Submitted:
14 August 2023
Posted:
14 August 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study sites
2.2. Climate parameters
2.3. Brief description of HYDRUS-1D
2.4. Nitrogen balance parameters
2.5. Initial and boundary conditions
2.6. Model evaluation
3. Results
3.1. Soil water dynamics in the soil
3.2. Soil water balance
3.3. Nitrogen simulation in the soils
3.4. Nitrogen balance in soils
3.4.1. Mineralization of organic N in the soil
3.4.2. Nitrogen uptake by wheat
3.4.3. Simulated volatilization losses of N
3.4.4. Leaching losses of Nitrogen
3.5. Water productivity and N use efficiency
4. Discussion
4.1. Soil water balance and wheat water uptake
4.2. Nitrogen losses and recovery by crop
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Angus, J.F.; Grace, P.R. Nitrogen balance in Australia and nitrogen use efficiency on Australian farms. Soil Research 2017, 55. [Google Scholar] [CrossRef]
- Sadras, V.O.; Denison, R.F. Neither crop genetics nor crop management can be optimised. Field Crops Research 2016, 189, 75–83. [Google Scholar] [CrossRef]
- Connor, D.J. Designing cropping systems for efficient use of limited water in southern Australia. European Journal of Agronomy 2004, 21, 419–431. [Google Scholar] [CrossRef]
- Sadras, V.O.; Rodriguez, D. Modelling the nitrogen-driven trade-off between nitrogen utilisation efficiency and water use efficiency of wheat in eastern Australia. Field Crops Research 2010, 118, 297–305. [Google Scholar] [CrossRef]
- Cawood, R.M., G. Climate of south-eastern Australia. In Climate, Temperature and Crop Production in South-eastern Australia, Cawood, R., Ed.; Principles of sustainable agriculture; Agriculture Victoria: Horsham, Victoria, 1996; pp. 21–33. [Google Scholar]
- Unkovich, M.; McBeath, T.; Llewellyn, R.; Hall, J.; Gupta, V.V.S.R.; Macdonald, L.M. Challenges and opportunities for grain farming on sandy soils of semi-arid south and south-eastern Australia. Soil Research 2020, 58. [Google Scholar] [CrossRef]
- ABARES. Wheat forecast 20-22-23 season; Department of agriculture, Fisheries and Forestry, Australian Government: Canberra, 2023. [Google Scholar]
- Hochman, Z.; Gobbett, D.; Horan, H.; Garcia, J.N. Data rich yield gap analysis of wheat in Australia. Field Crops Research 2016, 197, 97–106. [Google Scholar] [CrossRef]
- Bodner, G.; Nakhforoosh, A.; Kaul, H.-P. Management of crop water under drought: a review. Agronomy for Sustainable Development 2015, 35, 401–442. [Google Scholar] [CrossRef]
- French, R.; Schultz, J. Water use efficiency of wheat in a Mediterranean-type environment. I. The relation between yield, water use and climate. Australian Journal of Agricultural Research 1984, 35, 743–764. [Google Scholar] [CrossRef]
- Sadras, V.O.; Angus, J.F. Benchmarking water-use efficiency of rainfed wheat in dry environments. Australian Journal of Agricultural Research 2006, 57. [Google Scholar] [CrossRef]
- Sadras, V.O.; Rodriguez, D. The limit to wheat water-use efficiency in eastern Australia. II. Influence of rainfall patterns. Australian Journal of Agricultural Research 2007, 58. [Google Scholar] [CrossRef]
- Hochman, Z.; Gobbett, D.L.; Horan, H. Climate trends account for stalled wheat yields in Australia since 1990. Glob Chang Biol 2017, 23, 2071–2081. [Google Scholar] [CrossRef] [PubMed]
- Sadras, V.O.; Lawson, C. Nitrogen and water-use efficiency of Australian wheat varieties released between 1958 and 2007. European Journal of Agronomy 2013, 46, 34–41. [Google Scholar] [CrossRef]
- Angus, J.F.; van Herwaarden, A.F. Increasing Water Use and Water Use Efficiency in Dryland Wheat. Agronomy Journal 2001, 93, 290–298. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.P.; Huth, N.I.; Hargreaves, J.N.G.; Meinke, H.; Hochman, Z.; et al. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 2003, 18, 267–288. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T.; Sejna, M. Recent developments and applications of the HYDRUS computer software packages. Vadose zone journal 2016, 15, 1–25. [Google Scholar] [CrossRef]
