Submitted:
08 August 2023
Posted:
08 August 2023
You are already at the latest version
Abstract
Keywords:
1. Lycopene
2. Antioxidant effects of lycopene
3. Antioxidant activity of lycopene in cardiovascular diseases
4. Antioxidant activity of lycopene in atherosclerosis
5. Antioxidant activity of lycopene in liver diseases
6. Antioxidant activity of lycopene in ulcerative colitis
7. Antioxidant activity of lycopene in neurodegenerative diseases
8. Antioxidant activity of lycopene in nervous system disorders
9. Activity of lycopene in type 2 Diabetes mellitus
10. Conclusions
| Disease | Model/Participants/Type | Period | Lycopene dosage and administration | Main results | Year published |
Reference |
|---|---|---|---|---|---|---|
| Diabetes mellitus, diabetic nephropathy | Streptozotocin-induced diabetic nephropathy male Kunming mice | 8 weeks | Lycopene dissolved in the vehicle, 40 and 80 mg/kg, three times a week, intragastrically administration |
|
2015 | [151] |
| ||||||
| ||||||
| ||||||
| ||||||
| ||||||
| ||||||
| ||||||
| ||||||
| Diabetes mellitus | Streptozotocin-induced diabetic Sprague-Dawley rats | 30 days | Lycopene in sunflower oil, 10 mg/kg/day, oral gavage |
|
2016 | [133] |
| ||||||
| ||||||
| Diabetes mellitus | Streptozotocin-induced diabetic male Wistar rats | 28 days | Lycopene in corn oil, 4 mg/kg/day, oral gavage |
|
2016 | [147] |
| ||||||
| ||||||
| ||||||
| ||||||
| ||||||
| ||||||
| Diabetes mellitus | Alloxan monohydrate - induced diabetic male and female Wistar rats | 14 days | Lycopene niosomes, 100 and 200 mg/kg/day, lycopene extract 200 mg/kg/day, oral administration |
|
2017 | [148] |
| ||||||
| Diabetes mellitus | Streptozotocin-induced diabetic male and female Wistar rats | 4 weeks | Lycopene in olive oil, 10, 20 and 40 mg/kg/day, oral administration |
|
2017 | [149] |
| ||||||
| Diabetes mellitus | Streptozotocin-induced diabetic male Wistar rats | 50 days | Tomato extract mixed withplain yoghurt (4.5 mg/kg/day lycopene), oral gavage |
|
2017 | [152] |
| ||||||
| ||||||
| ||||||
| ||||||
| ||||||
| ||||||
| Diabetes mellitus | Streptozotocin-induced diabetic female Wistar rats | 28 days | Lycopene, 4 mg/kg/day, oral gavage |
|
2017 | [146] |
| ||||||
| Diabetes mellitus | Streptozotocin-induced diabetic male Wistar rats | 8 weeks | Lycopene, 4 mg/kg/day, oral administration |
|
2018 | [150] |
| ||||||
| Diabetes mellitus | Streptozotocin-induced diabetic male Sprague Dawley rats | 10 weeks | Lycopene oil solution, 10 and 20 mg/kg/day, oral administration |
|
2019 | [144] |
| ||||||
| ||||||
| ||||||
| ||||||
| ||||||
| ||||||
| Diabetes mellitus | Streptozotocin-induced diabetic male Sprague-Dawley rats | 10 weeks | Lycopene, 5, 10, and 15 mg/kg/day, intragastric gavage |
|
2019 | [145] |
| ||||||
| ||||||
| ||||||
| ||||||
| ||||||
| Diabetes mellitus | Type II diabetes mellitus: 87 patients, control: 122 patients, case–control study |
12 months | Dietary intake, 0.04 mg/kg/day |
|
2021 | [153] |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bin-Jumah, M.N.; Nadeem, M.S.; Gilani, S.J.; Mubeen, B.; Ullah, I.; Alzarea, S.I.; Ghoneim, M.M.; Alshehri, S.; Al-Abbasi, F.A.; Kazmi, I. Lycopene: A Natural Arsenal in the War against Oxidative Stress and Cardiovascular Diseases. Antioxidants 2022, 11. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, M.; Wawrzyniak, D.; Rolle, K.; Chomczyński, P.; Oziewicz, S.; Jurga, S.; Barciszewski, J. Let Food Be Your Medicine: Nutraceutical Properties of Lycopene. Food & function 2019, 10, 3090–3102. [Google Scholar] [CrossRef]
- Imran, M.; Ghorat, F.; Ul-Haq, I.; Ur-Rehman, H.; Aslam, F.; Heydari, M.; Shariati, M.A.; Okuskhanova, E.; Yessimbekov, Z.; Thiruvengadam, M.; et al. Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders. Antioxidants 2020, 9, 706. [Google Scholar] [CrossRef] [PubMed]
- Numan, N.; Jeyaram, S.; Kaviyarasu, K.; Neethling, P.; Sackey, J.; Kotsedi, C.L.; Akbari, M.; Morad, R.; Mthunzi-Kufa, P.; Sahraoui, B.; et al. On the Remarkable Nonlinear Optical Properties of Natural Tomato Lycopene. Sci Rep 2022, 12, 9078. [Google Scholar] [CrossRef] [PubMed]
- Hedayati, N.; Naeini, M.B.; Nezami, A.; Hosseinzadeh, H.; Wallace Hayes, A.; Hosseini, S.; Imenshahidi, M.; Karimi, G. Protective Effect of Lycopene against Chemical and Natural Toxins: A Review: Lycopene against Chemical and Natural Toxins. BioFactors 2019, 45, 5–23. [Google Scholar] [CrossRef]
- Park, H.; Kim, Y.-J.; Shin, Y. Estimation of Daily Intake of Lycopene, Antioxidant Contents and Activities from Tomatoes, Watermelons, and Their Processed Products in Korea. Appl Biol Chem 2020, 63, 50. [Google Scholar] [CrossRef]
- Chen, J.; Cao, X.; Huang, Z.; Chen, X.; Zou, T.; You, J. Research Progress on Lycopene in Swine and Poultry Nutrition: An Update. Animals 2023, 13, 883. [Google Scholar] [CrossRef]
- Hsieh, M.-J.; Huang, C.-Y.; Kiefer, R.; Lee, S.-D.; Maurya, N.; Velmurugan, B.K. Cardiovascular Disease and Possible Ways in Which Lycopene Acts as an Efficient Cardio-Protectant against Different Cardiovascular Risk Factors. Molecules 2022, 27, 3235. [Google Scholar] [CrossRef]
