Submitted:
21 August 2023
Posted:
22 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Numerical model
2.1. Geoid
2.2. Sub-lithospheric mantle geoid
2.2.1. Bouguer disturbing potential
2.2.2. Crust-stripped disturbing potential
2.2.3. Mantle disturbing potential
2.2.4. Lithosphere-stripped disturbing potential
2.2.5. Sub-lithospheric mantle disturbing potential
3. Model uncertainties
3.1. Errors due to lithospheric thickness uncertainties
3.2. Errors due to lithospheric mantle density uncertainties
4. Results
5. Error analysis
6. Summary and concluding remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Forsberg, R.; Tscherning, C.C. Topographic effects in gravity field modelling for BVP. Geodetic boundary value problems in view of the one centimeter geoid 1997, 239–272. [Google Scholar]
- Hwang, C.; Wang, C.G.; Hsiao, Y.S. Terrain correction computation using Gaussian quadrature. Computers & Geosciences 2003, 29, 1259–1268. [Google Scholar]
- Ågren, J. Regional geoid determination methods for the era of satellite gravimetry: numerical investigations using synthetic earth gravity models. Doctoral dissertation, Infrastruktur 2004. [Google Scholar]
- Hwang, C.; Hsiao, Y.S.; Shih, H.C. Geodetic and geophysical results from a Taiwan airborne gravity survey: Data reduction and accuracy assessment. Journal of Geophysical Research: Solid Earth 2007, 112. [Google Scholar] [CrossRef]
- Makhloof, A.A.sE. The use of topographic-isostatic mass information in geodetic applications. Doctoral dissertation, Universitäts-und Landesbibliothek Bonn 2007. [Google Scholar]
- Makhloof, A.A.; Ilk, K.H. Effects of topographic–isostatic masses on gravitational functionals at the Earth’s surface and at airborne and satellite altitudes. Journal of Geodesy 2008, 82, 93–111. [Google Scholar] [CrossRef]
- Tsoulis, D.; Novák, P.; Kadlec, M. Evaluation of precise terrain effects using high-resolution digital elevation models. Journal of Geophysical Research: Solid Earth 2009, 114. [Google Scholar] [CrossRef]
- Flury, J.; Rummel, R. On the geoid–quasigeoid separation in mountain areas. Journal of Geodesy 2009, 83, 829–847. [Google Scholar] [CrossRef]
- Tziavos, I.N.; Sideris, M.G. Topographic reductions in gravity and geoid modeling. In Geoid Determination; Springer: Berlin, Heidelberg, 2013; pp. 337–400. [Google Scholar]
- Jiang, T.; Dang, Y.; Zhang, C. Gravimetric geoid modeling from the combination of satellite gravity model, terrestrial and airborne gravity data: a case study in the mountainous area, Colorado. Earth, Planets and Space 2020, 72, 1–15. [Google Scholar] [CrossRef]
- Tenzer, R.; Chen, W.; Rathnayake, S. The effect of anomalous global lateral topographic density on the geoid-to-quasigeoid separation. Journal of Geodesy 2021, 95, 1–20. [Google Scholar] [CrossRef]
- Tenzer, R.; Hirt, C.; Novák, P. Contribution of mass density heterogeneities to the geoid-to-quasigeoid separation. J. Geod. 2016, 90, 1–65. [Google Scholar] [CrossRef]
- Artemieva, I.M.; Mooney, W.D. Thermal thickness and evolution of Precambrian lithosphere: a global study. J. Geophys. Res 2001, 106, 16837–16414. [Google Scholar] [CrossRef]
- Kaban, M.K.; Schwintzer, P.; Artemieva, I.M. Density of the continental roots: compositional and thermal contributions. Earth Planet. Sci. Lett 2003, 209, 53–69. [Google Scholar] [CrossRef]
- Artemieva, I.M. Global 1°×1° thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution. Tectonophysics 2006, 416, 245–277. [Google Scholar] [CrossRef]