- Li, S.-X.; Wang, Z.-H.; Malhi, S.S.; Li, S.-Q.; Gao, Y.-J.; Tian, X.-H. Chapter 7 Nutrient and Water Management Effects on Crop Production, and Nutrient and Water Use Efficiency in Dryland Areas of China. Advances in Agronomy 2009, 223–265. [Google Scholar]
- Cossani, C.M.; Slafer, G.A.; Savin, R. Co-limitation of nitrogen and water, and yield and resource-use efficiencies of wheat and barley. Crop and Pasture Science 2010, 61, 844–851. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Li, S.-X. Nitrate N loss by leaching and surface runoff in agricultural land: A global issue (a review). Advances in Agronomy 2019, 159–217. [Google Scholar]
- Osman, R.; Tahir, M.N.; Ata-Ul-Karim, S.T.; Ishaque, W.; Xu, M. Exploring the Impacts of Genotype-Management-Environment Interactions on Wheat Productivity, Water Use Efficiency, and Nitrogen Use Efficiency under Rainfed Conditions. Plants 2021, 10. [Google Scholar] [CrossRef]
- Benjamin, J.G.; Porter, L.K.; Duke, H.R.; Ahuja, L.R. Corn Growth and Nitrogen Uptake with Furrow Irrigation and Fertilizer Bands. Agronomy Journal 1997, 89, 609–612. [Google Scholar] [CrossRef]
- Lehrsch, G.; Sojka, R.; Westermann, D. Furrow irrigation and N management strategies to protect water quality. Communications in Soil Science and Plant Analysis 2001, 32, 1029–1050. [Google Scholar] [CrossRef]
- Keller, G.D.; Mengel, D.B. Ammonia Volatilization from Nitrogen Fertilizers Surface Applied to No-till Corn. Soil Science Society of America Journal 1986, 50, 1060–1063. [Google Scholar] [CrossRef]
- Chien, S.; Prochnow, L.; Cantarella, a.H. Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Advances in agronomy 2009, 102, 267–322. [Google Scholar]
- Gastal, F.; Lemaire, G.; Durand, J.-L.; Louarn, G. Chapter 8 - Quantifying crop responses to nitrogen and avenues to improve nitrogen-use efficiency. In Crop Physiology (Second Edition), Sadras, V.O., Calderini, D.F., Eds.; Academic Press: San Diego, 2015; pp. 161–206. [Google Scholar]
- Raun, W.R.; Johnson, G.V. Improving Nitrogen Use Efficiency for Cereal Production. Agronomy Journal 1999, 91, 357–363. [Google Scholar] [CrossRef]
- Kubar, M.S.; Alshallash, K.S.; Asghar, M.A.; Feng, M.; Raza, A.; Wang, C.; Saleem, K.; Ullah, A.; Yang, W.; Kubar, K.A.; et al. Improving Winter Wheat Photosynthesis, Nitrogen Use Efficiency, and Yield by Optimizing Nitrogen Fertilization. Life 2022, 12, 1478. [Google Scholar] [CrossRef] [PubMed]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef]
- Powlson, D.S.; Addiscott, T.M.; Benjamin, N.; Cassman, K.G.; de Kok, T.M.; van Grinsven, H.; L'Hirondel, J.L.; Avery, A.A.; van Kessel, C. When does nitrate become a risk for humans? J Environ Qual 2008, 37, 291–295. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Rötter, R.P.; Cammarano, D.; et al. Uncertainty in simulating wheat yields under climate change. Nature Climate Change 2013, 3, 827–832. [Google Scholar] [CrossRef]
- Ishaque, W.; Osman, R.; Hafiza, B.S.; Malghani, S.; Zhao, B.; Xu, M.; Ata-Ul-Karim, S.T. Quantifying the impacts of climate change on wheat phenology, yield, and evapotranspiration under irrigated and rainfed conditions. Agricultural Water Management 2023, 275, 108017. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Durand, J.-L.; Gastal, F. Water deficit and nitrogen nutrition of crops. A review. Agronomy for Sustainable Development 2010, 30, 529–544. [Google Scholar] [CrossRef]
- Norton RM, W.C., Farlow C. Nitrogen removal and use on a long-term fertilizer experiment. In Proceedings of the 17th Australian Society of Agronomy Conference, Hobrt, Australia, 20- 24 september 2015.