- Xie, B.; Wei, J.; Zhang, Y.; Song, S.; Su, W.; Sun, G.; Hao, Y.; Liu, H. Supplemental Blue and Red Light Promote Lycopene Synthesis in Tomato Fruits. Journal of Integrative Agriculture 2019, 18, 590–598. [Google Scholar] [CrossRef]
- Song, Y.; Teakle, G.; Lillywhite, R. Unravelling Effects of Red/Far-Red Light on Nutritional Quality and the Role and Mechanism in Regulating Lycopene Synthesis in Postharvest Cherry Tomatoes. Food Chemistry 2023, 414, 135690. [Google Scholar] [CrossRef]
- Woodside, J.V.; McGrath, A.J.; Lyner, N.; McKinley, M.C. Carotenoids and Health in Older People. Maturitas 2015, 80, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Low, D.Y.; D’Arcy, B.; Gidley, M.J. Mastication Effects on Carotenoid Bioaccessibility from Mango Fruit Tissue. Food Research International 2015, 67, 238–246. [Google Scholar] [CrossRef]
- Cervantes-Paz, B.; Ornelas-Paz, J. de J.; Ruiz-Cruz, S.; Rios-Velasco, C.; Ibarra-Junquera, V.; Yahia, E.M.; Gardea-Béjar, A.A. Effects of Pectin on Lipid Digestion and Possible Implications for Carotenoid Bioavailability during Pre-Absorptive Stages: A Review. Food Research International 2017, 99, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Arballo, J.; Amengual, J.; Erdman, J.W. Lycopene: A Critical Review of Digestion, Absorption, Metabolism, and Excretion. Antioxidants 2021, 10, 342. [Google Scholar] [CrossRef] [PubMed]
- Borel, P.; Desmarchelier, C.; Dumont, U.; Halimi, C.; Lairon, D.; Page, D.; Sébédio, J.L.; Buisson, C.; Buffière, C.; Rémond, D. Dietary Calcium Impairs Tomato Lycopene Bioavailability in Healthy Humans. Br J Nutr 2016, 116, 2091–2096. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, I.M.; Althagafy, H.S.; Abd-alhameed, E.K.; Al-Thubiani, W.S.; Hassanein, E.H.M. Promising Hepatoprotective Effects of Lycopene in Different Liver Diseases. Life Sciences 2022, 310, 121131. [Google Scholar] [CrossRef]
- Rowles, J.L.; Erdman, J.W. Carotenoids and Their Role in Cancer Prevention. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2020, 1865, 158613. [Google Scholar] [CrossRef]
- Raghuvanshi, S.; Reed, V.; Blaner, W.S.; Harrison, E.H. Cellular Localization of β-Carotene 15,15′ Oxygenase-1 (BCO1) and β-Carotene 9′,10′ Oxygenase-2 (BCO2) in Rat Liver and Intestine. Archives of Biochemistry and Biophysics 2015, 572, 19–27. [Google Scholar] [CrossRef]
- von Lintig, J.; Moon, J.; Lee, J.; Ramkumar, S. Carotenoid Metabolism at the Intestinal Barrier. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2020, 1865, 158580. [Google Scholar] [CrossRef]
- Borel, P.; Desmarchelier, C.; Nowicki, M.; Bott, R. Lycopene Bioavailability Is Associated with a Combination of Genetic Variants. Free Radical Biology and Medicine 2015, 83, 238–244. [Google Scholar] [CrossRef]
- Srivastava, S.; Srivastava, A.K. Lycopene; Chemistry, Biosynthesis, Metabolism and Degradation under Various Abiotic Parameters. J Food Sci Technol 2015, 52, 41–53. [Google Scholar] [CrossRef]
- van Steenwijk, H.P.; Bast, A.; de Boer, A. The Role of Circulating Lycopene in Low-Grade Chronic Inflammation: A Systematic Review of the Literature. Molecules 2020, 25, 4378. [Google Scholar] [CrossRef] [PubMed]
- Petyaev, I.M. Lycopene Deficiency in Ageing and Cardiovascular Disease. Oxidative Medicine and Cellular Longevity 2016, 2016, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.M. Lycopene: Implications for Human Health–A Review. Adv Food Technol Nutr Sci Open J 2020, 6, 1–12. [Google Scholar] [CrossRef]
- Wu, S.; Guo, X.; Shang, J.; Li, Y.; Dong, W.; Peng, Q.; Xie, Z.; Chen, C. Effects of Lycopene Attenuating Injuries in Ischemia and Reperfusion. Oxidative Medicine and Cellular Longevity 2022, 2022, 1–21. [Google Scholar] [CrossRef]
- Macar, O.; Kalefetoğlu Macar, T.; Çavuşoğlu, K.; Yalçın, E.; Yapar, K. Lycopene: An Antioxidant Product Reducing Dithane Toxicity in Allium Cepa L. Sci Rep 2023, 13, 2290. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Zhang, R.-R.; Yin, Y.; Tan, G.-F.; Wang, G.-L.; Liu, H.; Zhuang, J.; Zhang, J.; Zhuang, F.-Y.; Xiong, A.-S. Advances in Engineering the Production of the Natural Red Pigment Lycopene: A Systematic Review from a Biotechnology Perspective. Journal of Advanced Research 2022, S2090123222001503. [Google Scholar] [CrossRef]
- Abenavoli, L.; Procopio, A.C.; Paravati, M.R.; Costa, G.; Milić, N.; Alcaro, S.; Luzza, F. Mediterranean Diet: The Beneficial Effects of Lycopene in Non-Alcoholic Fatty Liver Disease. JCM 2022, 11, 3477. [Google Scholar] [CrossRef]
- Martínez, A.; Melendez-Martínez, A.J. Lycopene, Oxidative Cleavage Derivatives and Antiradical Activity. Computational and Theoretical Chemistry 2016, 1077, 92–98. [Google Scholar] [CrossRef]
- Przybylska, S. Lycopene – a Bioactive Carotenoid Offering Multiple Health Benefits: A Review. Int J Food Sci Technol 2020, 55, 11–32. [Google Scholar] [CrossRef]
