Submitted:
29 August 2023
Posted:
30 August 2023
You are already at the latest version
Abstract
Keywords:
Introduction
Definitive SBRT for primary HNC
Definitive SBRT in elderly or medically unfit HNC patients
Summary and recommendation
Definitive SBRT for early-stage glottis cancer
Summary and recommendation
Definitive SBRT as boost after EBRT (alternative to brachytherapy boost)
Summary and recommendation
Neoadjuvant SBRT (with immunotherapy) for HNC
Summary and recommendation
Salvage SBRT for recurrent unresectable or second primary HNC
Summary and recommendation
Adjuvant SBRT for recurrent HNC
Practical and technical aspects of SBRT for HNC
Target volume definition for SBRT
SBRT dose and fractionation
Target objectives and OAR constraints
Future directions
References
- Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. [CrossRef]
- Gilyoma JM, Rambau PF, Masalu N, Kayange NM, Chalya PL. Head and neck cancers: a clinico-pathological profile and management challenges in a resource-limited setting. BMC Res Notes. 2015;8:772. [CrossRef]
- Khuri FR, Lee JJ, Lippman SM, et al. Randomized phase III trial of low-dose isotretinoin for prevention of second primary tumors in stage I and II head and neck cancer patients. J Natl Cancer Inst. 2006;98(7):441-450. [CrossRef]
- Vahl JM, Wigand MC, Denkinger M, et al. Increasing Mean Age of Head and Neck Cancer Patients at a German Tertiary Referral Center. Published online 2021. [CrossRef]
- Gloeckler Ries LA, Reichman ME, Lewis DR, Hankey BF, Edwards BK. Cancer Survival and Incidence from the Surveillance, Epidemiology, and End Results (SEER) Program. Oncologist. 2003;8(6):541-552. [CrossRef]
- Lacas B, Carmel A, Landais C, et al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 107 randomized trials and 19,805 patients, on behalf of MACH-NC Group. Radiother Oncol. 2021;156:281. [CrossRef]
- Shaikh H, Karivedu V, Wise-Draper TM. Managing Recurrent Metastatic Head and Neck Cancer. Hematol Oncol Clin North Am. 2021;35(5):1009-1020. [CrossRef]
- Peng KA, Grogan T, Wang MB. Otolaryngol Head Neck Surg. 2014;151(4):627-633. [CrossRef]
- Bernier J, Cooper JS, Pajak TF, et al. Defining risk levels in locally advanced head and neck cancers: a comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (# 9501). Head Neck. 2005;27(10):843-850. [CrossRef]
- Weiss J, Sheth S, Deal AM, et al. Concurrent Definitive Immunoradiotherapy for Patients with Stage III-IV Head and Neck Cancer and Cisplatin Contraindication. Clin Cancer Res. 2020;26(16):4260-4267. [CrossRef]
- Mohamad I, Almousa A, Taqash A, et al. Primary radiation therapy for advanced-stage laryngeal cancer: A laryngo-esophageal dysfunction disease-free survival. Published online 2022. [CrossRef]
- Al-Assaf H, Erler D, Karam I, et al. Stereotactic body radiotherapy for medically unfit patients with cancers to the head and neck. Head Neck. 2020;42(8):2050-2057. [CrossRef]
- Russell JS, Brown JM. The irradiated tumor microenvironment: role of tumor-associated macrophages in vascular recovery. Front Physiol. 2013;4. [CrossRef]
- Khan L, Tjong M, Raziee H, et al. Role of stereotactic body radiotherapy for symptom control in head and neck cancer patients. Support Care Cancer. 2015;23(4):1099-1103. [CrossRef]
- Vargo JA, Ward MC, Caudell JJ, et al. A Multi-institutional Comparison of SBRT and IMRT for Definitive Reirradiation of Recurrent or Second Primary Head and Neck Cancer. Int J Radiat Oncol Biol Phys. 2018;100(3):595-605. [CrossRef]
- Amini A, McDermott JD, Gan G, et al. Stereotactic body radiotherapy as primary therapy for head and neck cancer in the elderly or patients with poor performance. Front Oncol. 2014;4(OCT). [CrossRef]
- Vargo JA, Heron DE, Ferris RL, et al. Examining tumor control and toxicity after stereotactic body radiotherapy in locally recurrent previously irradiated head and neck cancers: implications of treatment duration and tumor volume. Head Neck. 2014;36(9):1349-1355. [CrossRef]
- Garcia-Barros M, Paris F, Cordon-Cardo C, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003;300(5622):1155-1159. [CrossRef]
- Brown JM, Carlson DJ, Brenner DJ. The Tumor Radiobiology of SRS and SBRT: Are More than the 5 R’s Involved? Int J Radiat Oncol Biol Phys. 2014;88(2):254. [CrossRef]
- Siddiqui F, Patel M, Khan M, et al. Stereotactic body radiation therapy for primary, recurrent, and metastatic tumors in the head-and-neck region. Int J Radiat Oncol Biol Phys. 2009;74(4):1047-1053. [CrossRef]
- Kodani N, Yamazaki H, Tsubokura T, et al. Stereotactic body radiation therapy for head and neck tumor: disease control and morbidity outcomes. J Radiat Res. 2011;52(1):24-31. [CrossRef]
- Kawaguchi K, Sato K, Yamada H, et al. Stereotactic radiosurgery in combination with chemotherapy as primary treatment for head and neck cancer. J Oral Maxillofac Surg. 2012;70(2):461-472. [CrossRef]
- Vargo JA, Ferris RL, Clump DA, Heron DE. Stereotactic body radiotherapy as primary treatment for elderly patients with medically inoperable head and neck cancer. Front Oncol. 2014;4. [CrossRef]
- Karam I, Yao M, Heron DE, et al. Survey of current practices from the International Stereotactic Body Radiotherapy Consortium (ISBRTC) for head and neck cancers. Future Oncol. 2017;13(7):603-613. [CrossRef]
- Bisello S, Cilla S, Benini A, et al. Dose-Volume Constraints fOr oRganS At risk In Radiotherapy (CORSAIR): An “All-in-One” Multicenter-Multidisciplinary Practical Summary. Curr Oncol. 2022;29(10):7021-7050. [CrossRef]
- Sana D. Karam1*, James W. Snider1, Hongkun Wang2, Margaux Wooster1, Christopher Lominska3, John Deeken4, Kenneth Newkirk5 BD and KWH. Survival outcomes of patients treated with hypofractionated stereotactic body Radiation Therapy for Parotid Gland Tumors: a Retrospective Analysis. Front Oncol. 2(55).