- Phogat, V.; Skewes, M.A.; Cox, J.W.; Sanderson, G.; Alam, J.; Šimůnek, J. Seasonal simulation of water, salinity and nitrate dynamics under drip irrigated mandarin (Citrus reticulata) and assessing management options for drainage and nitrate leaching. Journal of hydrology (Amsterdam) 2014, 513, 504–516. [Google Scholar] [CrossRef]
- Gaydon, D.S.; Balwinder, S.; Wang, E.; Poulton, P.L.; Ahmad, B.; Ahmed, F.; Akhter, S.; Ali, I.; Amarasingha, R.; Chaki, A.K.; et al. Evaluation of the APSIM model in cropping systems of Asia. Field Crops Research 2017, 204, 52–75. [Google Scholar] [CrossRef]
- Ware, A., Spriggs, B., Budarick, S., Scholz, N.,. Delivering value from Soil Moisture Probes on Eyre Peninsula; Minnipa Agriculture Centre: Minnipa, South Australia, 2020.
- Fabio, A. , Cook, A., Richter, I., King, N.. Benchmarking water Limited Yield of Cereal Crops on Major Soil Types across Eyre Peninsula; Minnipa Agriculture Centre: Minnipa, South Australia, 2019. [Google Scholar]
- Rayment, G.E.; Lyons, D.J.; Shelley, B. Soil Chemical Methods - Australasia: Australasia; CSIRO Publishing: Victoria, 2011. [Google Scholar]
- ASRIS. Australian Soil Resource Information System. 2011.
- Jeffrey, S.J.; Carter, J.O.; Moodie, K.B.; Beswick, A.R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environmental Modelling & Software 2001, 16, 309–330. [Google Scholar] [CrossRef]
- Allen, R.G. , Pereira, L.S., Raes, D., Smith, M. Crop evapotranspiration: Guidelines for computing crop water requirements; 9251042195; FAO: Rome, 1998. [Google Scholar]
- Ritchie, J.T. Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research 1972, 8, 1204–1213. [Google Scholar] [CrossRef]
- Miralles, D.J.; Slafer, G.A. Radiation interception and radiation use efficiency of near-isogenic wheat lines with different height. Euphytica 1997, 97, 201–208. [Google Scholar] [CrossRef]
- Feddes, R.A.; Kowalik, P.J.; Zaradny, H. Simulation of field water use and crop yield; Pudoc for the Centre for Agricultural Publishing and Documentation: Wageningen, 1978. [Google Scholar]
- Nakasone, H.; Abbas, M.A.; Kuroda, H. Nitrogen transport and transformation in packed soil columns from paddy fields. Paddy and Water Environment 2004, 2, 115–124. [Google Scholar] [CrossRef]
- Baldock, J. , Macdonald, L., Farrell, M., Welti, N and Monjardino, M. Nitrogen dynamics in modern cropping systems; CSO00207; Grain Research and Development Corporation: Australia, 2018. [Google Scholar]
- Li, Y.; Šimůnek, J.; Zhang, Z.; Jing, L.; Ni, L. Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D. Agricultural Water Management 2015, 148, 213–222. [Google Scholar] [CrossRef]
- Phogat, V. , Mahalakshmi, M., Skewes, M., Cox, J. W. Modelling soil water and salt dynamics under pulsed and continuous surface drip irrigation of almond and implications of system design. Irrigation science 2012, 30, 315–333. [Google Scholar] [CrossRef]
- Renard, J.J.; Calidonna, S.E.; Henley, M.V. Fate of ammonia in the atmosphere--a review for applicability to hazardous releases. J Hazard Mater 2004, 108, 29–60. [Google Scholar] [CrossRef]
- Wang, S.; Chen, J. Study on the integrated distribution coefficient of ammonium N migration in layered soil. Environmental science and pollution research international 2020, 27, 25340–25352. [Google Scholar] [CrossRef] [PubMed]