- Song, X.; Luo, Y.; Ma, L.; Hu, X.; Simal-Gandara, J.; Wang, L.-S.; Bajpai, V.K.; Xiao, J.; Chen, F. Recent Trends and Advances in the Epidemiology, Synergism, and Delivery System of Lycopene as an Anti-Cancer Agent. Seminars in Cancer Biology 2021, 73, 331–346. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, G.C.; Sábio, R.M.; Chorilli, M. An Overview of Properties and Analytical Methods for Lycopene in Organic Nanocarriers. Critical Reviews in Analytical Chemistry 2020, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Campos-Lozada, G.; Pérez-Marroquín, X.A.; Callejas-Quijada, G.; Campos-Montiel, R.G.; Morales-Peñaloza, A.; León-López, A.; Aguirre-Álvarez, G. The Effect of High-Intensity Ultrasound and Natural Oils on the Extraction and Antioxidant Activity of Lycopene from Tomato (Solanum Lycopersicum) Waste. Antioxidants 2022, 11, 1404. [Google Scholar] [CrossRef] [PubMed]
- Pu, C.; Tang, W. Encapsulation of Lycopene in Chlorella Pyrenoidosa : Loading Properties and Stability Improvement. Food Chemistry 2017, 235, 283–289. [Google Scholar] [CrossRef]
- Leh, H.E.; Lee, L.K. Lycopene: A Potent Antioxidant for the Amelioration of Type II Diabetes Mellitus. Molecules 2022, 27, 2335. [Google Scholar] [CrossRef]
- Li, Y.; Cui, Z.; Hu, L. Recent Technological Strategies for Enhancing the Stability of Lycopene in Processing and Production. Food Chemistry 2023, 405, 134799. [Google Scholar] [CrossRef]
- Liang, X.; Ma, C.; Yan, X.; Liu, X.; Liu, F. Advances in Research on Bioactivity, Metabolism, Stability and Delivery Systems of Lycopene. Trends in Food Science & Technology 2019, 93, 185–196. [Google Scholar] [CrossRef]
- Papaioannou, E.H.; Liakopoulou-Kyriakides, M.; Karabelas, A.J. Natural Origin Lycopene and Its “Green” Downstream Processing. Critical Reviews in Food Science and Nutrition 2016, 56, 686–709. [Google Scholar] [CrossRef]
- Górecka, D.; Wawrzyniak, A.; Jędrusek-Golińska, A.; Dziedzic, K.; Hamułka, J.; Kowalczewski, P.Ł.; Walkowiak, J. Lycopene in Tomatoes and Tomato Products. Open Chemistry 2020, 18, 752–756. [Google Scholar] [CrossRef]
- Ozkan, G.; Günal-Köroğlu, D.; Karadag, A.; Capanoglu, E.; Cardoso, S.M.; Al-Omari, B.; Calina, D.; Sharifi-Rad, J.; Cho, W.C. A Mechanistic Updated Overview on Lycopene as Potential Anticancer Agent. Biomedicine & Pharmacotherapy 2023, 161, 114428. [Google Scholar] [CrossRef]
- Martínez-Hernández, G.B.; Boluda-Aguilar, M.; Taboada-Rodríguez, A.; Soto-Jover, S.; Marín-Iniesta, F.; López-Gómez, A. Processing, Packaging, and Storage of Tomato Products: Influence on the Lycopene Content. Food Eng Rev 2016, 8, 52–75. [Google Scholar] [CrossRef]
- Ashraf, W.; Latif, A.; Lianfu, Z.; Jian, Z.; Chenqiang, W.; Rehman, A.; Hussain, A.; Siddiquy, M.; Karim, A. Technological Advancement in the Processing of Lycopene: A Review. Food Reviews International 2022, 38, 857–883. [Google Scholar] [CrossRef]
- Amorim, A. das G.N.; Vasconcelos, A.G.; Souza, J.; Oliveira, A.; Gullón, B.; de Souza de Almeida Leite, J.R.; Pintado, M. Bio-Availability, Anticancer Potential, and Chemical Data of Lycopene: An Overview and Technological Prospecting. Antioxidants (Basel) 2022, 11, 360. [Google Scholar] [CrossRef]
- Mehta, N.; Patani, P.; Singhvi, I. A Review on Tomato Lycopene. International Journal of Pharmaceutical Sciences and Research 2018, 9. [Google Scholar] [CrossRef]
- Müller, L.; Caris-Veyrat, C.; Lowe, G.; Böhm, V. Lycopene and Its Antioxidant Role in the Prevention of Cardiovascular Diseases—A Critical Review. Critical Reviews in Food Science and Nutrition 2016, 56, 1868–1879. [Google Scholar] [CrossRef]
- Costa-Rodrigues, J.; Pinho, O.; Monteiro, P.R.R. Can Lycopene Be Considered an Effective Protection against Cardiovascular Disease? Food Chemistry 2018, 245, 1148–1153. [Google Scholar] [CrossRef]
- Cheng, H.M.; Koutsidis, G.; Lodge, J.K.; Ashor, A.; Siervo, M.; Lara, J. Tomato and Lycopene Supplementation and Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis. Atherosclerosis 2017, 257, 100–108. [Google Scholar] [CrossRef]
- Sluijs, I.; Cadier, E.; Beulens, J.W.J.; van der A, D.L.; Spijkerman, A.M.W.; van der Schouw, Y.T. Dietary Intake of Carotenoids and Risk of Type 2 Diabetes. Nutrition, Metabolism and Cardiovascular Diseases 2015, 25, 376–381. [Google Scholar] [CrossRef]
- Ratto, F.; Franchini, F.; Musicco, M.; Caruso, G.; Di Santo, S.G. A Narrative Review on the Potential of Tomato and Lycopene for the Prevention of Alzheimer’s Disease and Other Dementias. Critical Reviews in Food Science and Nutrition 2022, 62, 4970–4981. [Google Scholar] [CrossRef]
- Prema, A.; Janakiraman, U.; Manivasagam, T.; Justin Thenmozhi, A. Neuroprotective Effect of Lycopene against MPTP Induced Experimental Parkinson’s Disease in Mice. Neuroscience Letters 2015, 599, 12–19. [Google Scholar] [CrossRef]
- Saini, R.K.; Rengasamy, K.R.R.; Mahomoodally, F.M.; Keum, Y.-S. Protective Effects of Lycopene in Cancer, Cardiovascular, and Neurodegenerative Diseases: An Update on Epidemiological and Mechanistic Perspectives. Pharmacological Research 2020, 155, 104730. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Huang, C.; Chen, Z. A Review for the Pharmacological Effect of Lycopene in Central Nervous System Disorders. Biomedicine & Pharmacotherapy 2019, 111, 791–801. [Google Scholar] [CrossRef]
- Kashef, S.M.; Yassien, R.I.; El-Ghazouly, D.E.-S. The Possible Effect of Lycopene in Ameliorating Experimentally Induced Ulcerative Colitis in Adult Male Albino Rats (A Histological, Immunohistochemical, and Ultrastructural Study). Ultrastructural Pathology 2023, 1–16. [Google Scholar] [CrossRef]