- Tenzer, R.; Hamayun; Vajda, P. Global map of the gravity anomaly corrected for complete effects of the topography, and of density contrasts of global ocean, ice, and sediments. Contributions to Geophysics and Geodesy 2008, 38, 357–370. [Google Scholar]
- Mooney, W.D; Kaban, M.K. The North American upper mantle: density, composition, and evolution. J. Geophys. Res 2010, 115, B12424. [Google Scholar] [CrossRef]
- Tenzer, R.; Chen, W. Mantle and sub-lithosphere mantle gravity maps from the LITHO1.0 global lithospheric model. Earth-Sci. Rev 2019, 194, 38–56. [Google Scholar] [CrossRef]
- Wieczorek, M.A. Gravity and topography of the terrestrial planets. Treatise on geophysics 2007, 10, 165–206. [Google Scholar]
- Uieda, L.; Barbosa, V.C.; Braitenberg, C. Tesseroids: Forward-modeling gravitational fields in spherical coordinates. Geophysics 2016, 81, F41–F48. [Google Scholar] [CrossRef]
- Yang, M.; Hirt, C.; Pail, R. TGF: a new MATLAB-based software for terrain-related gravity field calculations. Remote sensing 2020, 12, 1063. [Google Scholar] [CrossRef]
- Nagy, D. The gravitational attraction of a right rectangular prism. Geophysics 1966, 31, 362–371. [Google Scholar] [CrossRef]
- Nagy, D.; Papp, G.; Benedek, J. The gravitational potential and its derivatives for the prism. Journal of Geodesy 2000, 74, 552–560. [Google Scholar] [CrossRef]
- Forsberg, R.; Tscherning, C.C. The use of height data in gravity field approximation by collocation. Journal of Geophysical Research: Solid Earth 1981, 86, 7843–7854. [Google Scholar] [CrossRef]
- Götze, H.J.; Lahmeyer, B. Application of three-dimensional interactive modeling in gravity and magnetics. Geophysics 1988, 53, 1096–1108. [Google Scholar] [CrossRef]
- Denker, H. Regional gravity field modeling: theory and practical results. In Sciences of geodesy-II; Springer: Berlin, Heidelberg, 2003; pp. 185–291. [Google Scholar]
- Tsoulis, D. Terrain modeling in forward gravimetric problems: a case study on local terrain effects. Journal of Applied Geophysics 2003, 54, 145–160. [Google Scholar] [CrossRef]
- Novák, P.; Grafarend, E.W. The effect of topographical and atmospheric masses on spaceborne gravimetric and gradiometric data. Studia geophysica et geodaetica 2006, 50, 549–582. [Google Scholar] [CrossRef]
- Asgharzadeh, M.F.; Von Frese, R.R. B.; Kim, H.R. Spherical prism gravity effects by Gauss-Legendre quadrature integration. Geophysical Journal International 2007, 169, 1–11. [Google Scholar] [CrossRef]
- Heck, B.; Seitz, K. A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. Journal of Geodesy 2007, 81, 121–136. [Google Scholar] [CrossRef]
- D’Urso, M.G. On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities. Journal of Geodesy 2013, 87, 239–252. [Google Scholar] [CrossRef]
- Grombein, T.; Seitz, K.; Heck, B. Optimized formulas for the gravitational field of a tesseroid. Journal of Geodesy 2013, 87, 645–660. [Google Scholar] [CrossRef]
- Parker, R.L. The rapid calculation of potential anomalies. Geophysical Journal International 1972, 31, 447–455. [Google Scholar] [CrossRef]
- Colombo, O.L. Numerical Methods for Harmonic Analysis on the Sphere. OSU report No. 310, Department of Geodetic Science and Surveying 1981.
- Forsberg, R. A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Report 355, Department of Geodetic Science and Surveying, Ohio State University, Columbus 1984.