- Voruganti IS, Poon I, Husain ZA, et al. Stereotactic body radiotherapy for head and neck skin cancer. Radiother Oncol. 2021;165:1-7. [CrossRef]
- Emile Gogineni 1, Zaker Rana 1, Prashant Vempati 1, Jessie Karten 1, Anurag Sharma 1, Peter Taylor 1, Lucio Pereira 2, Douglas Frank 2, Doru Paul 3, Nagashree Seetharamu 3 MG. Stereotactic body radiotherapy as primary treatment for elderly and medically inoperable patients with head and neck cancer. Head Neck. 42(10):2880-2886.
- Malik NH, Kim MS, Chen H, et al. Stereotactic Radiation Therapy for De Novo Head and Neck Cancers: A Systematic Review and Meta-Analysis. Adv Radiat Oncol. 2021;6(1):100628. [CrossRef]
- Le QTX, Fu KK, Kroll S, et al. Influence of fraction size, total dose, and overall time on local control of T1-T2 glottic carcinoma. Int J Radiat Oncol Biol Phys. 1997;39(1):115-126. [CrossRef]
- Dinshaw KA, Sharma V, Agarwal JP, Ghosh S, Havaldar R. Radiation therapy in T1-T2 glottic carcinoma: influence of various treatment parameters on local control/complications. Int J Radiat Oncol Biol Phys. 2000;48(3):723-735. [CrossRef]
- Yamazaki H, Nishiyama K, Tanaka E, Koizumi M, Chatani M. Radiotherapy for early glottic carcinoma (T1N0M0): results of prospective randomized study of radiation fraction size and overall treatment time. Int J Radiat Oncol Biol Phys. 2006;64(1):77-82. [CrossRef]
- Garden AS, Forster K, Wong PF, Morrison WH, Schechter NR, Ang KK. Results of radiotherapy for T2N0 glottic carcinoma: Does the “2” stand for twice-daily treatment? Int J Radiat Oncol Biol Phys. 2003;55(2):322-328. [CrossRef]
- Sher DJ, Timmerman RD, Nedzi L, et al. Phase 1 Fractional Dose-Escalation Study of Equipotent Stereotactic Radiation Therapy Regimens for Early-Stage Glottic Larynx Cancer. Int J Radiat Oncol. 2019;105(1):110-118. [CrossRef]
- Zhao B, Park YK, Gu X, Reynolds R, Timmerman R, Sher DJ. Surface guided motion management in glottic larynx stereotactic body radiation therapy. Radiother Oncol. 2020;153:236-242. [CrossRef]
- Yu T, Wee CW, Choi N, et al. Study design and early result of a phase I study of SABR for early-stage glottic cancer. Laryngoscope. 2018;128(11):2560-2565. [CrossRef]
- Kang BH, Yu T, Kim JH, et al. Early Closure of a Phase 1 Clinical Trial for SABR in Early-Stage Glottic Cancer. Int J Radiat Oncol Biol Phys. 2019;105(1):104-109. [CrossRef]
- Tate DJ, Adler JR, Chang SD, et al. Stereotactic radiosurgical boost following radiotherapy in primary nasopharyngeal carcinoma: impact on local control. Int J Radiat Oncol Biol Phys. 1999;45(4):915-921. [CrossRef]
- Le QT, Tate D, Koong A, et al. Improved local control with stereotactic radiosurgical boost in patients with nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2003;56(4):1046-1054. [CrossRef]
- Hara W, Loo BW, Goffinet DR, et al. Excellent local control with stereotactic radiotherapy boost after external beam radiotherapy in patients with nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2008;71(2):393-400. [CrossRef]
- Chen HHW, Tsai ST, Wang MS, et al. Experience in fractionated stereotactic body radiation therapy boost for newly diagnosed nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2006;66(5):1408-1414. [CrossRef]
- Uno T, Isobe K, Ueno N, et al. Fractionated stereotactic radiotherapy as a boost treatment for tumors in the head and neck region. J Radiat Res. 2010;51(4):449-454. [CrossRef]
- Hideya Yamazaki 1, Mikio Ogita 2, Kengo Himei 3, Satoaki Nakamura 4, Ken Yoshida 5, Tadayuki Kotsuma 5, Yuji Yamada 6, Masateru Fujiwara 7, Sungjae Baek 7 YY. Hypofractionated stereotactic radiotherapy using CyberKnife as a boost treatment for head and neck cancer, a multi-institutional survey: impact of planning target volume. Anticancer Res. 34(10):5755-9.