- Korovesis, D.; Rubio-Tomás, T.; Tavernarakis, N. Oxidative Stress in Age-Related Neurodegenerative Diseases: An Overview of Recent Tools and Findings. Antioxidants 2023, 12, 131. [Google Scholar] [CrossRef] [PubMed]
- Varela, E.L.P.; Gomes, A.R.Q.; da Silva Barbosa dos Santos, A.; de Carvalho, E.P.; Vale, V.V.; Percário, S. Potential Benefits of Lycopene Consumption: Rationale for Using It as an Adjuvant Treatment for Malaria Patients and in Several Diseases. Nutrients 2022, 14, 5303. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Akinloye, O.A. First Line Defence Antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their Fundamental Role in the Entire Antioxidant Defence Grid. Alexandria Journal of Medicine 2018, 54, 287–293. [Google Scholar] [CrossRef]
- York-Duran, M.J.; Godoy-Gallardo, M.; Jansmanung, M.M.T.; Hosta-Rigau, L. A Dual-Component Carrier with Both Non-Enzymatic and Enzymatic Antioxidant Activity towards ROS Depletion. Biomater. Sci. 2019, 4813–4826. [Google Scholar] [CrossRef]
- Neha, K.; Haider, M.R.; Pathak, A.; Yar, M.S. Medicinal Prospects of Antioxidants: A Review. European Journal of Medicinal Chemistry 2019, 178, 687–704. [Google Scholar] [CrossRef]
- Rives, C.; Fougerat, A.; Ellero-Simatos, S.; Loiseau, N.; Guillou, H.; Gamet-Payrastre, L.; Wahli, W. Oxidative Stress in NAFLD: Role of Nutrients and Food Contaminants. Biomolecules 2020, 10, 1702. [Google Scholar] [CrossRef]
- Farzanegi, P.; Dana, A.; Ebrahimpoor, Z.; Asadi, M.; Azarbayjani, M.A. Mechanisms of Beneficial Effects of Exercise Training on Non-Alcoholic Fatty Liver Disease (NAFLD): Roles of Oxidative Stress and Inflammation. European Journal of Sport Science 2019, 19, 994–1003. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A. The Role of Antioxidants in the Chemistry of Oxidative Stress: A Review. European Journal of Medicinal Chemistry 2015, 97, 55–74. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting Oxidative Stress in Disease: Promise and Limitations of Antioxidant Therapy. Nat Rev Drug Discov 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Grácio, D.; Teixeira, J.P.; Magro, F. Oxidative Stress and DNA Damage: Implications in Inflammatory Bowel Disease. Inflammatory Bowel Diseases 2015, 1. [Google Scholar] [CrossRef] [PubMed]
- Krzystek-Korpacka, M.; Kempiński, R.; Bromke, M.A.; Neubauer, K. Oxidative Stress Markers in Inflammatory Bowel Diseases: Systematic Review. Diagnostics 2020, 10, 601. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Niculescu, A.-G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. IJMS 2022, 23, 5938. [Google Scholar] [CrossRef]
- Wu, H.; Wu, Y.; Cui, Z.; Hu, L. Nutraceutical Delivery Systems to Improve the Bioaccessibility and Bioavailability of Lycopene: A Review. Critical Reviews in Food Science and Nutrition 2023, 1–19. [Google Scholar] [CrossRef]
- Caseiro, M.; Ascenso, A.; Costa, A.; Creagh-Flynn, J.; Johnson, M.; Simões, S. Lycopene in Human Health. LWT 2020, 127, 109323. [Google Scholar] [CrossRef]
- Khan, U.M.; Sevindik, M.; Zarrabi, A.; Nami, M.; Ozdemir, B.; Kaplan, D.N.; Selamoglu, Z.; Hasan, M.; Kumar, M.; Alshehri, M.M.; et al. Lycopene: Food Sources, Biological Activities, and Human Health Benefits. Oxidative Medicine and Cellular Longevity 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Marzocco, S.; Singla, R.K.; Capasso, A. Multifaceted Effects of Lycopene: A Boulevard to the Multitarget-Based Treatment for Cancer. Molecules 2021, 26, 5333. [Google Scholar] [CrossRef]
- Przybylska, S.; Tokarczyk, G. Lycopene in the Prevention of Cardiovascular Diseases. IJMS 2022, 23, 1957. [Google Scholar] [CrossRef] [PubMed]
- Joshi, B.; Kar, S.K.; Yadav, P.K.; Yadav, S.; Shrestha, L.; Bera, T.K. Therapeutic and Medicinal Uses of Lycopene: A Systematic Review. Int J Res Med Sci 2020, 8, 1195. [Google Scholar] [CrossRef]
- Sun, X.; Jia, H.; Xu, Q.; Zhao, C.; Xu, C. Lycopene Alleviates H 2 O 2 -Induced Oxidative Stress, Inflammation and Apoptosis in Bovine Mammary Epithelial Cells via the NFE2L2 Signaling Pathway. Food Funct. 2019, 10, 6276–6285. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wu, X.; Zhuang, W.; Xia, L.; Chen, Y.; Wu, C.; Rao, Z.; Du, L.; Zhao, R.; Yi, M.; et al. Tomato and Lycopene and Multiple Health Outcomes: Umbrella Review. Food Chemistry 2021, 343, 128396. [Google Scholar] [CrossRef]
- Pataro, G.; Carullo, D.; Falcone, M.; Ferrari, G. Recovery of Lycopene from Industrially Derived Tomato Processing By-Products by Pulsed Electric Fields-Assisted Extraction. Innovative Food Science & Emerging Technologies 2020, 63, 102369. [Google Scholar] [CrossRef]
- Amorim, A.G.N.; Souza, J.M.T.; Santos, R.C.; Gullón, B.; Oliveira, A.; Santos, L.F.A.; Virgino, A.L.E.; Mafud, A.C.; Petrilli, H.M.; Mascarenhas, Y.P.; et al. HPLC-DAD, ESI–MS/MS, and NMR of Lycopene Isolated From P. Guajava L. and Its Biotechnological Applications. Eur. J. Lipid Sci. Technol. 2018, 120, 1700330. [Google Scholar] [CrossRef]
