Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Effectiveness of the use of Polymer in High Performance Concrete Containing Silica Fume

Version 1 : Received: 19 August 2023 / Approved: 21 August 2023 / Online: 22 August 2023 (12:15:00 CEST)

A peer-reviewed article of this Preprint also exists.

Harichane, A.; Seghir, N.T.; Niewiadomski, P.; Sadowski, Ł.; Cisiński, M. Effectiveness of the Use of Polymers in High-Performance Concrete Containing Silica Fume. Polymers 2023, 15, 3730. Harichane, A.; Seghir, N.T.; Niewiadomski, P.; Sadowski, Ł.; Cisiński, M. Effectiveness of the Use of Polymers in High-Performance Concrete Containing Silica Fume. Polymers 2023, 15, 3730.

Abstract

The incorporation of polycarboxylate ether superplasticizer (PCE) type polymer and silica fume (SF) in high-performance concretes (HPC) leads to the achievement of remarkable rheological and mechanical improvements. In the fresh state, PCEs are adsorbed on cement particles and dispersants, in turn promoting the workability of the concrete. Silica fume enables a very well compacted concrete to be obtained, which is characterized by high mechanical parameters in its hardened state. Some PCEs are incompatible with silica fume, which can result in the loss of slump and in poor rheological behavior. The main objective of the research is the study of the influence of three types of PCEs, which all have a different molecular architecture, on the rheological and mechanical behavior of high-performance concretes containing 10% of SF as a partial replacement of cement. The results show that the carboxylic density of PCE has an influence on its compatibility with SF.

Keywords

Polycarboxylate-ether superplasticizer (PCE); Rheology; Molecular architecture; High performance concrete; Carboxylic groups

Subject

Chemistry and Materials Science, Polymers and Plastics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.