- Lee DS, Kim YS, Cheon JS, et al. Long-term outcome and toxicity of hypofractionated stereotactic body radiotherapy as a boost treatment for head and neck cancer: the importance of boost volume assessment. Radiat Oncol. 2012;7(1). [CrossRef]
- Al-Mamgani A, Tans L, Teguh DN, Van Rooij P, Zwijnenburg EM, Levendag PC. Stereotactic body radiotherapy: a promising treatment option for the boost of oropharyngeal cancers not suitable for brachytherapy: a single-institutional experience. Int J Radiat Oncol Biol Phys. 2012;82(4):1494-1500. [CrossRef]
- Baker S, Verduijn G, Petit S, et al. Locoregional failures and their relation to radiation fields following stereotactic body radiotherapy boost for oropharyngeal squamous cell carcinoma. Head Neck. 2019;41(6):1622-1631. [CrossRef]
- Baker S, Verduijn GM, Petit S, et al. Long-term outcomes following stereotactic body radiotherapy boost for oropharyngeal squamous cell carcinoma. Acta Oncol. 2019;58(6):926-933. [CrossRef]
- Sarah Baker 1, Gerda M Verduijn 1, Steven Petit 1, Aniel Sewnaik 2, Hetty Mast 3, Senada Koljenović 4, Joost J Nuyttens 1 WDH 1. Long-term outcomes following stereotactic body radiotherapy boost for oropharyngeal squamous cell carcinoma. Acta Oncol. 58(6):926-933.
- Vempati P, Halthore AN, Teckie S, et al. Phase I trial of dose-escalated stereotactic radiosurgery (SRS) boost for unfavorable locally advanced oropharyngeal cancer. Radiat Oncol. 2020;15(1). [CrossRef]
- Burtness B, Harrington KJ, Greil R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet (London, England). 2019;394(10212):1915-1928. [CrossRef]
- Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. [CrossRef]
- Caressa Hui, 1 Brittney Chau, 2 Greg Gan, 3 William Stokes, 4 Sana D. Karam 5 and Arya Amini. Overcoming Resistance to Immunotherapy in Head and Neck Cancer Using Radiation: A Review. Front Oncol. 11: 592319.
- Leidner R, Crittenden M, Young K, et al. Neoadjuvant immunoradiotherapy results in high rate of complete pathological response and clinical to pathological downstaging in locally advanced head and neck squamous cell carcinoma. J Immunother Cancer. 2021;9:2485. [CrossRef]
- Ma TM, Wong DJ, Chai-Ho W, et al. High Recurrence For HPV-Positive Oropharyngeal Cancer With Neoadjuvant Radiotherapy To Gross Disease Plus Immunotherapy: Analysis From a Prospective Phase Ib/II Clinical Trial. Int J Radiat Oncol. Published online May 2, 2023. [CrossRef]
- Darragh LB, Knitz MM, Hu J, et al. A phase I/Ib trial and biological correlate analysis of neoadjuvant SBRT with single-dose durvalumab in HPV-unrelated locally advanced HNSCC Check for updates. Nat Cancer |. 2022;3:1300-1317. [CrossRef]
- Shen P, Qiao B, Jin N, Wang S. Neoadjuvant immunoradiotherapy in patients with locally advanced oral cavity squamous cell carcinoma: a retrospective study. Invest New Drugs. 2022;40(6):1282-1289. [CrossRef]
- Unger KR, Lominska CE, Deeken JF, et al. Fractionated stereotactic radiosurgery for reirradiation of head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2010;77(5):1411-1419. [CrossRef]
- Vermorken JB, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359(11):1116-1127. [CrossRef]
- Spencer SA, Harris J, Wheeler RH, et al. Final report of RTOG 9610, a multi-institutional trial of reirradiation and chemotherapy for unresectable recurrent squamous cell carcinoma of the head and neck. Head Neck. 2008;30(3):281-288. [CrossRef]
- Langer CJ, Harris J, Horwitz EM, et al. Phase II study of low-dose paclitaxel and cisplatin in combination with split-course concomitant twice-daily reirradiation in recurrent squamous cell carcinoma of the head and neck: results of Radiation Therapy Oncology Group Protocol 9911. J Clin Oncol. 2007;25(30):4800-4805. [CrossRef]
- Cengiz M, Özyiit G, Yazici G, et al. Salvage reirradiaton with stereotactic body radiotherapy for locally recurrent head-and-neck tumors. Int J Radiat Oncol Biol Phys. 2011;81(1):104-109. [CrossRef]
- Comet B, Kramar A, Faivre-Pierret M, et al. Salvage stereotactic reirradiation with or without cetuximab for locally recurrent head-and-neck cancer: a feasibility study. Int J Radiat Oncol Biol Phys. 2012;84(1):203-209. [CrossRef]
- Lartigau EF, Tresch E, Thariat J, et al. Multi institutional phase II study of concomitant stereotactic reirradiation and cetuximab for recurrent head and neck cancer. Radiother Oncol. 2013;109(2):281-285. [CrossRef]