- Stinco, C.M.; Heredia, F.J.; Vicario, I.M.; Meléndez-Martínez, A.J. In Vitro Antioxidant Capacity of Tomato Products: Relationships with Their Lycopene, Phytoene, Phytofluene and Alpha-Tocopherol Contents, Evaluation of Interactions and Correlation with Reflectance Measurements. LWT - Food Science and Technology 2016, 65, 718–724. [Google Scholar] [CrossRef]
- Alvi, S.S.; Iqbal, D.; Ahmad, S.; Khan, M.S. Molecular Rationale Delineating the Role of Lycopene as a Potent HMG-CoA Reductase Inhibitor: In Vitro and in Silico Study. Natural Product Research 2016, 30, 2111–2114. [Google Scholar] [CrossRef]
- Wang, H.; Lin, Y.; Liu, Q.; Zhou, A.; Bian, H.; Zhang, W.; Hui, A.; Wu, Z. Antioxidant, Anticancer Activity and Molecular Docking Study of Lycopene with Different Ratios of Z-Isomers. Current Research in Food Science 2023, 6, 100455. [Google Scholar] [CrossRef]
- Steven, S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Kuntic, M.; Bayo Jimenez, M.T.; Vujacic-Mirski, K.; Helmstädter, J.; Kröller-Schön, S.; Münzel, T.; et al. Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxidative Medicine and Cellular Longevity 2019, 2019, 1–26. [Google Scholar] [CrossRef]
- Dubois-Deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative Stress in Cardiovascular Diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, Regional, and National Age-Sex-Specific Mortality for 282 Causes of Death in 195 Countries and Territories, 1980–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Zhao, J.; Dong, B.; Cai, X.; Jiang, J.; Xue, R.; Yao, F.; Dong, Y.; Liu, C. Lycopene Protects against Pressure Overload-Induced Cardiac Hypertrophy by Attenuating Oxidative Stress. The Journal of Nutritional Biochemistry 2019, 66, 70–78. [Google Scholar] [CrossRef]
- Song, B.; Liu, K.; Gao, Y.; Zhao, L.; Fang, H.; Li, Y.; Pei, L.; Xu, Y. Lycopene and Risk of Cardiovascular Diseases: A Meta-Analysis of Observational Studies. Mol. Nutr. Food Res. 2017, 61, 1601009. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Liu, L.; Li, M.-Z.; Wang, H.-R.; Zhao, Y.; Li, J.-L. Lycopene Prevents Di-(2-Ethylhexyl) Phthalate-Induced Mitophagy and Oxidative Stress in Mice Heart via Modulating Mitochondrial Homeostasis. The Journal of Nutritional Biochemistry 2023, 115, 109285. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Aparicio, R.; Carrón, R.; Sevilla, M.Á.; Monroy-Ruiz, J.; Montero, M.J. Lycopene-Supplemented Diet Ameliorates Cardiovascular Remodeling and Oxidative Stress in Rats with Hypertension Induced by Angiotensin II. Journal of Functional Foods 2018, 47, 279–287. [Google Scholar] [CrossRef]
- James, A.S.; Ugbaja, R.N.; Ugwor, E.I.; Thomas, F.C.; Akamo, A.J.; Akinloye, D.I.; Eteng, O.E.; Salami, S.K.; Emmanuel, E.A.; Ugbaja, V.C. Lycopene Abolishes Palmitate-Mediated Myocardial Inflammation in Female Wistar Rats via Modulation of Lipid Metabolism, NF-ΚB Signalling Pathway, and Augmenting the Antioxidant Systems. Nutrition, Metabolism and Cardiovascular Diseases 2023, 33, 671–681. [Google Scholar] [CrossRef]
- He, Q.; Zhou, W.; Xiong, C.; Tan, G.; Chen, M. Lycopene Attenuates Inflammation and Apoptosis in Post-Myocardial Infarction Remodeling by Inhibiting the Nuclear Factor-ΚB Signaling Pathway. Molecular Medicine Reports 2015, 11, 374–378. [Google Scholar] [CrossRef]
- Li, X.-N.; Lin, J.; Xia, J.; Qin, L.; Zhu, S.-Y.; Li, J.-L. Lycopene Mitigates Atrazine-Induced Cardiac Inflammation via Blocking the NF-ΚB Pathway and NO Production. Journal of Functional Foods 2017, 29, 208–216. [Google Scholar] [CrossRef]
- Kattoor, A.J.; Pothineni, N.V.K.; Palagiri, D.; Mehta, J.L. Oxidative Stress in Atherosclerosis. Curr Atheroscler Rep 2017, 19, 42. [Google Scholar] [CrossRef]
- Albrahim, T. Lycopene Modulates Oxidative Stress and Inflammation in Hypercholesterolemic Rats. Pharmaceuticals 2022, 15, 1420. [Google Scholar] [CrossRef] [PubMed]
- Alvi, S.S.; Ansari, I.A.; Ahmad, M.K.; Iqbal, J.; Khan, M.S. Lycopene Amends LPS Induced Oxidative Stress and Hypertriglyceridemia via Modulating PCSK-9 Expression and Apo-CIII Mediated Lipoprotein Lipase Activity. Biomedicine & Pharmacotherapy 2017, 96, 1082–1093. [Google Scholar] [CrossRef]
- da Silva Brito, A.K.; de Morais Lima, G.; de Farias, L.M.; Rodrigues, L.A.R.L.; de Carvalho, V.B.L.; de Carvalho Pereira, C.F.; de Macedo Gonçalves Frota, K.; Conde-Júnior, A.M.; Moura, A.M.O.; dos Santos Rizzo, M.; et al. Lycopene-Rich Extract from Red Guava (Psidium Guajava L.) Decreases Plasma Triglycerides and Improves Oxidative Stress Biomarkers on Experimentally-Induced Dyslipidemia in Hamsters. Nutrients 2019, 11, 393. [Google Scholar] [CrossRef] [PubMed]
- Colmán-Martínez, M.; Martínez-Huélamo, M.; Valderas-Martínez, P.; Arranz-Martínez, S.; Almanza-Aguilera, E.; Corella, D.; Estruch, R.; Lamuela-Raventós, R.M. Trans -Lycopene from Tomato Juice Attenuates Inflammatory Biomarkers in Human Plasma Samples: An Intervention Trial. Mol. Nutr. Food Res. 2017, 61, 1600993. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.-M.; Chen, H.-Z.; Huang, Y.-T.; Hsieh, C.-W.; Wung, B.-S. Lycopene Inhibits NF-ΚB Activation and Adhesion Molecule Expression through Nrf2-Mediated Heme Oxygenase-1 in Endothelial Cells. International Journal of Molecular Medicine 2017, 39, 1533–1540. [Google Scholar] [CrossRef]