- Wieczorek, M.A.; Phillips, R.J. Potential anomalies on a sphere: Applications to the thickness of the lunar crust. Journal of Geophysical Research: Planets 1998, 103, 1715–1724. [Google Scholar] [CrossRef]
- Chambat, F.; Valette, B. Earth gravity up to second order in topography and density. Physics of the Earth and Planetary Interiors 2005, 151, 89–106. [Google Scholar] [CrossRef]
- Eshagh, M. Comparison of two approaches for considering laterally varying density in topographic effect on satellite gravity gradiometric data. Acta Geophysica 2010, 58, 661–686. [Google Scholar] [CrossRef]
- Tenzer, R.; Novák, P.; Vajda, P. Uniform spectral representation of the Earth’s inner density structures and their gravitational field. Contributions to Geophysics and Geodesy 2011, 41, 191–209. [Google Scholar] [CrossRef]
- Balmino, G.; Vales, N.; Bonvalot, S. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. Journal of Geodesy 2012, 86, 499–520. [Google Scholar] [CrossRef]
- Hirt, C.; Kuhn, M. Evaluation of high-degree series expansions of the topographic potential to higher-order powers. Journal of Geophysical Research: Solid Earth 2012, 117. [Google Scholar] [CrossRef]
- Novák, P.; Tenzer, R.; Eshagh, M. Evaluation of gravitational gradients generated by Earth's crustal structures. Computers & Geosciences 2013, 51, 22–33. [Google Scholar]
- Haagmans, R. A synthetic Earth for use in geodesy. Journal of Geodesy 2000, 74, 503–511. [Google Scholar] [CrossRef]
- Kuhn, M.; Featherstone, W.E. Construction of a synthetic Earth gravity model by forward gravity modelling. In A Window on the Future of Geodesy: Proceedings of the International Association of Geodesy IAG General Assembly Sapporo, Japan June 30–July 11, 2003; Springer: Berlin Heidelberg, 2005; pp. 350–355. [Google Scholar]
- Baran, I.; Kuhn, M.; Claessens, S.J. A synthetic Earth gravity model designed specifically for testing regional gravimetric geoid determination algorithms. Journal of Geodesy 2006, 80, 1–16. [Google Scholar] [CrossRef]
- Kitterød, N.O.; Leblois, É. Modelling Bedrock Topography. Earth Surface Dynamics Discussions 2019, 1–36. [Google Scholar]
- Tenzer, R.; Bagherbandi, M.; Gladkikh, V. Signature of the upper mantle density structure in the refined gravity data. Comput. Geosci. 2012, 16, 975–986. [Google Scholar] [CrossRef]
- Tenzer, R.; Hamayun; Vajda, P. Global maps of the CRUST2.0 crustal components stripped gravity disturbances. J Geophys Res 2009, 114, B05408. [Google Scholar]
- Tenzer, R.; Hamayun; Vajda, P. Global maps of the step-wise topography corrected and crustal components stripped geoids using the CRUST2.0 model. Contributions to Geophysics and Geodesy 2009, 39, 1–18. [Google Scholar] [CrossRef]
- Tenzer, R.; Chen, W.; Jin, S. Effect of upper mantle density structure on Moho geometry. Pure and Applied Geophysics 2015, 172, 1563–1583. [Google Scholar] [CrossRef]
- Tenzer, R.; Chen, W.; Baranov, A. Gravity maps of Antarctic lithospheric structure from remote-sensing and seismic data. Pure and Applied Geophysics 2018, 175, 2181–2203. [Google Scholar] [CrossRef]
- Sjöberg, L.E.; Majid, A. The uncertainty of CRUST1.0: Moho depth and density contrast models. J Appl Geod. 2021, 15, 143–152. [Google Scholar] [CrossRef]
- Steinberger, B. Effects of latent heat release at phase boundaries on flow in the Earth’s mantle, phase boundary topography and dynamic topography at the Earth’s surface: Physics Earth Planet. Inter 2007, 164, 2–20. [Google Scholar] [CrossRef]
- Müller, R.D.; Flament, N.; Matthews, K.J. Formation of Australian continental margin highlands driven by plate-mantle interaction. Earth Planet. Sci. Lett. 2016, 441, 60–70. [Google Scholar] [CrossRef]
- Rubey, M.; Brune, S.; Heine, C. Global patterns in Earth's dynamic topography since the Jurassic: the role of subducted slabs. Solid Earth 2017, 8, 899–919. [Google Scholar] [CrossRef]
- Tenzer, R.; Chen, W.; Tsoulis, D. Analysis of the refined CRUST1. 0 crustal model and its gravity field. Surveys in geophysics 36, 139–165. [CrossRef]
- Dziewonski, A.M.; Hales, A.L.; Lapwood, E.R. Parametrically simple Earth models consistent with geophysical data. Physics of the Earth and Planetary Interiors 1975, 10, 12–48. [Google Scholar] [CrossRef]
