Submitted:
21 August 2023
Posted:
22 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Fish Sampling and Gut Content Analysis
3. Results
3.1. Food Items in Gut Contents
3.2. Size-Related Dietary Variation
4. Discussion
4.1. Dietary Variation of Anchovies in Lake Honghu
4.2. Plant-Origin Food Items
4.3. No Need for Fishing Ban
Author Contributions
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han M, Dsouza M, Zhou C, Li H, Zhang J, Chen C, et al. Agricultural Risk Factors Influence Microbial Ecology in Honghu Lake. Genomics Proteomics Bioinformatics, 2019; 17 (1): 76–90. [CrossRef]
- Zhang T, Ban X, Wang X, Cai X, Li E, Wang Z, et al. Analysis of nutrient transport and ecological response in Honghu Lake, China by using a mathematical model. Science of the Total Environment, 2017: 418–428. [CrossRef]
- Zhu M, Wang X, Ning L. Ecological impacts of water conservancy activity on fish resources in Honghu Lake. Journal of water resources and water engineering, 2008; 19 (1):2007–18.
- Zhao S, Fang J, Ji W, Tang Z. Lake restoration from impoldering: Impact of land conversion on the riparian landscape in Honghu Lake area, Central Yangtze. Agriculture, Ecosystem and Environment, 2003; 95:111–8. [CrossRef]
- Chen Y, Xu Y, Yang H, Ni X. Hydrobiology and Resources Exploitation in Lake Honghu. Science Press, Beijing,1995.
- Li L, Rong D, Qigen L, Shubo F, Liping C, Shihui S, et al. The ontogenetic dietary shift of Japanese grenadier anchovy (Coilia nasus) in the Qingcaosha reservoir near the Yangtze River estuary. Journal of Fishery Sciences of China, 2019; 26:765–73.
- Qin X, Wang T, Lin P, Wang X, Liu H. Age, growth, mortality and movement patterns of short jaw tapertail anchovy, Coilia brachygnathus, in the channel connecting Dongting Lake and the Yangtze River in central China. Journal of Aquatic living resources, 2018; 31 (3):2-9. [CrossRef]
- Xue D, Yang Q, Li Y, Zong S, Gao T. Comprehensive assessment of population genetic structure of the overexploited Japanese grenadier anchovy (Coilia nasus): Implications for fisheries management and conservation. Fisheries Research, 2019: 113–120. [CrossRef]
- Zhang H, Wu G, Xie P, Xu J, Zhou Q. Role of body size and temporal hydrology in the dietary shifts of short jaw tapertail anchovy. Hydrobiologia, 2013; 703:247–56.
- Cheng F, Wang Q, Maisano Delser P, Li C. Multiple freshwater invasions of the tapertail anchovy (Clupeiformes: Engraulidae) of the Yangtze River. Ecology and Evolution, 2019;9:1–4. [CrossRef]
- Xuan Z, Jiang T, Liu H, Chen X, Yang J. Mitochondrial DNA and microsatellite analyses reveal strong genetic differentiation between two types of estuarine tapertail anchovies (Coilia) in Yangtze River Basin, China. Hydrobiologia, 2021;848, 1409–1431. [CrossRef]
- Yimer M A, Cao L, Shen J, Zhang E. Age, growth, maturity and mortality of the tapetail anchovy Coilia brachygnathus (Engraulidae) in Lake Honghu, China. Journal of Fish Biology, 2023;2 (102):1–12.
- Zhang E. Fishes. in Li EH, Li, FY, Zhu JH (eds). Comprehensive scientific report on the national natural reserve of Lake Honghu, Hubei Province, 2023.
- Anonymous. Fishes of the Yangtze River. Science Press, Beijing, 1976.
- Tang Y. On the population dynamics of lake anchovy in Taihu Lake and its rational exploitation. Journal of fisheries of China, 1987;11:62–72.
- Ye J, Liu Z, Wang W. Comparative study on the feeding habits of Coilia ectenes and Hyporhamphus intermidius in the Meilliang Bay of Lake Taihu. Journal of Lake Sciences, 2007; 19:218–22.
- Liu E. A study on diet composition of dominant fishes in Lake Taihu. Journal of Fisheries of China, 2008; 32:396–400.
- Diao Z, Wu X. Dynamic of lake anchovy resource and suggestion of fishery utilization. Research Report on the Enhancement of Fisheries Resources in Lake Chaohu. 1982; 1: 62–73.