- Lu, F.-B.; Hu, E.-D.; Xu, L.-M.; Chen, L.; Wu, J.-L.; Li, H.; Chen, D.-Z.; Chen, Y.-P. The Relationship between Obesity and the Severity of Non-Alcoholic Fatty Liver Disease: Systematic Review and Meta-Analysis. Expert Review of Gastroenterology & Hepatology 2018, 12, 491–502. [Google Scholar] [CrossRef]
- Ni, Y.; Zhuge, F.; Nagashimada, M.; Ota, T. Novel Action of Carotenoids on Non-Alcoholic Fatty Liver Disease: Macrophage Polarization and Liver Homeostasis. Nutrients 2016, 8, 391. [Google Scholar] [CrossRef]
- Handa, P.; Morgan-Stevenson, V.; Maliken, B.D.; Nelson, J.E.; Washington, S.; Westerman, M.; Yeh, M.M.; Kowdley, K.V. Iron Overload Results in Hepatic Oxidative Stress, Immune Cell Activation, and Hepatocellular Ballooning Injury, Leading to Nonalcoholic Steatohepatitis in Genetically Obese Mice. American Journal of Physiology-Gastrointestinal and Liver Physiology 2016, 310, G117–G127. [Google Scholar] [CrossRef]
- Chang, H.; Li, L.; Deng, Y.; Song, G.; Wang, Y. Protective Effects of Lycopene on TiO 2 Nanoparticle-induced Damage in the Liver of Mice. J of Applied Toxicology. [CrossRef]
- Bandeira, A.C.B.; da Silva, T.P.; de Araujo, G.R.; Araujo, C.M.; da Silva, R.C.; Lima, W.G.; Bezerra, F.S.; Costa, D.C. Lycopene Inhibits Reactive Oxygen Species Production in SK-Hep-1 Cells and Attenuates Acetaminophen-Induced Liver Injury in C57BL/6 Mice. Chemico-Biological Interactions 2017, 263, 7–17. [Google Scholar] [CrossRef]
- Ni, Y.; Zhuge, F.; Nagashimada, M.; Nagata, N.; Xu, L.; Yamamoto, S.; Fuke, N.; Ushida, Y.; Suganuma, H.; Kaneko, S.; et al. Lycopene Prevents the Progression of Lipotoxicity-Induced Nonalcoholic Steatohepatitis by Decreasing Oxidative Stress in Mice. Free Radical Biology and Medicine 2020, 152, 571–582. [Google Scholar] [CrossRef]
- Piña-Zentella, R.M.; Rosado, J.L.; Gallegos-Corona, M.A.; Madrigal-Pérez, L.A.; García, O.P.; Ramos-Gomez, M. Lycopene Improves Diet-Mediated Recuperation in Rat Model of Nonalcoholic Fatty Liver Disease. Journal of Medicinal Food 2016, 19, 607–614. [Google Scholar] [CrossRef]
- Róvero Costa, M.; Leite Garcia, J.; Cristina Vágula de Almeida Silva, C.; Junio Togneri Ferron, A.; Valentini Francisqueti-Ferron, F.; Kurokawa Hasimoto, F.; Schmitt Gregolin, C.; Henrique Salomé de Campos, D.; Roberto de Andrade, C.; dos Anjos Ferreira, A.L.; et al. Lycopene Modulates Pathophysiological Processes of Non-Alcoholic Fatty Liver Disease in Obese Rats. Antioxidants 2019, 8, 276. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, X.; Liu, M.; Zhao, H.; Sun, Y. Lycopene Prevents Non-Alcoholic Fatty Liver Disease through Regulating Hepatic NF-ΚB/NLRP3 Inflammasome Pathway and Intestinal Microbiota in Mice Fed with High-Fat and High-Fructose Diet. Front. Nutr. 2023, 10, 1120254. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, R.; Shen, Z.; Cai, G. Combination of Luteolin and Lycopene Effectively Protect against the “Two-Hit” in NAFLD through Sirt1/AMPK Signal Pathway. Life Sciences 2020, 256, 117990. [Google Scholar] [CrossRef]
- Mustra Rakic, J.; Liu, C.; Veeramachaneni, S.; Wu, D.; Paul, L.; Ausman, L.M.; Wang, X.-D. Dietary Lycopene Attenuates Cigarette Smoke-Promoted Nonalcoholic Steatohepatitis by Preventing Suppression of Antioxidant Enzymes in Ferrets. The Journal of Nutritional Biochemistry 2021, 91, 108596. [Google Scholar] [CrossRef] [PubMed]
- Ahmedy, O.A.; Ibrahim, S.M.; Salem, H.H.; Kandil, E.A. Antiulcerogenic Effect of Melittin via Mitigating TLR4/TRAF6 Mediated NF-ΚB and P38MAPK Pathways in Acetic Acid-Induced Ulcerative Colitis in Mice. Chemico-Biological Interactions 2020, 331, 109276. [Google Scholar] [CrossRef] [PubMed]
- Dziąbowska-Grabias, K.; Sztanke, M.; Zając, P.; Celejewski, M.; Kurek, K.; Szkutnicki, S.; Korga, P.; Bulikowski, W.; Sztanke, K. Antioxidant Therapy in Inflammatory Bowel Diseases. Antioxidants 2021, 10, 412. [Google Scholar] [CrossRef]
- Yin, Z.; Wang, Q.; Cheng, H. Synergistic Protective Effect of Interactions of Quercetin with Lycopene Against Ochratoxin A-Induced Ulcerative Colitis. Appl Biochem Biotechnol 2023. [Google Scholar] [CrossRef] [PubMed]
- Gul Baykalir, B.; Aksit, D.; Dogru, M.S.; Hanım Yay, A.; Aksit, H.; Seyrek, K.; Attesahin, A. Lycopene Ameliorates Experimental Colitis in Rats via Reducing Apoptosis and Oxidative Stress. International Journal for Vitamin and Nutrition Research 2016, 86, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Sumien, N.; Cunningham, J.T.; Davis, D.L.; Engelland, R.; Fadeyibi, O.; Farmer, G.E.; Mabry, S.; Mensah-Kane, P.; Trinh, O.T.P.; Vann, P.H.; et al. Neurodegenerative Disease: Roles for Sex, Hormones, and Oxidative Stress. Endocrinology 2021, 162, bqab185. [Google Scholar] [CrossRef]
- Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a Risk Factor for Neurodegenerative Disease. Nat Rev Neurol 2019, 15, 565–581. [Google Scholar] [CrossRef] [PubMed]
- Moratilla-Rivera, I.; Sánchez, M.; Valdés-González, J.A.; Gómez-Serranillos, M.P. Natural Products as Modulators of Nrf2 Signaling Pathway in Neuroprotection. IJMS 2023, 24, 3748. [Google Scholar] [CrossRef] [PubMed]