- Roh KW, Jang JS, Kim MS, et al. Fractionated Stereotactic Radiotherapy as Reirradiation for Locally Recurrent Head and Neck Cancer. Int J Radiat Oncol Biol Phys. 2009;74(5):1348-1355. [CrossRef]
- Rwigema JC, Heron DE, Ferris RL, et al. Fractionated stereotactic body radiation therapy in the treatment of previously-irradiated recurrent head and neck carcinoma: updated report of the University of Pittsburgh experience. Am J Clin Oncol. 2010;33(3):286-293. [CrossRef]
- Heron DE, Ferris RL, Karamouzis M, et al. Stereotactic body radiotherapy for recurrent squamous cell carcinoma of the head and neck: results of a phase I dose-escalation trial. Int J Radiat Oncol Biol Phys. 2009;75(5):1493-1500. [CrossRef]
- Heron DE, Rwigema JCM, Gibson MK, Burton SA, Quinn AE, Ferris RL. Concurrent cetuximab with stereotactic body radiotherapy for recurrent squamous cell carcinoma of the head and neck: a single institution matched case-control study. Am J Clin Oncol. 2011;34(2):165-172. [CrossRef]
- Unger KR, Lominska CE, Deeken JF, et al. Fractionated stereotactic radiosurgery for reirradiation of head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2010;77(5):1411-1419. [CrossRef]
- Roh KW, Jang JS, Kim MS, et al. Fractionated stereotactic radiotherapy as reirradiation for locally recurrent head and neck cancer. Int J Radiat Oncol Biol Phys. 2009;74(5):1348-1355. [CrossRef]
- Ansinelli H, Singh R, Sharma DL, et al. Salvage Stereotactic Body Radiation Therapy for Locally Recurrent Previously Irradiated Head and Neck Squamous Cell Carcinoma: An Analysis from the RSSearch® Registry. Published online 2018. [CrossRef]
- Vargo JA, Kubicek GJ, Ferris RL, et al. Adjuvant stereotactic body radiotherapy±cetuximab following salvage surgery in previously irradiated head and neck cancer. Laryngoscope. 2014;124(7):1579-1584. [CrossRef]
- Biau J, Thivat E, Millardet C, et al. A multicenter prospective phase II study of postoperative hypofractionated stereotactic body radiotherapy (SBRT) in the treatment of early-stage oropharyngeal and oral cavity cancers with high risk margins: the STEREO POSTOP GORTEC 2017-03 trial. BMC Cancer. 2020;20(1). [CrossRef]
- Collan J, Lundberg M, Vaalavirta L, et al. Acta Oncologica Patterns of relapse following surgery and postoperative intensity modulated radiotherapy for oral and oropharyngeal cancer. Published online 2011. [CrossRef]
- Chan AK, Huang SH, Le LW, et al. Postoperative intensity-modulated radiotherapy following surgery for oral cavity squamous cell carcinoma: patterns of failure. Oral Oncol. 2013;49(3):255-260. [CrossRef]
- Wong S, Torres-Saavedra P, Le QT, et al. Safety of reRT with SBRT plus concurrent and adjuvant pembrolizumab in patients with recurrent or new second primary head and neck squamous cell cancer in a previously irradiated field: RTOG 3507 Foundation (KEYSTROKE). Int J Radiat Oncol. 2020;106(5):1224-1225. [CrossRef]
- Lavigne D, Ng SP, O’sullivan B, et al. Magnetic Resonance-Guided Radiation Therapy for Head and Neck Cancers. Curr Oncol 2022, Vol 29, Pages 8302-8315. 2022;29(11):8302-8315. [CrossRef]
- Kataria T, Basu T, Goyal S, et al. Preliminary results of CyberKnife stereotactic radiotherapy (SBRT) boost for primary head and neck cancers: is it the future direction? J Radiother Pract. 14(2):187-193.
- Planned Gamma Knife Boost After Chemoradiotherapy for Selected Sinonasal and Nasopharyngeal Cancers. World Neurosurg. 119:e467-e474.
- Vempati P, Halthore AN, Teckie S, et al. Phase I trial of dose-escalated stereotactic radiosurgery (SRS) boost for unfavorable locally advanced oropharyngeal cancer. Published online 2020. [CrossRef]
- Sahgal A, Chang JH, Ma L, et al. HyTEC Organ-Specific Paper: Spinal Cord Spinal Cord Dose Tolerance to Stereotactic Body Radiation Therapy Radiation Oncology. Int J Radiat Oncol Biol Phys. 110(1):2021. [CrossRef]
- Stanley H Benedict 1, Kamil M Yenice, David Followill, James M Galvin, William Hinson, Brian Kavanagh, Paul Keall, Michael Lovelock, Sanford Meeks, Lech Papiez, Thomas Purdie, Ramaswamy Sadagopan, Michael C Schell, Bill Salter, David J Schlesinger, Almon FFY. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 39(1):563.
- Zhang Y, Chiu T, Dubas J, et al. Benchmarking techniques for stereotactic body radiotherapy for early-stage glottic laryngeal cancer: LINAC-based non-coplanar VMAT vs. Cyberknife planning. Radiat Oncol. 2019;14(1). [CrossRef]
- Timmerman RD. A Story of Hypofractionation and the Table on the Wall. Int J Radiat Oncol Biol Phys. 2022;112(1):4-21.
