Submitted:
14 August 2023
Posted:
16 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Example 1: simply supported beam with 2 iteration processes
3.2. Example 2: Cantilever beam with 2 iteration processes
3.3. Example 3: Application to a composite bridge
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Albero, V., Espinós, A., Serra, E., Romero, M.L., Hospitaler, A. Numerical study on the flexural behaviour of slim-floor beams with hollow core slabs at elevated temperature, Engineering Structures, 2019, 180, 561-573. [CrossRef]
- C. Turgut, L. Jason, L. Davenne, Structural-scale modeling of the active confinement effect in the steel-concrete bond for reinforced concrete structures, Finite Elements in Analysis and Design, Volume 172, 2020, 103386, ISSN 0168-874X. [CrossRef]
- Weaver W., Were J.M. Computer-Oriented Direct Stiffness Method. In: Matrix Analysis of Framed Structures, Springer, Boston, MA, 1990. [CrossRef]
- Adam J. Sadowski, On the advantages of hybrid beam-shell structural finite element models for the efficient analysis of metal wind turbine support towers, Finite Elements in Analysis and Design, Volume 162, 2019, Pages 19-33, ISSN 0168-874X. [CrossRef]
- Kawano, A., Zine, A. Reliability evaluation of continuous beam structures using data concerning the displacement of points in a small region, Engineering Structures. 2019, 80, 379-387. [CrossRef]
- Aguirre, R. Codina, J. Baiges, A variational multiscale stabilized finite element formulation for Reissner–Mindlin plates and Timoshenko beams, Finite Elements in Analysis and Design, Volume 217, 2023, 103908, ISSN 0168-874X. [CrossRef]
- Ozdagli, A. I., Liu, B., Moreu, F. Measuring Total Transverse Reference-Free Displacements for Condition Assessment of Timber Railroad Bridges: Experimental Validation, Journal of Structural Engineering, 2018, 144, 040180471.
- Liu, S., D Ziemian, R., Chen, L., Chan, S-L. Bifurcation and large-deflection analyses of thin-walled beam-columns withnon-symmetric open-sections, Thin-walled structures, 2018, 132, 287-301.
- Dahake, A., Ghugal, Y., Uttam, B., Kalwane, Dr. Displacements in Thick Beams using Refined Shear Deformation Theory, 2014, Proceedings of 3 rd International Conference on Recent Trends in Engineering & Technology.
- Tomas, D., Lozano-Galant, J.A., Ramos, G., Turmo, J. Structural system identification of thin web bridges by observability techniques considering shear deformation, Thin-Walled Structures, 2018, 123 282-293.
- Dym, C.L., Williams, H.E. Estimating Fundamental Frequencies of Tall Buildings, Journal of Structural Engineering, 2007, 133 1479-1483.
- Jun Yan, Baoshun Zhou, Zhixun Yang, Liang Xu, Haitao Hu, Mechanism exploration and effective analysis method of shear effect of helically wound structures, Finite Elements in Analysis and Design, Volume 212, 2022, 103840, ISSN 0168-874X. [CrossRef]
- EN 1992-1-1 (2002) Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. CEN, Brussels, 2002, Belgium.
- ACI committee 318 (2000), Building code requirements for structural concrete and commentary. American Concrete Institute, Detroit, USA.
- Timoshenko, S. P. On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine, 1921, 41 (6), 742–746.
- CSI, (2016), CSI Analysis Reference Manual for SAP2000, ETABS, SAFE and CSiBridge, Berkeley, California, USA.
- Pisey Keo, Quang-Huy Nguyen, Hugues Somja, Mohammed Hjiaj, Derivation of the exact stiffness matrix of shear-deformable multi-layered beam element in partial interaction, Finite Elements in Analysis and Design, Volume 112, 2016, Pages 40-49, ISSN 0168-874X. [CrossRef]
- Pisano, A.A (1999), “Structural System Identification: Advanced Approaches and Applications”. PhD. Ph.D. Dissertation, Università di Pavia, Italy.