- Gandla, K.; Babu, A.K.; Unnisa, A.; Sharma, I.; Singh, L.P.; Haque, M.A.; Dashputre, N.L.; Baig, S.; Siddiqui, F.A.; Khandaker, M.U.; et al. Carotenoids: Role in Neurodegenerative Diseases Remediation. Brain Sciences 2023, 13, 457. [Google Scholar] [CrossRef] [PubMed]
- Jurcau, A. Insights into the Pathogenesis of Neurodegenerative Diseases: Focus on Mitochondrial Dysfunction and Oxidative Stress. IJMS 2021, 22, 11847. [Google Scholar] [CrossRef]
- Thanan, R.; Oikawa, S.; Hiraku, Y.; Ohnishi, S.; Ma, N.; Pinlaor, S.; Yongvanit, P.; Kawanishi, S.; Murata, M. Oxidative Stress and Its Significant Roles in Neurodegenerative Diseases and Cancer. IJMS 2014, 16, 193–217. [Google Scholar] [CrossRef]
- Zhao, B.; Ren, B.; Guo, R.; Zhang, W.; Ma, S.; Yao, Y.; Yuan, T.; Liu, Z.; Liu, X. Supplementation of Lycopene Attenuates Oxidative Stress Induced Neuroinflammation and Cognitive Impairment via Nrf2/NF-ΚB Transcriptional Pathway. Food and Chemical Toxicology 2017, 109, 505–516. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Wang, Z.; Cui, Y.; Tan, X.; Yuan, T.; Liu, Q.; Liu, Z.; Liu, X. Supplementation of Lycopene Attenuates Lipopolysaccharide-Induced Amyloidogenesis and Cognitive Impairments via Mediating Neuroinflammation and Oxidative Stress. The Journal of Nutritional Biochemistry 2018, 56, 16–25. [Google Scholar] [CrossRef]
- Manochkumar, J.; Doss, C.G.P.; El-Seedi, H.R.; Efferth, T.; Ramamoorthy, S. The Neuroprotective Potential of Carotenoids in Vitro and in Vivo. Phytomedicine 2021, 91, 153676. [Google Scholar] [CrossRef]
- Yu, L.; Wang, W.; Pang, W.; Xiao, Z.; Jiang, Y.; Hong, Y. Dietary Lycopene Supplementation Improves Cognitive Performances in Tau Transgenic Mice Expressing P301L Mutation via Inhibiting Oxidative Stress and Tau Hyperphosphorylation. Journal of Alzheimer’s Disease 2017, 57, 475–482. [Google Scholar] [CrossRef]
- Lim, S.; Hwang, S.; Yu, J.H.; Lim, J.W.; Kim, H. Lycopene Inhibits Regulator of Calcineurin 1-Mediated Apoptosis by Reducing Oxidative Stress and down-Regulating Nucling in Neuronal Cells. Mol. Nutr. Food Res. 2017, 61, 1600530. [Google Scholar] [CrossRef]
- Qu, M.; Jiang, Z.; Liao, Y.; Song, Z.; Nan, X. Lycopene Prevents Amyloid [Beta]-Induced Mitochondrial Oxidative Stress and Dysfunctions in Cultured Rat Cortical Neurons. Neurochem Res 2016, 41, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, A.K.; Chopra, K. Lycopene Abrogates Aβ(1–42)-Mediated Neuroinflammatory Cascade in an Experimental Model of Alzheimer’s Disease. The Journal of Nutritional Biochemistry 2015, 26, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Mecocci, P.; Boccardi, V.; Cecchetti, R.; Bastiani, P.; Scamosci, M.; Ruggiero, C.; Baroni, M. A Long Journey into Aging, Brain Aging, and Alzheimer’s Disease Following the Oxidative Stress Tracks. JAD 2018, 62, 1319–1335. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, B.; Gulati, M.; Rani, P.; Kochhar, R.S.; Atanasov, A.G.; Gupta, R.; Sharma, D.; Kapoor, D. Lycopene: Sojourn from Kitchen to an Effective Therapy in Alzheimer’s Disease. BioFactors 2023, 49, 208–227. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Yin, K.; Liu, Y.; Lu, H.; Zhao, H.; Xing, M. Lycopene Attenuates Oxidative Stress, Inflammation, and Apoptosis by Modulating Nrf2/NF-ΚB Balance in Sulfamethoxazole-Induced Neurotoxicity in Grass Carp (Ctenopharyngodon Idella). Fish & Shellfish Immunology 2022, 121, 322–331. [Google Scholar] [CrossRef]
- Zhang, F.; Fu, Y.; Zhou, X.; Pan, W.; Shi, Y.; Wang, M.; Zhang, X.; Qi, D.; Li, L.; Ma, K.; et al. Depression-like Behaviors and Heme Oxygenase-1 Are Regulated by Lycopene in Lipopolysaccharide-Induced Neuroinflammation. Journal of Neuroimmunology 2016, 298, 1–8. [Google Scholar] [CrossRef]
- Wu, A.; Liu, R.; Dai, W.; Jie, Y.; Yu, G.; Fan, X.; Huang, Q. Lycopene Attenuates Early Brain Injury and Inflammation Following Subarachnoid Hemorrhage in Rats. International Journal of Clinical and Experimental Medicine 2015, 8, 14316. [Google Scholar]
- Lin, X.; Xu, Y.; Pan, X.; Xu, J.; Ding, Y.; Sun, X.; Song, X.; Ren, Y.; Shan, P.-F. Global, Regional, and National Burden and Trend of Diabetes in 195 Countries and Territories: An Analysis from 1990 to 2025. Sci Rep 2020, 10, 14790. [Google Scholar] [CrossRef]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Research and Clinical Practice 2019, 157, 107843. [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice 2022, 183, 109119. [Google Scholar] [CrossRef]
- Ansari, P.; Akther, S.; Hannan, J.M.A.; Seidel, V.; Nujat, N.J.; Abdel-Wahab, Y.H.A. Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus. Molecules 2022, 27, 4278. [Google Scholar] [CrossRef] [PubMed]
- Ozmen, O.; Topsakal, S.; Haligur, M.; Aydogan, A.; Dincoglu, D. Effects of Caffeine and Lycopene in Experimentally Induced Diabetes Mellitus. Pancreas 2016, 45, 579. [Google Scholar] [CrossRef] [PubMed]
- Aouacheri, O.; Saka, S.; Krim, M.; Messaadia, A.; Maidi, I. The Investigation of the Oxidative Stress-Related Parameters in Type 2 Diabetes Mellitus. Canadian Journal of Diabetes 2015, 39, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Casoinic, F.; Sampelean, D.; Buzoianu, A.D.; Hancu, N.; Baston, D. Serum Levels of Oxidative Stress Markers in Patients with Type 2 Diabetes Mellitus and Non-Alcoholic Steatohepatitis. Romanian Journal of Internal Medicine 2016, 54, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Al-Jiffri, E.H. Association between Adipocytokines, Systemic Inflammation and Oxidative Stress Biomarkers among Obese Type 2 Diabetic Patients. ARGH 2017, 5. [Google Scholar] [CrossRef]