- Chowdary, V.M.; Rao, N.H.; Sarma, P.B.S. A coupled soil water and nitrogen balance model for flooded rice fields in India. Agriculture, Ecosystems & Environment 2004, 103, 425–441. [Google Scholar] [CrossRef]
- Yadav, D.; Kumar, V.; Singh, M.; Relan, P. Effect of temperature and moisture on kinetics of urea hydrolysis and nitrification. Soil Research 1987, 25, 185–191. [Google Scholar] [CrossRef]
- Rice, C.W.; Smith, M.S. Short-Term Immobilization of Fertilizer Nitrogen at the Surface of No-Till and Plowed Soils. Soil Science Society of America Journal 1984, 48, 295–297. [Google Scholar] [CrossRef]
- Roberts, T.L.; Ross, W.J.; Norman, R.J.; Slaton, N.A.; Wilson Jr, C.E. Predicting Nitrogen Fertilizer Needs for Rice in Arkansas Using Alkaline Hydrolyzable-Nitrogen. Soil Science Society of America Journal 2011, 75, 1161–1171. [Google Scholar] [CrossRef]
- Turner, D.A.; Edis, R.E.; Chen, D.; Freney, J.R.; Denmead, O.T. Ammonia volatilization from nitrogen fertilizers applied to cereals in two cropping areas of southern Australia. Nutrient Cycling in Agroecosystems 2012, 93, 113–126. [Google Scholar] [CrossRef]
- Šimůnek, J.; Hopmans, J.W. Modeling compensated root water and nutrient uptake. Ecological Modelling 2009, 220, 505–521. [Google Scholar] [CrossRef]
- Barton, L.; Hoyle, F.C.; Stefanova, K.T.; Murphy, D.V. Incorporating organic matter alters soil greenhouse gas emissions and increases grain yield in a semi-arid climate. Agriculture, Ecosystems & Environment 2016, 231, 320–330. [Google Scholar] [CrossRef]
- Yang, Y.; Tong, Y.; Gao, P.; Htun, Y.M.; Feng, T. Evaluation of N(2)O emission from rainfed wheat field in northwest agricultural land in China. Environ Sci Pollut Res Int 2020, 27, 43466–43479. [Google Scholar] [CrossRef]
- Jury, W.A.; Spencer, W.F.; Farmer, W.J. Behavior Assessment Model for Trace Organics in Soil: I. Model Description. Journal of Environmental Quality 1983, 12, 558–564. [Google Scholar] [CrossRef]
- Adcock, D. Soil water and nitrogen dynamics of farming systems on the upper Eyre Peninsula; South Australia, 2005. [Google Scholar]
- Wang, X.; Cai, H.; Li, L.; Wang, X. Estimating Soil Water Content and Evapotranspiration of Winter Wheat under Deficit Irrigation Based on SWAP Model. Sustainability 2020, 12, 9451. [Google Scholar] [CrossRef]
- Ramos, T.B.; Šimůnek, J.; Gonçalves, M.C.; Martins, J.C.; Prazeres, A.; Pereira, L.S. Two-dimensional modeling of water and nitrogen fate from sweet sorghum irrigated with fresh and blended saline waters. Agricultural water management 2012, 111, 87–104. [Google Scholar] [CrossRef]
- Evett, S.R.; Schwartz, R.C.; Casanova, J.J.; Heng, L.K. Soil water sensing for water balance, ET and WUE. Agricultural Water Management 2012, 104, 1–9. [Google Scholar] [CrossRef]
- Shafeeq, P.M.; Aggarwal, P.; Krishnan, P.; Rai, V.; Pramanik, P.; Das, T.K. Modeling the temporal distribution of water, ammonium-N, and nitrate-N in the root zone of wheat using HYDRUS-2D under conservation agriculture. Environ Sci Pollut Res Int 2020, 27, 2197–2216. [Google Scholar] [CrossRef]
- Wallace, A.J.; Armstrong, R.D.; Grace, P.R.; Scheer, C.; Partington, D.L. Nitrogen use efficiency of 15N urea applied to wheat based on fertiliser timing and use of inhibitors. Nutrient Cycling in Agroecosystems 2020, 116, 41–56. [Google Scholar] [CrossRef]
- Fenn, L.B.; Miyamoto, S. Ammonia Loss and Associated Reactions of Urea in Calcareous Soils. Soil Science Society of America Journal 1981, 45, 537–540. [Google Scholar] [CrossRef]