- Sahgal A, Ma L, Weinberg V, et al. Reirradiation Human Spinal Cord Tolerance for Stereotactic Body Radiotherapy. Int J Radiat Oncol. 2012;82(1):107-116. [CrossRef]
- Milano MT, Grimm J, Niemierko A, et al. Single and Multi-fraction Stereotactic Radiosurgery Dose/ Volume Tolerances of the Brain HHS Public Access. Int J Radiat Oncol Biol Phys. 2021;110(1):68-86. [CrossRef]
| Author (Year)/design/subsite | n | Median age (range), y | Median target volume | Elective nodal irradiation | RT dose (Gy)/Fraction | EQD2 (Gy) (α/β = 10) | BED10 (Gy) (α/β = 10) | BED3 (Gy) (α/β = 3) | Median follow up (months) | LC (%) | OS (%) | Toxicity |
| Voruganti et al. (2021)/retrospective/skin 27 | 106 | 86 (56-102). | (GTV)=31 cm3 (range: 17-56 cm3). | Yes | 32-50/4-6 | 48-76.38 | 57.6-91.65 | 117.3-188.83 | 8 | 1 yr 78% | 1 yr 53% | Acute: Grade 3: 31 dermatitis Late grade ≥ 3: 7 fibrosis, 1 ORN and 1 grade 4 skin ulceration |
| Al-Assaf et al. (2020)/retrospective/mixed 12 | 48 |
81 (25- 102) | Median GTV volume = 33.2 cc (range, 1.9–368.6 cc) | Yes | 35-50 /4–6 |
54.69- 76.38 | 65.63–91.65 | 137-189 | 10.5 | 85.5% | - | Acute: Grade 4:1 (Mucosal ulceration) Late : Grade 4:1 (ORN and skin ulceration) |
| Gogineni et al. (2020)/ retrospective/mixed 28 | 66 | 80 (47-99) | Median PTV volume = 82 cc | Yes | 35–40/5 | 49.58–60 | 59.5–72 | 116.67-146.67 | 15 (3–88) | 1 yr 73% | 1 yr 64% | Acute: Grade 3:2 Late: Grade ≥ 3:0 |
| Khan et al. (2015)/ retrospective/mixed14 | 17 | 87 (25-103) | Median Maximum Diameter = 3.7 cm (1–10 cm) | Yes | 35–48/5–6 | 49.58–72 | 59.5–86.4 | 116.67-176 | 8 | 1 yr 87% | 1 yr 60% | Grade 3:0 |
| Amini et al. (2014)/ retrospective/mixed 16 | 3 | 82(72-88) |
Tumor volume cc= 15-36.7cc | Yes | 25–36/ 5 | 31.25–51.6 | 37.5–61.92 | 66.67-122.4 | 8 | 100 (crude rate) | 33 | Grade 3 = 0 |
| Vargo et al. (2014)/ retrospective/mixed17 | 12 | 88(79-98) | Median = 42.1 cc (15.1–247.9 cc) | No | 20–44/1–5 | 50–68.93 | 60–82.72 | 155.33-173.07 | 6 (0.5–29 | 1 yr 69% | 1 yr 64% | Acute: Grade 3:1 Late: Grade 3:1 |
| Kawaguchi et al. (2012)/ retrospective/mixed22 | 14 | 73(64-93) | - | No | 35–42/3–5 | 63.18–64.4 | 75.81–77.28 | 171-77.28 | 36 (14–40) | Mean 71.4 | Mean 78.6 | Late: Grade 3:1 (ORN) (after 2nd SRS) |
| Karam et al./retrospective/ parotid26 | 13 | 80(34–99) | PTV= 13.3-195.3cc | Yes | 25-40/5-7 | 31.25-52.37 | 37.5-62.84 | 66.67-116.13 | 14(0–59) | 2 yr LRC 84% | 2 yr 46% | Acute: G5: 1 Sepsis secondary to aspiration pneumonia |
| Kodani et al. (2011)/ retrospective/mixed21 | 13 | 66(17-88) | Median GTV volume = 22 cc (0.7–78 cc) | No | 19.5–42/ 3–8 | 26.81–53.38 | 32.17–64.05 | 61.75-115.5 | 16 (3–51) | CR:38% PR:46% | 85% | Grade 3:0 |
| Siddiqui et al. (2009)/ retrospective/mixed20 | 10 | 73.5(37-89) | Median GTV 15.5 cc (1.7–155 cc) | No | 30–48/5–6 | 40–72 | 48–86.4 | 90-176 | 32 (7–53.4) | 1 yr 83.3% | 1 yr 70% | Acute: Grade 3:1 (Pain) Late: Grade 3:1 (Cataract) |
| Author (year)/subsite/d esign |
Sample size (n) | Median follow up(months) | EBRT dose/fraction | Boost dose (Gy)/ Fraction | GTV (cc) or boost volume (range) | EQD2 (Gy) (α/β = 10) (Total) | BED10 (Gy) (α/β = 10) (Total) | Margins for stereotactic boost (PTV) |