- Lasisi, I.A.; Adedokun, K.A.; Oyenike, M.A.; Muhibi, M.A.; Kamorudeen, R.T.; Oluogun, W.A. Glycemic Control and Its Impact on Oxidative Stress Biomarkers in Type 2 Diabetic Patients Treated with Metformin: A Cross-Sectional Analysis. Sci Med 2019, 29, 33630. [Google Scholar] [CrossRef]
- Mandal, M.; Varghese, A.; Gaviraju, V.K.; Talwar, S.N.; Malini, S.S. Impact of Hyperglycaemia on Molecular Markers of Oxidative Stress and Antioxidants in Type 2 Diabetes Mellitus. Clinical Diabetology 2019, 8, 215–222. [Google Scholar] [CrossRef]
- Picu, A.; Petcu, L.; Ştefan, S.; Mitu, M.; Lixandru, D.; Ionescu-Tîrgovişte, C.; Pîrcălăbioru, G.G.; Ciulu-Costinescu, F.; Bubulica, M.-V.; Chifiriuc, M.C. Markers of Oxidative Stress and Antioxidant Defense in Romanian Patients with Type 2 Diabetes Mellitus and Obesity. Molecules 2017, 22, 714. [Google Scholar] [CrossRef]
- Zhang, P.; Li, T.; Wu, X.; Nice, E.C.; Huang, C.; Zhang, Y. Oxidative Stress and Diabetes: Antioxidative Strategies. Front. Med. 2020, 14, 583–600. [Google Scholar] [CrossRef]
- Bhatti, J.S.; Sehrawat, A.; Mishra, J.; Sidhu, I.S.; Navik, U.; Khullar, N.; Kumar, S.; Bhatti, G.K.; Reddy, P.H. Oxidative Stress in the Pathophysiology of Type 2 Diabetes and Related Complications: Current Therapeutics Strategies and Future Perspectives. Free Radical Biology and Medicine 2022, 184, 114–134. [Google Scholar] [CrossRef]
- Ruiz, H.H.; Ramasamy, R.; Schmidt, A.M. Advanced Glycation End Products: Building on the Concept of the “Common Soil” in Metabolic Disease. Endocrinology 2020, 161, bqz006. [Google Scholar] [CrossRef] [PubMed]
- Moldogazieva, N.T.; Mokhosoev, I.M.; Mel’nikova, T.I.; Porozov, Y.B.; Terentiev, A.A. Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging and Age-Related Diseases. Oxidative Medicine and Cellular Longevity 2019, 2019, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Zheng, Z.; Jiang, Z. Effects of Lycopene on Metabolism of Glycolipid in Type 2 Diabetic Rats. Biomedicine & Pharmacotherapy 2019, 109, 2070–2077. [Google Scholar] [CrossRef]
- Zheng, Z.; Yin, Y.; Lu, R.; Jiang, Z. Lycopene Ameliorated Oxidative Stress and Inflammation in Type 2 Diabetic Rats. Journal of Food Science 2019, 84, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Uçar, S.; Pandir, D. Furan Induced Ovarian Damage in Non-Diabetic and Diabetic Rats and Cellular Protective Role of Lycopene. Arch Gynecol Obstet 2017, 296, 1027–1037. [Google Scholar] [CrossRef]
- Baş, H.; Pandır, D.; Kalender, S. Furan-Induced Hepatotoxic and Hematologic Changes in Diabetic Rats: The Protective Role of Lycopene. Archives of Industrial Hygiene and Toxicology 2016, 67, 194–203. [Google Scholar] [CrossRef]
- Sharma, P.; Saxena, P.; Jaswanth, A.; Chalamaiah, M.; Balasubramaniam, A. Anti-Diabetic Activity of Lycopene Niosomes: Experimental Observation. Journal of Pharmaceutics & Drug Development 2017, 4, 1. [Google Scholar] [CrossRef]
- Eze, E.D.; Tanko, Y.; Abubakar, A.; Sulaiman, S.O.; Rabiu, K.M.; Mohammed, A. Lycopene Ameliorates Diabetic-Induced Changes in Erythrocyte Osmotic Fragility and Lipid Peroxidation in Wistar Rats. JDM 2017, 07, 71–85. [Google Scholar] [CrossRef]
- Malekiyan, R.; Abdanipour, A.; Sohrabi, D.; Jafari Anarkooli, I. Antioxidant and Neuroprotective Effects of Lycopene and Insulin in the Hippocampus of Streptozotocin-induced Diabetic Rats. biom rep 2018. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Wang, Y. Beneficial Effect of Lycopene on Anti-Diabetic Nephropathy through Diminishing Inflammatory Response and Oxidative Stress. Food Funct. 2015, 6, 1150–1156. [Google Scholar] [CrossRef]
- Assis, R.; Arcaro, C.; Gutierres, V.; Oliveira, J.; Costa, P.; Baviera, A.; Brunetti, I. Combined Effects of Curcumin and Lycopene or Bixin in Yoghurt on Inhibition of LDL Oxidation and Increases in HDL and Paraoxonase Levels in Streptozotocin-Diabetic Rats. IJMS 2017, 18, 332. [Google Scholar] [CrossRef] [PubMed]
- Leh, H.E.; Mohd Sopian, M.; Abu Bakar, M.H.; Lee, L.K. The Role of Lycopene for the Amelioration of Glycaemic Status and Peripheral Antioxidant Capacity among the Type II Diabetes Mellitus Patients: A Case–Control Study. Annals of Medicine 2021, 53, 1060–1066. [Google Scholar] [CrossRef] [PubMed]
- Motta, B.P.; Pinheiro, C.G.; Figueiredo, I.D.; Cardoso, F.N.; Oliveira, J.O.; Machado, R.T.A.; da Silva, P.B.; Chorilli, M.; Brunetti, I.L.; Baviera, A.M. Combined Effects of Lycopene and Metformin on Decreasing Oxidative Stress by Triggering Endogenous Antioxidant Defenses in Diet-Induced Obese Mice. Molecules 2022, 27, 8503. [Google Scholar] [CrossRef]
- Zhu, R.; Chen, B.; Bai, Y.; Miao, T.; Rui, L.; Zhang, H.; Xia, B.; Li, Y.; Gao, S.; Wang, X.-D.; et al. Lycopene in Protection against Obesity and Diabetes: A Mechanistic Review. Pharmacological Research 2020, 159, 104966. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