- Sha YC, Su GH, Zhang PY, Zhang H, Xu J. Diverse dietary strategy of lake anchovy Coilia ectenes taihuensis in lakes with different trophic status. Journal of Ichthyology, 2015; 55:866–73. [CrossRef]
- Yao S, Xue B, Xia W, Zhu Y, Li S. Lead pollution recorded in sediments of three lakes located at the middle and lower Yangtze River basin, China. Quaternary International journal, 2009; 208:145–50. [CrossRef]
- Costalago D, Palomera I, Tirelli V. Seasonal comparison of the diets of juvenile European anchovy Engraulis encrasicolus and sardine Sardina pilchardus in the Gulf of Lions. Journal of Sea Research, 2014; 89:64–72. [CrossRef]
- Botes L. Phytoplankton Identification Catalogue Saldanha Bay, South Africa. Marine and Coastal Management, Rogge Bay, 2001.
- MRC. Identification Handbook of Freshwater Zooplankton of the Mekong River and its Tributaries Identification Handbook of Freshwater Zooplankton of the Mekong River and its Tributaries. Technical Paper, 2015.
- Bacha M, Amara R. Spatial, temporal and ontogenetic variation in diet of anchovy (Engraulis encrasicolus) on the Algerian coast (SW Mediterranean). Estuary, Coast Shelf Science, 2009; 85:257–64. [CrossRef]
- Hyslop EJ. Stomach contents analysis—a review of methods and their application. Journal of Fish Biology, 1980; 17:411–29.
- Anderson MJ, Gorley RN, Clarke KR. PERMANOVA+ Primer V7: User Manual. Primer-E Ltd., Plymouth, UK, 2008; 93.
- Xu J, Zhang M, Xie P. Size-related shifts in reliance on benthic and pelagic food webs by lake anchovy. Ecoscience, 2007; 14:170–7. [CrossRef]
- Qin H M, Zhang T, Li Z, Hong Y J. Species composition, spatial distribution, and biomass of shrimp community in the Biandangtang Lake. Acta Hydrobiologica Sinica, 2005; 29: 379-384.
- Li Y, Bordinhon AM, Allen D, Zhang W, Zhu X. Protein: Energy ratio in practical diets for Nile tilapia Oreochromis niloticus. Aquaculture International, 2013; 21:1109–19. [CrossRef]
- Mustać B, Hure M. The diet of the anchovy Engraulis encrasicolus (Linnaeus, 1758) during the spawning season in the Eastern Adriatic Sea. Acta Adriatica, 2020; 61:57–66. [CrossRef]
- Zorica B, Čikeš KV, Vidjak O, Mladineo I, Ezgeta BD. Feeding habits and helminth parasites of sardine (S. pilchardus) and anchovy (E. encrasicolus) in the Adriatic Sea. Mediterranean Marnie Science, 2016; 17:216–29.
- Fagan WF. Omnivory as a stabilizing feature of natural communities. American Naturalist, 1997; 150:554–67. [CrossRef]
- Wootton KL. Omnivory and stability in freshwater habitats: Does theory match reality? Freshwater Biology, 2017; 62:821–32.
- He H, Hu E, Yu J, Luo X, Li K, Jeppesen E, et al. Does turbidity induce by Carassius carassius limit phytoplankton growth? A mesocosm study. Environmental Science and Pollution Research, 2017; 24:5012–8. [CrossRef]
- Mei X, Vladimir R, Lars GR, Erik J, Tang Y, Zhang X, et al. Effects of omnivorous fish on benthic-pelagic habitats coupling in shallow aquatic ecosystems: A minireview. Journal of Lake Sciences, 2021; 33:667–74.
- Brooks JL, Dodson SI. Predation, body size, and composition of zooplankton. Science, 1965; 150:28–35.
- Jeppesen E, Jensen JP, Sondergaard M, Lauridsen T, Landkildehus F. Trophic structure, species richness and biodiversity in Danish lakes: Changes along a phosphorus gradient. Freshwater Biology, 2000; 45:201–18. [CrossRef]
- Jeppesen E, Søndergaard M, Lauridsen TL, Davidson TA, Liu Z, Mazzeo N, et al. Biomanipulation as a Restoration Tool to Combat Eutrophication. Recent Advances and Future Challenges. Advances in Ecological Research, 2012;47:411–88.