LC (%) | OS (%) | Initial site of Failure (N) |
Toxicity (N) |
| Tate et al. (1999)/retrospective/nasopahrynx38 | 23 | 21 (2–64) | 64.8 Gy- 70 Gy (Median 66 Gy/ 33frs) | 7–15 Gy /1#frs Median 12 Gy | Not reported | Median 88 | Median 105.6 | Not reported | 100% | Not reported |
Local: 0 Regional:2 Distant:7 | As expected for EBRT |
| Le et al. (2003)/ retrospective/nasopahrynx39 | 45 | 31 | 66 Gy /33frs | 7–15 Gy/ 1frs | Not reported | 88 | 105.6 | Not reported | 3 yr LC: 100% | 3 yr OS: 75% | Local: 0 Regional:3 Distant: 14 | CN weakness:4 Retinopathy:1 Asymptomatic TLN: 3 |
| Chen HH et al. (2006) retrospective/nasopahrynx41 | 64 | 31 (22–54) | 64.8 Gy-68.4 Gy/ 36–38frs | 12–15 Gy /4–5frs | Mean GTV 62.6 (21.1– 145.3) |
76.72–83.51 | 92.06–100.2 | CTV + 2–3 mm |
3 yr LC: 93.1% | 3 yr OS: 84.9% | Local:4 Regional:7 Distant:7 | Late Grade 4: None Note: 3 fatal nasal bleeding could be not related to SBRT boost |
| Hara et al. (2008)/ retrospective/nasopahrynx40 | 82 | 40.7 (6.5–144.2) | 66 Gy/ 33frs | 7–15 Gy /1frs | Median GTV 34.2 (6.4– 102.2) |
88 | 105.6 | Not reported | 5 yr LC: 98% | 5 yr OS: 69% | Local:1 Regional:5 Distant:27 | Retinopathy: 3 Asymptomatic TLN:8 Symptomatic: 2 |
| Uno T et al. (2010) )/ retrospective/mixed42 | 10 | 16 (6–24) | 40 Gy-60 Gy/ 20–30frs | 9–16 Gy/ 1–3frs | Not reported | 54.22–80.44 | 65.1–96.53 | CTV + 0-5mm | CR:60% PR:40% | Not reported |
Local:3 Distant:1 | ≥ Grade 3: None |
| Lee DS et al. (2012) retrospective/mixed44 | 26 | 56 (27.6–80.2) | 39.6 Gy- 70.2 Gy (Median 50.4 Gy/ 28frs) | 10–25 Gy/ 2–5frs Median 21 Gy/5frs | NPC median GTV 45.3 (21.3– 69.4) Non-NPC Median GTV 19.4 (6.9–66.8) |
Median 74.41 | Median 89.29 | GTV + 1- mm | 1 yr LRRFR: 91.4% 2 yr LRRFR: 86.3% | 2 yr OS: 61.5% 5 yr OS: 46.2% | Local:2 Regional:1 Distant:5 | ≥ Grade 3: 9 |
| Al-Mamgani et al. (2012)/retrospective/oropharynx 45 | 51 | 18 (6–65) | 46 Gy/ 23frs | 16.5 Gy/3frs | Not reported | 67.31 | 80.78 | CTV + 3 mm |
2 yr LC: 86% 3 yr LC: 70% | 2 yr OS: 82% 3 yr OS: 54% | Local:5 Regional:1 Distant:1 | ≥ Grade 3:2 1 feeding tube dependence |
| Yamazaki H et al. (2014) retrospective/mixed43 | 25 | 28 (7–128) | 35 Gy –70 Gy (Median 50 Gy/ 25frs) | 12–35 Gy/ 1–5frs Median 15 Gy/3frs | Not reported | Median 68.75 | Median 82.5 | 2 yr LC: 89% 5 yr LC: 71% | 2 yr OS: 83% 5 yr OS: 70% | - | ≥ Grade 3: None | |
| Karam et al., (2014)/ retrospective/ salivary gland26 | 10 | 29(12-120) | Median 64.8, range(50–75.6) | Median17.5, range (10– 30)/3-6frs |
Not reported |
87.82(61.11-113.1) | 92.5(75.91-102.3) | Definitive= GTV + 15– 20 mm Post-op CTV + 10– 20 mm |
1-yr LC: 90% 2-yr LC: 80% |
1 yr: 100% |
Local: 1 Distant: 1 |
≥ Grade 3: None |
| Kataria et al., (2015) / retrospective/mixed77 |
9 | 8 (6–19) | 54 (50–60)/ (25–30) | 15 (10–25)/2-5frs | Median GTV 16.3 (7– 47) |
72.7 (62.5–91.2) | 87.3 (75–109.5) | GTV +3–5 mm |
CR: 55% | Not reported |
Distant: 1 | ≥ Grade 3: None |
| Diaz- Martinez et al., (2018)/ retrospective/ Sinonasal/ nasopharynx78 |
9 | 13.3 (4–32) | 64.3 (54–70)/ (27–35) | 13 (12–20)/1fr | Mean GTV 4.5 (1.17– 8.2) |
89.2 (76–120) | 107.1 (91.2–144) | Not reported | 1-yr LC: 100% | Not reported | Distant: 3 | ≥ Grade 3: None |