- Dziewonski, A.M.; Anderson, D.L. Preliminary Reference Earth Model. Physics Earth Planet, Inter 1981, 25, 297–356. [Google Scholar] [CrossRef]
- Kennett, B.L. N.; Engdahl, E.R. Traveltimes for global earthquake location and phase identification. Geophysical Journal International 1991, 105, 429–465. [Google Scholar] [CrossRef]
- Kennett, B.L.; Engdahl, E.R.; Buland, R. Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International 1995, 122, 108–124. [Google Scholar] [CrossRef]
- Montagner, J.P.; Kennett, B.L. N. How to reconcile body-wave and normal-mode reference Earth models. Geophysical Journal International 1996, 125, 229–248. [Google Scholar] [CrossRef]
- Van der Lee, S.; Nolet, G. Upper mantle S velocity structure of North America. Journal of Geophysical Research: Solid Earth 1997, 102, 22815–22838. [Google Scholar] [CrossRef]
- Kustowski, B.; Ekström, G.; Dziewoński, A.M. Anisotropic shear-wave velocity structure of the Earth's mantle: A global model. Journal of Geophysical Research: Solid Earth 2008, 113. [Google Scholar] [CrossRef]
- Simmons, N.A.; Forte, A.M.; Boschi, L. GyPSuM: a joint tomographic model of mantle density and seismic wave speeds. J. Geophys. Res. Solid Earth 2010, 115, B12310. [Google Scholar] [CrossRef]
- Trabant, C.; Hutko, A.R.; Bahavar, M. Data products at the IRIS DMC: Stepping stones for research and other applications. Seismological Research Letters 2012, 83, 846–854. [Google Scholar] [CrossRef]
- Nataf, H.C.; Ricard, Y. 3SMAC: an a priori tomographic model of the upper mantle based on geophysical modeling. Physics of the Earth and Planetary Interiors 1996, 95, 101–122. [Google Scholar] [CrossRef]
- Mooney, W.D.; Laske, G.; Masters, T.G. CRUST 5.1: A global crustal model at 5× 5. Journal of Geophysical Research: Solid Earth 1998, 103, 727–747. [Google Scholar] [CrossRef]
- Bassin, C. The current limits of resolution for surface wave tomography in North America. Eos Trans. AGU 2000, 81, F897. [Google Scholar]
- Laske, G.; Masters, G.; Ma, Z. et al. Update on CRUST1.0-A 1-degree global model of Earth’s crust. In Geophysical research abstracts; EGU General Assembly: Vienna, Austria, 2013; Volume 15, p. 2658. [Google Scholar]
- Pasyanos, M.E.; Masters, T.G.; Laske, G. LITHO1.0: An updated crust and lithospheric model of the Earth. J. Geophys. Res. 2014, 119, 2153–2173. [Google Scholar] [CrossRef]
- Simmons, N.A.; Myers, S.C.; Johannesson, G. LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction. Journal of Geophysical Research: Solid Earth 2012, 117. [Google Scholar] [CrossRef]
- Hirt, C.; Rexer, M. Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models - available as gridded data and degree-10,800 spherical harmonics. Int. J. Appl. Earth. Obs. and Geoinf 2015, 39, 103–112. [Google Scholar] [CrossRef]
- Chen, W.; Tenzer, R. Harmonic coefficients of the Earth’s spectral crustal model 180–ESCM180. Earth Science Informatics 2015, 8, 147–159. [Google Scholar] [CrossRef]
- Heiskanen, W.A.; Moritz, H. Physical geodesy. Freeman W.H., New York 1967.
- Pizzetti, P. Sopra il calcolo teorico delle deviazioni del geoide dall` ellissoide. Atti. R. Accad. Sci. Torino 1911, 46, 331–350. [Google Scholar]
- Somigliana, C. Teoria generale del campo gravitazionale dell'ellissoide di rotazione. Memorie della società astronomica italiana 1929, 4, 425. [Google Scholar]
- Moritz, H. Geodetic Reference System 1980. J. Geod 2000, 74, 128–162. [Google Scholar] [CrossRef]
- Wieczorek, M.A. Gravity and Topography of the Terrestrial Planets. Treatise on Geophysics: Second Edition 2015, 10, 153–193. [Google Scholar]
- Tenzer, R.; Foroughi, I.; Sjöberg, L.E. Definition of physical height systems for telluric planets and moons. Surveys in Geophysics 2018, 39, 313–335. [Google Scholar] [CrossRef]
- Tenzer, R.; Vajda, P.; Hamayun. Global atmospheric corrections to the gravity field quantities. Contr Geophys. Geod. 2009, 39, 221–236. [Google Scholar] [CrossRef]
- Tenzer, R.; Chen, W. Comparison of gravimetric, isostatic, and spectral decomposition methods for a possible enhancement of the mantle signature in the long-wavelength geoidal geometry. Remote Sensing, Special issue: Satellite Missions for Earth and Planetary Exploration, Space-Geodetic Techniques II 2023.
