold, M., Bauer, M.E., 2020. Transitioning from change detection to monitoring with remote sensing: A paradigm shift. Remote Sensing of Environment 238, 111558. [CrossRef]
- Wulder, M.A., Hilker, T., White, J.C., Coops, N.C., Masek, J.G., Pflugmacher, D., Crevier, Y., 2015. Virtual constellations for global terrestrial monitoring. Remote Sensing of Environment 170, 62–76. [CrossRef]
- Wulder, M.A., Masek, J.G., Cohen, W.B., Loveland, T.R., Woodcock, C.E., 2012. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment 122, 2–10. [CrossRef]
- Wulder, M.A., Roy, D.P., Radeloff, V.C., Loveland, T.R., Anderson, M.C., Johnson, D.M., Healey, S., Zhu, Z., Scambos, T.A., Pahlevan, N., Hansen, M., Gorelick, N., Crawford, C.J., Masek, J.G., Hermosilla, T., White, J.C., Belward, A.S., Schaaf, C., Woodcock, C.E., Huntington, J.L., Lymburner, L., Hostert, P., Gao, F., Lyapustin, A., Pekel, J.-F., Strobl, P., Cook, B.D., 2022. Fifty years of Landsat science and impacts. Remote Sensing of Environment 280, 113195. [CrossRef]
- Wulder, M.A., White, J.C., Loveland, T.R., Woodcock, C.E., Belward, A.S., Cohen, W.B., Fosnight, E.A., Shaw, J., Masek, J.G., Roy, D.P., 2016. The global Landsat archive: Status, consolidation, and direction. Remote Sensing of Environment 185, 271–283. [CrossRef]
- Xie, Y., Lark, T.J., 2021. Mapping annual irrigation from Landsat imagery and environmental variables across the conterminous United States. Remote Sensing of Environment 260, 112445. [CrossRef]
- Xu, F., Li, Z., Zhang, S., Huang, N., Quan, Z., Zhang, W., Liu, X., Jiang, X., Pan, J., Prishchepov, A.V., 2020. Mapping Winter Wheat with Combinations of Temporally Aggregated Sentinel-2 and Landsat-8 Data in Shandong Province, China. Remote Sensing 12, 2065. [CrossRef]
- Yan, L., Roy, D., 2018. Large-Area Gap Filling of Landsat Reflectance Time Series by Spectral-Angle-Mapper Based Spatio-Temporal Similarity (SAMSTS). Remote Sensing 10, 609. [CrossRef]
- Yang, X., Qin, Q., Grussenmeyer, P., Koehl, M., 2018. Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery. Remote Sensing of Environment 219, 259–270. [CrossRef]
- Yang, X., Qin, Q., Yésou, H., Ledauphin, T., Koehl, M., Grussenmeyer, P., Zhu, Z., 2020. Monthly estimation of the surface water extent in France at a 10-m resolution using Sentinel-2 data. Remote Sensing of Environment 244, 111803. [CrossRef]
- Yao, F., Wang, J., Wang, C., Crétaux, J.-F., 2019. Constructing long-term high-frequency time series of global lake and reservoir areas using Landsat imagery. Remote Sensing of Environment 232, 111210. [CrossRef]
- Yin, H., Brandão, A., Buchner, J., Helmers, D., Iuliano, B.G., Kimambo, N.E., Lewińska, K.E., Razenkova, E., Rizayeva, A., Rogova, N., Spawn, S.A., Xie, Y., Radeloff, V.C., 2020. Monitoring cropland abandonment with Landsat time series. Remote Sensing of Environment 246, 111873. [CrossRef]
- Zanaga, Daniele, Van De Kerchove, Ruben, Daems, Dirk, De Keersmaecker, Wanda, Brockmann, Carsten, Kirches, Grit, Wevers, Jan, Cartus, Oliver, Santoro, Maurizio, Fritz, Steffen, Lesiv, Myroslava, Herold, Martin, Tsendbazar, Nandin-Erdene, Xu, Panpan, Ramoino, Fabrizio, Arino, Olivier, 2022. ESA WorldCover 10 m 2021 v200. [CrossRef]
- Zhai, Y., Roy, D.P., Martins, V.S., Zhang, H.K., Yan, L., Li, Z., 2022. Conterminous United States Landsat-8 top of atmosphere and surface reflectance tasseled cap transformation coefficients. Remote Sensing of Environment 274, 112992. [CrossRef]
- Zhang, Y., Ling, F., Wang, X., Foody, G.M., Boyd, D.S., Li, X., Du, Y., Atkinson, P.M., 2021. Tracking small-scale tropical forest disturbances: Fusing the Landsat and Sentinel-2 data record. Remote Sensing of Environment 261, 112470. [CrossRef]
- Zhang, Y., Woodcock, C.E., Arévalo, P., Olofsson, P., Tang, X., Stanimirova, R., Bullock, E., Tarrio, K.R., Zhu, Z., Friedl, M.A., 2022. A Global Analysis of the Spatial and Temporal Variability of Usable Landsat Observations at the Pixel Scale. Front. Remote Sens. 3, 894618. [CrossRef]
- Zhang, Z., Wei, M., Pu, D., He, G., Wang, G., Long, T., 2021. Assessment of Annual Composite Images Obtained by Google Earth Engine for Urban Areas Mapping Using Random Forest. Remote Sensing 13, 748. [CrossRef]
- Zhu, Z., Qiu, S., Ye, S., 2022. Remote sensing of land change: A multifaceted perspective. Remote Sensing of Environment 282, 113266. [CrossRef]
- Zhu, Z., Woodcock, C.E., 2014. Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment 144, 152–171. [CrossRef]
- Zhu, Z., Woodcock, C.E., 2012. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment 118, 83–94. [CrossRef]
- Zillmann, E., Gonzalez, A., Montero Herrero, E.J., van Wolvelaer, J., Esch, T., Keil, M., Weichelt, H., Garzon, A.M., 2014. Pan-European Grassland Mapping Using Seasonal Statistics From Multisensor Image Time Series. IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 7, 3461–3472. [CrossRef]
- Zupanc, A., 2017. Improving cloud detection with machine learning.










Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