| Baker S et al. (2018)/ retrospective/oropharynx Baker S et al. (2019)b retrospective/oropharynx46 |
195 | 42.8 (2.1–98.6) | 46 Gy /23frs | 16.5 Gy/3frs | Not reported |
67.31 | 80.78 | CTV + 3 mm |
5 yr LC: 90% | 5 yr OS:66.7% | Local:18 Regional:12 Distant:11 | ≥ Grade 3: 47 |
| Vempati et al., (2020)/prospective/oropharynx79 | 34 | 50 | 60–66/30frs | 8–10/1-2frs | Mean GTVp 70 Mean boost volume 54 (13–185) |
72–79.6 | 86.4–95.5 | CTV = GTV + 7 mm PTV = CTV + 3 mm |
Median follow up of 50 months LC: 85.3% | Median follow up of 50 months OS: 85.3% | Local:1 Regional:2Distant: 4 |
≥ Grade 3: 4 Dysphagia: 1 Pharyngeal hemorrhage: 3 |
| Author (Year)/design/subsite | Sample size (n) | Treatment | rRT dose (Gy)/Fraction | Radiotherapy treatment duration | rRT Tumor volume (cm3), median (range) | Median follow up (Months) | LC/LRC | Median Survival Rate, months |
Overall Survival Rate, % |
Grade 4/5 Late Toxicity, % |
| Heron et al. (2009)/phase I/Mixed66 | 25 | SBRT | 25-44Gy/5frs | 2 weeks | 44.8 (4.2–217) | - | 6 | - | 0 | |
| Rwigema et al. (2010)/Retrospective/Mixed65 | 85 | SBRT | 15-44Gy/1-5frs | 1-38 days | 25.1(2.5-162) | 6 | 1-y LC: 51.2 2-y LC: 30.7 |
11.5 | 1-y OS: 48.5 2-y OS: 16.1 |
0 |
| Heron et al. (2011)/Retrospective/Mixed67 | 70 | SBRT +/- cetuximab | 20-44Gy/5frs | 9-14 days | 29(4.8-86.8) | 21.3 | SBRT alone: 1-y LC: 53.8 2-y LC: 33.6. SBRT + Cetuximab: 1-y LC: 78.6 2-y LC: 49.2 |
SBRT alone: 14.8 SBRT + Cetuximab: 24.5 |
SBRT alone: 1-y OS: 52.7 2-y OS: 21.1. SBRT + Cetuximab: 1-y OS: 66 2-y OS: 53.3 |
0 |
| Comet et al. (2011)/Retrospective/Mixed62 | 40 | SBRT +/-cetuximab | 36Gy/6frs | 11-12 days | 29.5 (8-85) | 25.6 | - | 13.6 | 1-y OS: 58 2-y OS: 24 |
0 |
| Lartigau et al. (2011)/Phase II/Mixed63 | 56 | SBRT + cetuximab | 36Gy/6frs | 11-12 days | - | 11.4 | 3 months LC: 91.7 | 11.8 | 1-y OS: 47.5 | Grade 5:2 patients: (hemorrhage and denutrition) |
| Cengiz et al. (2011)/Retrospective/Mixed61 | 46 | SBRT | 18-35Gy/1-5frs | Daily | 45(3-206) | 7 | Median PFS: 10.5 | 1.9 | 1-y OS: 47 | Grade 5:8 patients, 17.8%): carotid blowout |
| Vargo et al. (2014)/Retrospective/Mixed17 | 132 | SBRT + cetuximab | 35-40Gy/5frs | 7-14 days | 30.9 (4.4–192.4) | 6 | 1-y LRC: 48 | 7 | 1-y OS:38 | 0 |
| Unger et al. (2010)/Retrospective/Mixed57 | 65 | SBRT | 21-35Gy/2-5frs | Daily | - | 16 | 2-y LRC: 30 | 12 | 2-y OS: 41 | Grade 4/5 late Toxicity: (6 patients, 9%) arterial bleeding, soft tissue necrosis, fistula formation, and dysphagia requiring hospitalization. |
| Roh et al. (2009)/Retrospective/Mixed69 | 36 | SBRT | 18-40Gy/3-5frs | Daily | 22.6(.2-114.9) | 17.3 | 1-y LRFS: 61 2-y LRFS: 52.2 |
16.2 | 1-y OS: 52.1 2-y OS: 30.9 |
Grade 4/5 late Toxicity: (3 patients, 6.8%) (1 bone necrosis, 2 soft tissue necrosis ) |
| 15 et al. (2018)/Retrospective/Mixed | 197 | SBRT | 16-50Gy/1-8frs | Every other day | 30 (1-427) | 24 | 2-y cumulative LRF: 57 | 7.8 | 2-y OS: 16.3 |
Grade 4/5 late Toxicity: (5% of patients developed carotid blowout syndrome, fistula, and intensive care unit admission) |
| Ansinelli et al. (2018)/Retrospective/Mixed70 | 45 | SBRT | 20-42.5Gy/5frs | Every other day | 34.09 (1.00 - 258.12) | 8.78 | 1-y LC: 49.6 | 9.23 | 1-y OS: 37.7 | 0 |