- Tenzer, R.; Novák, P.; Vajda, P. Spectral harmonic analysis and synthesis of Earth’s crust gravity field. Comput. Geosc. 2012, 16, 193–207. [Google Scholar] [CrossRef]
- Tenzer, R.; Gladkikh, V.; Vajda, P. Spatial and spectral analysis of refined gravity data for modelling the crust-mantle interface and mantle-lithosphere structure, Surv. Geophys 2012, 33, 817–839. [Google Scholar]
- Gladkikh, V.; Tenzer, R. A mathematical model of the global ocean saltwater density distribution. Pure Appl. Geophys 2011, 169, 249–257. [Google Scholar]
- Foroughi, I.; Tenzer, R. Comparison of different methods for estimating the geoid-to-quasigeoid separation. Geophys. J. Int 2017, 210, 1001–1020. [Google Scholar] [CrossRef]
- Förste, Ch.; Bruinsma, S.L.; Abrikosov, O. et al. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services, Ed: Tapley B.D., Bettadpur S., Watkins M 2014.
- Sheng, M.B.; Shaw, C.; Vaníček, P. Formulation and validation of a global laterally varying topographical density model. Tectonoph 2019, 762, 45–60. [Google Scholar] [CrossRef]
- Divins, D.L. Total Sediment Thickness of the World's Oceans & Marginal Seas. NOAA National Geophysical Data Center, Boulder, CO 2003.
- Baranov, A.; Tenzer, R.; Bagherbandi, M. Combined gravimetric-seismic crustal model for Antarctica. Surv. Geophys 2018, 39, 1–23. [Google Scholar] [CrossRef]
- Hinze, W.J. Bouguer reduction density, why 2.67? Geophys 2003, 68, 5–1559. [Google Scholar] [CrossRef]
- Artemjev, M.E.; Kaban, M.K.; Kucherinenko, V.A. Subcrustal density inhomogeneities of northern Eurasia as derived from the gravity data and isostatic models of the lithosphere. Tectonophysics 1994, 240, 248–280. [Google Scholar] [CrossRef]
- Tenzer, R.; Gladkikh, V. Assessment of density variations of marine sediments with ocean and sediment depths. Sci. World J. 2014, 2014, 823296. [Google Scholar] [CrossRef]
- Hager, B.H. Subducted slabs and the geoid: Constraints on mantle rheology and flow. Journal of Geophysical Research: Solid Earth 1984, 89, 6003–6015. [Google Scholar] [CrossRef]
- Panasyuk, S.V.; Hager, B. Models of isostatic and dynamic topography, geoid anomalies, and their uncertainties. J. Geophys. Res. 2000, 105, 28199–28209. [Google Scholar] [CrossRef]
- Barnett-Moore, N.; Hassan, R.; Müller, R.D. Dynamic topography and eustasy controlled the paleogeographic evolution of northern Africa since the mid-Cretaceous. Tectonics 2017, 36, 929–944. [Google Scholar] [CrossRef]
- Flament, N.; Gurnis, M.; Williams, S. Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching. Earth Planet. Sci. Lett 2014, 387, 107–119. [Google Scholar] [CrossRef]
- Flament, N.; Gurnis, M.; Müller, R.D. Influence of subduction history on South American topography. Earth Planet. Sci. Lett 2015, 430, 9–18. [Google Scholar] [CrossRef]
- Cao, W.; Flament, N.; Zahirovic, S. The interplay of dynamic topography and eustasy on continental flooding in the late Paleozoic. Tectonophysics 2019, 761. [Google Scholar] [CrossRef]
- Lithgow-Bertelloni, C.; Silver, P.G. Dynamic topography, plate driving forces and the African superswell. Nature 1998, 395, 269–272. [Google Scholar] [CrossRef]
- Self, S.; Rampino, M. The Crust and Lithosphere. Geological Society of London 2012. [Google Scholar]
- Turcotte, D.L.; Schubert, G. Geodynamics - 2nd Edition. Cambridge University Press 2002, pp. 472.