- Zhang, F., Yang, Y., Xiong, H., Yang, J., & Yu, Z. Structural health monitoring of a 250-m super-tall building and operational modal analysis using the fast bayesian FFT method, Structural Control and Health Monitoring, 2019, 26(8), e2383. [CrossRef]
- Lu, Y., Panagiotou, M. (2014) Three-Dimensional Cyclic Beam-Truss Model for Nonplanar Reinforced Concrete Walls. Journal of Structural Engineering. 140. 04013071. [CrossRef]
- Reddy, J. N. (2006) An introduction to the finite element method, McGraw-Hill Education, ISBN: 9780072466850.
- Pickhaver, J.A. (2006) Numerical modelling of building response to tunneling. Ph.D. thesis, University of Oxford.
- Przemieniecki, J.S. (1968), “Theory of Matrix Structural Analysis”, Library of Congress Catalog Card Number 67, 19151.
- Emadi, S.; Ma, H.; Lozano-Galant, J.A.; Turmo, J. Simplified Calculation of Shear Rotations for First-Order Shear Deformation Theory in Deep Bridge Beams. Appl. Sci. 2023, 13, 3362. [CrossRef]
- Sirca Jr, G.F., & Adeli, H. System identification in structural engineering, Scientia Iranica, 2012, 19(6), 1355-1364.
- Rodrigo L. Pereira, Heitor N. Lopes, Renato Pavanello, Topology optimization of acoustic systems with a multiconstrained BESO approach, Finite Elements in Analysis and Design, Volume 201, 2022, 103701, ISSN 0168-874X. [CrossRef]
- Rujie Sun, Guoping Chen, Huan He, Baoqiang Zhang, The impact force identification of composite stiffened panels under material uncertainty, Finite Elements in Analysis and Design, Volume 81, 2014, Pages 38-47, ISSN 0168-874X. [CrossRef]
- Gevers, M. A personal view of the development of system identification: A 30-year journey through an exciting field, IEEE Control Systems, 2006, 26(6), 93-105.
- Hoang, T., Foret, G., Duhamel, D. Dynamical response of a Timoshenko beams on periodical nonlinear supports subjected to moving forces, Engineering Structures, 2018, 176, 673-680. [CrossRef]
- Kim, N. (2009) Dynamic stiffness matrix of composite box beams. Steel and Composite Structures 9(5) 473-497. [CrossRef]
- Yildirim Serhat Erdogan, F. Necati Catbas, Pelin Gundes Bakir, Structural identification (St-Id) using finite element models for optimum sensor configuration and uncertainty quantification, Finite Elements in Analysis and Design, Volume 81, 2014, Pages 1-13, ISSN 0168-874X. [CrossRef]
- Chatzieleftheriou, S., & Lagaros, N. D. A trajectory method for vibration based damage identification of underdetermined problems, Structural Control and Health Monitoring, 2017, 24(3). [CrossRef]
- Hau T. Mai, Tam T. Truong, Joowon Kang, Dai D. Mai, Jaehong Lee, A robust physics-informed neural network approach for predicting structural instability, Finite Elements in Analysis and Design, Volume 216, 2023, 103893, ISSN 0168-874X. [CrossRef]
- Yunzhen He, Zi-Long Zhao, Kun Cai, James Kirby, Yulin Xiong, Yi Min Xie, A thinning algorithm based approach to controlling structural complexity in topology optimization, Finite Elements in Analysis and Design, Volume 207, 2022, 103779, ISSN 0168-874X. [CrossRef]
- Catbas, Necati & kijewski-correa, tracy & Aktan, A. Structural Identification of Constructed Systems: Approaches, Methods, and Technologies for Effective Practice of St-Id, American Society of Civil Engineers, USA, 2013. [CrossRef]
- Dincal, S., & Stubbs, N. Nondestructive damage detection in euler-bernoulli beams using nodal curvatures - part I: Theory and numerical verification, Structural Control and Health Monitoring, 2014, 21(3), 303-316. [CrossRef]
- Guoqiang Wei, Pascal Lardeur, Frédéric Druesne, A new solid-beam approach based on first or higher-order beam theories for finite element analysis of thin to thick structures, Finite Elements in Analysis and Design, Volume 200, 2022, 103655, ISSN 0168-874X. [CrossRef]
- Ngoc-Tuan Nguyen, Nam-Il Kim, Jaehong Lee, Mixed finite element analysis of nonlocal Euler–Bernoulli nanobeams, Finite Elements in Analysis and Design, Volume 106, 2015, Pages 65-72, ISSN 0168-874X. [CrossRef]
- Leblouda, M., Junaid, M.T., Barakat, S., Maalej, M. Shear buckling and stress distribution in trapezoidal web corrugated steel beams, Thin-walled structures, 2017, 113, 13-26.