| OAR constraint | Constraint for 1 fx | Constraint for 2 fx | Constraint for 3 fx | Constraint for 4 fx | Constraint for 5 fx | Endpoint ≥ grade 3 | ||||||
| Primary disease | Re-RT | Primary disease | Re-RT | Primary disease | Re-RT | Primary disease | Re-RT | Primary disease | Re-RT | Primary disease | Re-RT | |
| Spinal cord and medulla_ PRV | Dmax 14 Gy (D0.035cc), V10 (<0.35cc) 80–83 | Dmax 9 Gy80,84 | Dmax 17- 19.3 Gy (D0.035cc), V13 (<0.35cc)84,84 | Dmax 12.2 Gy80,84 | Dmax 20.3-22.5 Gy (D0.035cc), V15.9 (<0.35 cc)80,81,83 | Dmax 14.5 Gy80,84 | Dmax 23-25.6 Gy (D0.035cc), V19.2(<0.35 cc)80,83 | Dmax 16.2 Gy80,84 | Dmax 25.3-30 Gy (D0.035cc), V22 (<0.35 cc)80,81,83 | Dmax 18 Gy80,84 | Myelitis83 Sahgal et al. 80: Radiation myelopathy (1-5% risk for 1-5 fractions) | Myelitis84 |
| Optic pathway | Dmax 10 Gy, V8(<0.2 cc)83 | Dmax 8 Gy24 | Dmax 17.3 Gy, V11.7 (<0.2 cc)83 | - | Dmax 17.4 Gy, V15.3(<0.2cc)83 | Dmax Gy, V15 < 0.2cc (Optic nerves)24 | Dmax 21.2 Gy, V19.2(<0.2cc)83 | - | Dmax 25 Gy, V23 (<0.2 cc)83 | Dmax 10 Gy24 | Neuritis83 | - |
| Cochlea | Dmax 10 Gy 83, Dmax 4-12 Gy24 | Dmax 12 Gy24 | Dmax 13.7 Gy 83 | - | Dmax 17.4 Gy 83, Dmax 20 Gy24 | Dmax 24 Gy24 | Dmax 21.2 Gy 83 | - | Dmax 22 Gy 83, Dmax 25-30 Gy24 | Dmax 20-27.5 Gy24 | Hearing loss83 | - |
| Brain stem (not medulla) | Dmax 15 Gy, V10(<0.5 cc)83 | Dmax 10-15 Gy, V10<1cc24 | Dmax 17.3, V13 Gy (<0.5 cc)83 | - | Dmax 23.1 Gy, V15.9 (<0.5 cc)83 | Dmax 23 Gy, V18<1cc24 | Dmax 27.2 Gy, V20.8 (<0.5 cc)83 | - | Dmax 31 Gy, V23(<0.5 cc)83 | Dmax 9-15 Gy24 | Cranial neuropathy83 | - |
| Esophagus | Dmax 24 Gy, V20 (< 5 cc)83, Dmax 19 Gy24 | Dmax 10 Gy24 | Dmax 28.3 Gy, V24.3 (<5 cc) 83 | - | Dmax 32.4 Gy, V27.9(<5 cc) 83 | - | Dmax 35.6 Gy, V30.4(<30.4 cc)83 | - | Dmax 38 Gy, V32.5(5 cc) 83, Dmax 27-35 Gy24 | Dmax 20-25 Gy24 | Esophagitis83 | - |
| Brachial plexus | Dmax 16.4 Gy, V 13.6 (<3 cc)83 | Dmax 10-16 Gy, V14.4 <3cc24 | Dmax 20.8 Gy, V17.8 (<3 cc)83 | - | Dmax 26 Gy, V22 (<3 cc)83 | Dmax 23 Gy, V22.5 <3cc24 | Dmax 29.6 Gy, V24.8 (24.8(3 cc)83 | - | Dmax 32.5 Gy, V27 (3 cc)83 | Dmax 20-32 Gy V30<3cc24 | Neuropathy83 |
- |
| Trachea | Dmax 30 Gy, V27.5(<4 cc)83 | - | Dmax 38 Gy, V 34.5(<4 cc)83 | - | Dmax 43 Gy, V39<(5 cc)83 | - | Dmax 47 Gy, V42.4(5 cc)83 | - | Dmax 50Gy, V45(<5 cc)83 | - | Stenosis83 | - |
| Skin | Dmax 27.5 Gy, V25.5(10 cc)83 | - | Dmax 30.3Gy. V28.3 (10cc)83 | - | Dmax 33Gy, V31(10 cc)83 | - | Dmax 54Gy, V33.6(10cc)83 | - | Dmax 38.5Gy, V36.5(10 cc)83 | Dmax 20 Gy24 | Ulceration83 | - |
| Brain | V12 Gy (10-15 cc)85, Dmax 15-20 Gy V10<1cc24 |
Dmax 10 Gy24 | - | - | 20Gy (D20cc)85, Dmax23 Gy V18<1cc24 |
- | - | - | 24Gy (D20cc)85, Dmax 10-25 Gy24 | Dmax 20-23 Gy24 | Milano et al. 85: Symptomatic radiation necrosis (one fraction), oedema/necrosis (three and five fractions) | - |
| Carotid artery | - | Dmax 10 Gy24 | - | - | - | - | - | - | Dmax 25–47 Gy24 | Dmax 15–34 Gy < 50% gets PTV dose24 | - | - |
| Parotid | - | - | - | - | - | - | - | - | - | Dmax 20–25 Gy24 | - | - |
| Lens | - | - | - | - | - | - | - | - | - | Dmax 6 Gy24 | - | - |
| Larynx | - | - | - | - | - | - | - | - | Dmax 20 Gy24 | Dmax 20 Gy24 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