- Conrad, C.P.; Lithgow-Bertelloni, C. Influence of continental roots and asthenosphere on plate-mantle coupling. Geophys. Res. Lett 2006, 33, L05312. [Google Scholar] [CrossRef]
- Hoggard, M.J.; Czarnota, K.; Richards, F.D. Global distribution of sediment-hosted metals controlled by craton edge stability. Nature Geoscience 2020, 13, 504–510. [Google Scholar] [CrossRef]
- Schaeffer, A.J.; S. Lebedev. Global shear speed structure of the upper mantle and transition zone. Geophysical Journal International 2013, 194, 417–449. [Google Scholar] [CrossRef]
- Ho, T.; K. Priestley; E. Debayle. A global horizontal shear velocity model of the upper mantle from multimode love wave measurements. Geophysical Journal International 2016, 207, 542–561. [Google Scholar] [CrossRef]
- Priestley, K.; McKenzie, D.; Ho, T. A lithosphere–asthenosphere boundary—A global model derived from multimode surface-wave tomography and petrology. Lithospheric discontinuities 2018, 111–123. [Google Scholar]
- Debayle, E.; F. Dubuffet; S. Durand. An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy. Geophysical Research Letters 2016, 43, 674–682. [Google Scholar] [CrossRef]
- Schaeffer, A.J.; S. Lebedev. Imaging the North American continent using waveform inversion of global and USArray data. Earth and Planetary Science Letters 2014, 402, 26–41. [Google Scholar] [CrossRef]
- Celli, N.L.; S. Lebedev, A.J. Schaeffer. et al. African cratonic lithosphere carved by mantle plumes. Nature Communications 2020a, 11.
- Celli, N.L.; S. Lebedev, A.; J. Schaeffer, M. et al. The upper mantle beneath the South Atlantic Ocean, South America and Africa from waveform tomography with massive data sets. Geophysical Journal International 2020, 221, 178–204. [CrossRef]
- Christensen, N.I.; Mooney, W.D. Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research: Solid Earth 1995, 100, 9761–9788. [Google Scholar] [CrossRef]
- Hager, B.H.; Richards, M.A. Long-wavelength variations in Earth’s geoid - physical models and dynamical implications. Phil. Trans. R. Soc. Lond., Ser. A 1989, 328, 309–327. [Google Scholar]
- Simmons, A.J.; Willett, K.M.; Jones, P.D. Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. Journal of Geophysical Research: Atmospheres 2010, 115. [Google Scholar] [CrossRef]
- Jordan, T.H. The continental tectosphere. Rev. Geophys 1975, 13, 1–12. [Google Scholar] [CrossRef]
- Gung, Y.C.; Panning, M.; Romanowicz, B. Global anisotropy and the thickness of continents. Nature 2003, 422, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Artemieva, I.M. Dynamic topography of the East European craton: Shedding light upon lithospheric structure, composition and mantle dynamics. Glob. Planet. Change 2007, 58, 411–434. [Google Scholar] [CrossRef]
- Sjöberg, L.E.; Bagherbandi, M. A method of estimating the Moho density contrast with a tentative application by EGM08 and CRUST2.0. Acta Geophys. 2011, 59, 3–502. [Google Scholar] [CrossRef]
- Rogers, N.; Blake, S.; Burton, K. An introduction to our dynamic planet. Cambridge University Press 2008. [Google Scholar]
- Carlson, R.L.; Raskin, G.S. Density of the ocean crust. Nature 1984, 311, 555–558. [Google Scholar] [CrossRef]
