Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Phase Structures, Electromechanical Responses and Electrocaloric Effects in K0.5Na0.5NbO3 Epitaxial Film Controlled by Non-Isometric Misfit Strain

Version 1 : Received: 9 August 2023 / Approved: 10 August 2023 / Online: 10 August 2023 (09:59:11 CEST)

A peer-reviewed article of this Preprint also exists.

Wu, Y.; Ou, Y.; Peng, J.; Lei, C. Phase Structures, Electromechanical Responses, and Electrocaloric Effects in K0.5Na0.5NbO3 Epitaxial Film Controlled by Non-Isometric Misfit Strain. Crystals 2023, 13, 1321. Wu, Y.; Ou, Y.; Peng, J.; Lei, C. Phase Structures, Electromechanical Responses, and Electrocaloric Effects in K0.5Na0.5NbO3 Epitaxial Film Controlled by Non-Isometric Misfit Strain. Crystals 2023, 13, 1321.

Abstract

Environmentally friendly lead-free K1-xNaxNbO3 (KNN) ceramics possess electromechanical properties comparable to lead-based ferroelectric materials, but cannot meet the needs of device miniaturization, and the corresponding thin films lack of theoretical and experimental studies. To this end, we developed the nonlinear phenomenological theory for ferroelectric materials to study the effects of non-equiaxed misfit strain on the phase structure, electromechanical properties and electrical response of K0.5Na0.5NbO3 epitaxial films and constructed the in-plane misfit strain (u1-u2) phase diagrams. The results show that K0.5Na0.5NbO3 epitaxial film under non-equiaxed in-plane strain can exhibit abundant phase structures, including orthorhombic a1c, a2c and a1a2 phases, tetragonal a1, a2 and c phases, and monoclinic r12 phases. Moreover, in the vicinity of a2c-r12, a1c-c and a1a2-a2 phase boundaries, K0.5Na0.5NbO3 epitaxial films exhibit excellent dielectric constant ε11, while at a2c -r12 and a1c-c phase boundaries large piezoelectric coefficient d15 is observed. It was also found that high permittivity ε33 and piezoelectric coefficients d33 exist near the a2c - a2, r12- a1a2 and a1c-a1 phase boundaries due to the existence of polymorphic phase boundaries (PPB) in the KNN system, which makes it easy to polarize near the phase boundaries, and the polarizability changes suddenly, leading to electromechanical enhancement. In addition, the results show that the K0.5Na0.5NbO3 thin films possess a large electrocaloric response at the phase boundary at the r12-a1a2 and a1c-a1 phase boundaries. And the maximum adiabatic temperature change ∆T is about 3.62 K when the electric field change is 30 MV/m at room temperature, which is significantly enhanced compared with equiaxed strain. This study provides theoretical guidance for obtaining K1-xNaxNbO3 epitaxial thin films with excellent properties.

Keywords

non-equiaxed misfit strain; K0.5Na0.5NbO3; Electrocaloric effect; Ferroelectric thin films

Subject

Chemistry and Materials Science, Materials Science and Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.