- Emadi, S., Lozano-Galant, J. A. & Turmo, J. Analyzing the effects of shear deformations on the constrained observability method, Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations, CRC Press, 2021, 3755-3762.
- Lozano-Galant JA, Nogal M, Castillo E, Turmo J. Application of observability techniques to structural system identification”, Computer-Aided Civil and Infrastructure Engineering, 2013, 28, 434–450.
- Lei, j., Nogal, M., Lozano-Galant, J.A., Xu, D. and Turmo, j. Constrained observability method in static structural system identification, Structural Control and Health Monitoring, 2017, 25 (1), e2040. [CrossRef]
- Emadi, S., Lozano-Galant, J. A., Xia, Y., Ramos, G., & Turmo, J. Structural system identification including shear deformation of composite bridges from vertical deflections, Steel and Composite Structures, 2019, 32(6), 731-741. [CrossRef]
- Emadi, S. (2020), “Application of observability techniques to structural system identification including shear effects”. PhD. Ph.D. Dissertation, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain.
- MATLAB and Optimization Toolbox Release (2017b), The MathWorks, Inc., Natick, Massachusetts, United States.
- Chen, Y.S. and Yen, B. T. (1980), “Analysis of Composite Box Girders, Fritz Engineering Laboratory Library”, Report N0 380.12.
- Dong, X. Zhao, L. Xu, Z. Du, S. Wang, S. Wang, X. and Jin, W. (2017), “Construction of the Yunbao Bridge over the yellow river”, EASEC-15, October 11-13, Xi’an, China.








| Properties | Value |
|---|---|
| axial stiffness [GPa·m2] | 440.65 |
| shear stiffness for node 1 [GPa·m2] | 344.05 |
| shear stiffness for node 2 [GPa·m2] | 385 |
| flexural stiffness for node 1 [GPa·m4] | 1,246.7 |
| flexural stiffness for node 2 [GPa·m4] | 1,120 |
| parameter | average | CoV | standard deviation |
|---|---|---|---|
| EI1 | 1.000 | 8.791e-7 | 8.791e-7 |
| EI2 | 1.000 | 9.114e-7 | 9.114e-7 |
| GAv1 | 1.000 | 0.000 | 0.000 |
| GAv2 | 0.910 | 0.128 | 0.116 |
| parameter | average | CoV | standard deviation |
|---|---|---|---|
| EI1 | 1.000 | 8.783e-7 | 8.783e-7 |
| EI2 | 1.000 | 9.118e-7 | 9.117e-7 |
| GAv1 | 1.000 | 0.000 | 0.000 |
| GAv2 | 1.000 | 0.000 | 0.000 |
| Properties | Value |
|---|---|
| area [m2] | 12.52 |
| shear area [m2] | 9.83 |
| inertia [m4] | 35.62 |
| steel young’s modulus [GPa] | 210 |
| concrete young’s modulus [GPa] | 35 |
| poisson’s ratio γ | 0.3 |
| parameter | average | CoV | standard deviation | |
|---|---|---|---|---|
| EI1 | 1.000 | 8.237e-7 | 8.237e-7 | |
| EI2 | 1.000 | 8.903e-7 | 8.903e-7 | |
| GAv1 | 0.617 | 0.740 | 0.456 | |
| GAv2 | 0.256 | 0.305 | 0.078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