- Hoggard, M.J.; White, N.; Al-Attar, D. Global dynamic topography observations reveal limited influence of large-scale mantle flow. Nature-Geoscience 2016, 9, 456–463. [Google Scholar] [CrossRef]
- Simmons, N.A.; Gurrola, H. Multiple seismic discontinuities near the base of the transition zone in the Earth’s mantle. Nature 2000, 405, 559–562. [Google Scholar] [CrossRef]
- Lawrence, J.F.; Shearer, P.M. Constraining seismic velocity and density for the mantle transition zone with reflected and transmitted waveforms, Geochem. Geophys. Geosyst 2006, 7, Q10012. [Google Scholar] [CrossRef]
- Griffin, W.L.; O’Reilly, S.Y.; Afonso, J.C. The Composition and Evolution of Lithospheric Mantle: a Re-evaluation and its Tectonic Implications. J. Petrolog 2009, 50, 7–1185. [Google Scholar] [CrossRef]
- Ishii, M.; Tromp, J. Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth's mantle. Science 1999, 285, 1231–1236. [Google Scholar] [CrossRef]
- Kuo, C.; Romanowicz, B. Density and seismic velocity variations determined from normal mode spectra, EOS, Trans. Am. geophys. Un. 1999, 80, S14. [Google Scholar]
- Panasyuk, S.; Ishii, M.; O'Connell, R. Constraints on the density and viscosity structure of the earth, EOS, Trans. Am. geophys. Un. 1999, 80, F28. [Google Scholar]
- Resovsky, J.S.; Ritzwoller, M.H. Regularization uncertainty in density models estimated from normal mode data. Geophys. Res. Lett. 1999, 26, 2319–2322. [Google Scholar] [CrossRef]
- Romanowicz, B. Can we resolve 3-D density heterogeneity in the lower mantle? Geophys. Res. Lett. 2001, 28, 1107–1110. [Google Scholar] [CrossRef]
- Kuo, C.; Romanowicz, B. On the resolution of density anomalies in the Earth's mantle using spectral fitting of normal-mode data. Geophys. J. Int. 2002, 150, 162–179. [Google Scholar] [CrossRef]




| Gravitational potential | Min [m2.s-2] | Max [m2.s-2] | Mean [m2.s-2] | STD [m2.s-2] |
|---|---|---|---|---|
| 2226 | 8494 | 3589 | 1114 | |
| -3472 | -312 | -731 | 729 | |
| -28533 | -16402 | -22386 | 3185 | |
| -3862 | -1937 | -2719 | 444 | |
| 11529 | 25075 | 15661 | 2741 | |
| -69885 | -46423 | -55734 | 5832 | |
| -262661 | -174276 | -213366 | 17795 | |
| 168987 | 244558 | 203311 | 16194 |
| Refined geoid | Min [m] | Max [m] | Mean [m] | STD [m] |
|---|---|---|---|---|
| -106 | 85 | -1 | 29 | |
| 1198 | 2946 | 2269 | 356 | |
| -1358 | 1743 | 671 | 630 | |
| 5772 | 6617 | 6358 | 128 | |
| 24009 | 33222 | 28130 | 1835 | |
| 6445 | 8388 | 7384 | 372 |
| Lithospheric thickness model | Min [km] | Max [km] | Mean [km] | STD [km] |
|---|---|---|---|---|
| SLNAAFSA | 38 | 364 | 115 | 57 |
| SL2013sv | 40 | 350 | 112 | 52 |
| LITHO1.0 | 7 | 271 | 114 | 55 |
| CAM2016 | 38 | 241 | 111 | 46 |
| 3D2015-07Sv | 36 | 703 | 110 | 51 |
| Lithospheric thickness model differences | Min [km] | Max [km] | Mean [km] | RMS [km] |
|---|---|---|---|---|
| SLNAAFSA - SL2013sv | -237 | 303 | 3 | 11 |
| SLNAAFSA - LITHO1.0 | -196 | 289 | 1 | 77 |
| SLNAAFSA - CAM2016 | -160 | 307 | 4 | 26 |
| SLNAAFSA - 3D2015-07Sv | -638 | 309 | 5 | 26 |
| SL2013sv - LITHO1.0 | -195 | 298 | -1 | 74 |
| SL2013sv - CAM2016 | -160 | 306 | 1 | 22 |
| SL2013sv - 3D2015-07Sv | -637 | 303 | 3 | 24 |
| LITHO1.0 - CAM2016 | -184 | 206 | 2 | 71 |
| LITHO1.0 - 3D2015-07Sv | -603 | 206 | 4 | 74 |
| CAM2016 - 3D2015-07Sv | -561 | 195 | 2 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