- Freney, J.R. , J.R., Denmead, O.T. . Volatilization of ammonia. In Gaseous loss of nitrogen from plant-soil systems, Freney, J.R., Simpson, J.R., Ed.; Springer: The Hague, 1983. [Google Scholar]
- Hu, C.; Zheng, C.; Sadras, V.O.; Ding, M.; Yang, X.; Zhang, S. Effect of straw mulch and seeding rate on the harvest index, yield and water use efficiency of winter wheat. Sci Rep 2018, 8, 8167. [Google Scholar] [CrossRef] [PubMed]
- White, R.G.; Kirkegaard, J.A. The distribution and abundance of wheat roots in a dense, structured subsoil – implications for water uptake. Plant, Cell & Environment 2010, 33, 133–148. [Google Scholar] [CrossRef]
- Zhang, S.; Sadras, V.; Chen, X.; Zhang, F. Water use efficiency of dryland wheat in the Loess Plateau in response to soil and crop management. Field Crops Research 2013, 151, 9–18. [Google Scholar] [CrossRef]
- Lollato, R.P.; Edwards, J.T.; Ochsner, T.E. Meteorological limits to winter wheat productivity in the U.S. southern Great Plains. Field Crops Research 2017, 203, 212–226. [Google Scholar] [CrossRef]
- Harries, M.; Flower, K.C.; Renton, M.; Anderson, G.C. Water use efficiency in Western Australian cropping systems. Crop and Pasture Science 2022, 73, 1097–1117. [Google Scholar] [CrossRef]
- Bogunović, I.; Filipović, V. Mulch as a nature-based solution to halt and reverse land degradation in agricultural areas. Current Opinion in Environmental Science & Health 2023, 100488. [Google Scholar] [CrossRef]
- Krevh, V.; Filipović, L.; Petošić, D.; Mustać, I.; Bogunović, I.; Butorac, J.; Kisić, I.; Defterdarović, J.; Nakić, Z.; Kovač, Z.; et al. Long-term analysis of soil water regime and nitrate dynamics at agricultural experimental site: Field-scale monitoring and numerical modeling using HYDRUS-1D. Agricultural Water Management 2023, 275, 108039. [Google Scholar] [CrossRef]
- Hochman, Z.; Horan, H. Causes of wheat yield gaps and opportunities to advance the water-limited yield frontier in Australia. Field Crops Research 2018, 228, 20–30. [Google Scholar] [CrossRef]
- Angus, J.F. , van Herwaarden, A.F., Fischer, R.A.,; Howe, G.N., Heenan, D.P. The source of mineral nitrogen for cereals in south-eastern Australia. Australian Journal of Agricultural Research 1998, 49, 511–522. [Google Scholar] [CrossRef]
- Cameron, K.C.D., H. J.; Moir, J.L. Nitrogen losses from the soil-plant system: a review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Monjardino, M.; Hochman, Z.; Horan, H. Yield potential determines Australian wheat growers' capacity to close yield gaps while mitigating economic risk. Agronomy for Sustainable Development 2019, 39, 49. [Google Scholar] [CrossRef]
- IPCC. Guidelines for National Greenhouse Gas Inventories, 4-88788-032-4; Intergovernmental Panel on Climate Change. 2006.
- Siemens, J. , Kaupenjohann, M.,. Contribution of dissolved organic nitrogen to N leaching from four German agricultural soils. J. Pl. Nutr. Soil Sci. 2002, 165, 675–681. [Google Scholar] [CrossRef]
- Anderson, G.C.F., I. R.P.; Dunin, F.X.; Dolling, P.J.; Asseng, S. Nitrogen and water flows under pasture-wheat and lupin-wheat rotations in deep sands in Western Australia 2. Drainage and nitrate leaching. Australian J. Agric. Res. 1998, 49, 345–361. [Google Scholar] [CrossRef]
- Poss, R.; Smith, C.J.; Dunin, F.X.; Angus, J.F. Rate of soil acidification under wheat in a semi-arid environment. Plant and Soil 1995, 177, 85–100. [Google Scholar] [CrossRef]