- Liu Z, Hu J, Zhong P, Zhang X, Ning J, Larsen SE, et al. Successful restoration of a tropical shallow eutrophic lake: Strong bottom-up but weak top-down effects recorded. Water Research, 2018; 146:88–97. [CrossRef]
- Yu J, Xia M, Kong M, He H, Guan B, Liu Z, et al. A small omnivorous bitterling fish (Acheilognathus macropterus) facilitates dominance of cyanobacteria, rotifers, and Limnodrilus in an outdoor mesocosm experiment. Environmental Science and Pollution Research, 2020; 27:23862–70. [CrossRef]





| November | January | June | October | |||||
|---|---|---|---|---|---|---|---|---|
| Food items | %O | %N | %O | %N | %O | %N | %O | %N |
| Calanus sp. | 75.20 | 23.33 | 54.17 | 23.02 | 51.16 | 20.55 | 76.66 | 23.61 |
| Nauplii | 66.43 | 19.22 | 37.75 | 19.16 | 46.99 | 21.84 | 67.23 | 23.22 |
| Bosmina sp. | 45.57 | 0.57 | - | - | - | - | - | - |
| Alona sp. | - | - | - | - | - | - | 35.42 | 1.64 |
| Brachionus calyciflorus | 50.98 | 15.83 | 30.59 | 21.66 | 59.67 | 28.64 | 43.98 | 10.07 |
| Brachionus angularis | 44.64 | 8.48 | 31.37 | 14.94 | - | - | 39.88 | 12.06 |
| Brachionus caudatus | 32.06 | 8.99 | - | - | - | - | 25.06 | 1.12 |
| Keratella sp. | 11.61 | 8.65 | - | - | - | - | - | - |
| Tricocerca sp. | 15.77 | 2.18 | - | - | - | - | 6.25 | 2.1 |
| Macrophytes | 60.76 | - | 70.34 | - | 58.46 | - | 65.28 | - |
| Shrimps | 55.21 | 12.39 | 51.84 | 21.11 | 45.96 | 24.13 | 68.94 | 25.98 |
| Unidentified | 10.23 | 0.36 | 9.85 | 0.11 | 8.96 | 4.84 | 8.53 | 0.2 |
| Number of preys | 11 | 7 | 6 | 10 | ||||
| Shannon-Wiener index | 2.25 | 1.85 | 1.7 | 2.09 | ||||
| Pielou’s evenness index | 0.94 | 0.95 | 0.95 | 0.91 | ||||
| Food items | Fish length groups | |||||
|---|---|---|---|---|---|---|
| < 125 mm TL | 125 – 235 mm TL | >235 mm TL | ||||
| O% | %N | O% | %N | %O | %N | |
| Calanus sp. | 57.35 | 27.02 | 76.10 | 30.55 | 58.33 | 35.69 |
| nauplii | 64.50 | 26.16 | 76.29 | 26.74 | 23.61 | 15.63 |
| Bosmina sp. | 23.11 | 0.13 | 47.06 | 0.04 | - | - |
| Alona sp. | 9.60 | 1.81 | 30.64 | 1.77 | - | - |
| Brachionus calyciflorus | 62.39 | 17.61 | 60.51 | 14.67 | - | - |
| Brachionus angularis | 52.66 | 12.8 | 63.24 | 10.45 | - | - |
| Brachionus caudatus | 22.38 | 6.1 | 36.03 | 5.06 | - | - |
| Keratella sp. | 9.52 | 5.35 | 6.07 | 2.03 | - | - |
| Tricocerca sp. | 9.52 | 2.11 | 20.34 | 1.9 | - | - |
| Macrophytes | - | - | 45.15 | - | 77.08 | - |
| Shrimps | - | - | 45.15 | 6.06 | 70.14 | 47.45 |
| Unidentified | 6.55 | 0.91 | 6.66 | 0.73 | 6.23 | 1.23 |
| Food items | Number | Percent (%) | Total length (mm) | ||
|---|---|---|---|---|---|
| Min. | Max. | Mean | |||
| Only shrimps | 3 | 0.38 | 248 | 308 | 283.2 |
| Only macrophytes | 20 | 2.50 | 235 | 306 | 278.75 |
| Macrophytes + shrimps | 14 | 1.75 | 181 | 359 | 247.71 |
| Macrophytes + zooplankton + shrimps | 121 | 15.13 | 125 | 309 | 206.92 |
| Macrophytes + zooplankton | 42 | 5.25 | 131 | 309 | 215 |
| Sources | Df | SS | MS | Pseudo-F | P(perm) |
|---|---|---|---|---|---|
| Fish size | 2 | 32593 | 16297 | 685.52 | 0.001 |
| Season | 3 | 1619.8 | 539.94 | 0.499 | 0.708 |
| Fish size * season | 6 | 1436.1 | 239.35 | 0.199 | 0.989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