- Ridley, A.M.; White, R.E.; Helyar, K.R.; Morrison, G.R.; Heng, L.K.; Fisher, R. Nitrate leaching loss under annual and perennial pastures with and without lime on a duplex (texture contrast) soil in humid southeastern Australia. European Journal of Soil Science 2001, 52, 237–252. [Google Scholar] [CrossRef]
- Ridley, A.M.; Mele, P.M.; Beverly, C.R. Legume-based farming in Southern Australia: developing sustainable systems to meet environmental challenges. Soil Biology and Biochemistry 2004, 36, 1213–1221. [Google Scholar] [CrossRef]










| 2018 | 2019 | |
|---|---|---|
| Pygery (Py) | ||
| Variety | Mace | Mace |
| Sowing date | 19th May | 12th May |
| Row spacing (mm) | ||
| Plant density (plants m-2) | 140 | 160 |
| Fertilizers (applied at sowing) | ||
| MAP (kg ha-1) | 55 | - |
| Urea (kg ha-1) | - | 40 |
| Yield (t ha-1) | 1.45 | 1.6 |
| Yeelanna (Ye) | ||
| Variety | Emu Rock | Mace |
| Sowing date | 12th May | 22nd May |
| Row spacing (mm) | 307 | 305 |
| Plant density (plants m-2) | 150 | 150 |
| Fertilizers (applied at sowing) | ||
| MAP (kg ha-1) | 66 | |
| Urea (kg ha-1) | 100 | 75 |
| In-season fertilizer | ||
| Urea (kg ha-1) and date | 50 on 16th July | 100 on 28th June |
| 50 on 17th August | 100 on 27th July | |
| Yield (t ha-1) | 5.67 | 3.84 |
| Depth (cm) |
Soil texture |
sand | silt | clay | Db (g cm-3) |
OC (%) |
pH (H2O) |
pH (CaCl2) |
CEC (Cmol (+) kg-1) |
| --------------(%)------------ | |||||||||
| Pygery (Py) | |||||||||
| 0 - 15 | SL* | 64.7 | 13.5 | 19.8 | 1.5 | 1.17 | 8.5 | 7.8 | 17.0 |
| 15 - 30 | SCL | 58.7 | 12.3 | 28.9 | 1.3 | 0.75 | 8.7 | 8.0 | 22.5 |
| 30 - 60 | SCL | 47.0 | 21.2 | 31.8 | 1.3 | 0.55 | 9.3 | 8.3 | 25.0 |
| 60 - 90 | CL | 42.7 | 21.2 | 36.0 | 1.4 | 0.34 | 9.5 | 8.5 | 26.2 |
| 90 - 100 | SC | 45.0 | 19.3 | 35.7 | 1.4 | 0.34 | 9.5 | 8.5 | 24.7 |
| Yeelanna (Ye) | |||||||||
| 0 - 15 | SCL | 70.4 | 8.7 | 20.9 | 1.4 | 2.03 | 8.1 | 7.7 | 26.1 |
| 15 - 30 | C | 21.8 | 6.3 | 71.9 | 1.3 | 0.70 | 8.5 | 7.9 | 42.0 |
| 30 - 60 | C | 22.3 | 6.4 | 71.2 | 1.5 | 0.42 | 8.6 | 8.0 | 45.5 |
| 60-90 | C | 14.3 | 10.2 | 75.6 | 1.6 | 0.32 | 9.3 | 8.3 | 47.2 |
| 90-100 | SC | 51.5 | 3.0 | 45.5 | 1.6 | 0.32 | 9.3 | 8.3 | 51.5 |
| Soil texture |
Soil depth (cm) |
θr* (cm3cm-3) |
θs (cm3cm-3) |
a (cm-1) |
n |
Ks (cm d-1) |
l |
Db (g cm-3) |
| Pygery (Py) | ||||||||
| Loam | 0-15 | 0.05 | 0.4031 | 0.024 | 1.3963 | 27.11 | 0.5 | 1.5 |
| Loam | 15-30 | 0.12 | 0.4136 | 0.0224 | 1.3196 | 19.14 | 0.5 | 1.3 |
| Clay loam | 30-60 | 0.2 | 0.4408 | 0.0172 | 1.3744 | 15.56 | 0.5 | 1.3 |
| Clay loam | 60-90 | 0.22 | 0.4475 | 0.0173 | 1.351 | 14.39 | 0.5 | 1.4 |
| Cay loam | 90-105 | 0.24 | 0.4475 | 0.0182 | 1.345 | 15.83 | 0.5 | 1.4 |
| Yeelanna (Ye) | ||||||||
| Loam | 0-15 | 0.07 | 0.4548 | 0.0245 | 1.4539 | 53.44 | 0.5 | 1.4 |
| Clay | 15-30 | 0.15 | 0.4582 | 0.0226 | 1.3115 | 17.16 | 0.5 | 1.3 |
| Clay | 30-60 | 0.19 | 0.4444 | 0.0214 | 1.2827 | 9.39 | 0.5 | 1.5 |
| Clay | 60-90 | 0.21 | 0.4869 | 0.0193 | 1.1743 | 5.49 | 0.5 | 1.6 |
| Silt loam | 90-105 | 0.24 | 0.4915 | 0.0181 | 1.1562 | 11.05 | 0.5 | 1.6 |
| Site | Year | Es | Tp act | Dr | ∆S | Rainfall (season) | Rainfall (annual) |
| Py | 2018 | 76.6 | 95.2 | 0.03 | 6.4 | 175.6 | 235.3 |
| 2019 | 98.6 | 85.0 | 0 | -2.8 | 183.6 | 201.8 | |
| Ye | 2018 | 96.3 | 140.5 | 40.8 | 54.9 | 333 | 407.6 |
| 2019 | 104.3 | 140.6 | 90.4 | 9.2 | 348.3 | 375.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
