Submitted:
02 August 2023
Posted:
04 August 2023
You are already at the latest version
Abstract
Keywords:
MSC: 62F10; 62F15
1. Introduction
2. Estimation of the Parameters
2.1. Maximum Likelihood Estimation
2.2. Generalized Bayes estimation
3. Numerical Study
3.1. Simulation Study
3.2. Illustrative Example
4. Conclusion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bissiri, P.G.; Holmes, C.C.; Walker, S.G. General framework for updating belief distributions. Journal of the Royal Statistical Society. Series B, Statistical Methodology 2016, 78, 1103–1130. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.W.; Dunson, D.B. Robust Bayesian inference via coarsening. Journal of the American Statistical Association 2019, 114, 1113–1125. [Google Scholar] [CrossRef] [PubMed]
- Grünwald, P. The safe Bayesian: learning the learning rate via the mixability gap. In Algorithmic Learning Theory; Lecture Notes in Computer Science; Springer: Heidelberg, 2012; Volume 7568, pp. 169–183. [Google Scholar]
- Granwald, P.; van Ommen, T. Inconsistency of Bayesian inference for misspecified linear models, and a proposal for repairing it. Bayesian Analysis 2017, 12, 1069–1103. [Google Scholar] [CrossRef]
- Granwald, P. Safe probability. Journal of Statistical Planning and Inference 2018, 195, 47–63. [Google Scholar] [CrossRef]
- De Heide, R.; Kirichenko, A.; Mehta, N.; Grünwald, P. Safe-Bayesian generalized linear regression. arXiv 2019, arXiv:1910.09227. [Google Scholar]
- Holmes, C.C.; Walker, S.G. Assigning a value to a power likelihood in a general Bayesian model. Biometrika 2017, 497–503. [Google Scholar] [CrossRef]
- Lyddon, S.P.; Holmes, C.C.; Walker, S.G. General Bayesian updating and the loss-likelihood bootstrap. Biometrika 2019, 465–478. [Google Scholar] [CrossRef]
- Martin, R. Invited comment on the article by van der Pas, Szabó, and van der Vaart. Bayesian Analysis 2017, 1254–1258. [Google Scholar]
- Martin, R.; Ning, B. Empirical priors and coverage of posterior credible sets in a sparse normal mean model. Sankhya Ì Series A 2020, 477–498, Special issue in memory of Jayanta K. Ghosh. [Google Scholar] [CrossRef]
- Wu, P.S.; Martin, R. A Comparison of Learning Rate Selection Methods in Generalized Bayesian Inference. Bayesian Anal. 2023, 18, 105–132. [Google Scholar] [CrossRef]
- Abdel-Aty, Y.; Kayid, M.; Alomani, G. Generalized Bayes estimation based on a joint type-II censored sample from k-exponential populations. Mathematics 2023, 11, 2190. [Google Scholar] [CrossRef]
- Abdel-Aty, Y.; Kayid, M.; Alomani, G. Generalized Bayes Prediction Study Based on Joint Type-II Censoring. Axioms 2023, 12, 716. [Google Scholar] [CrossRef]
- Shafay, A.R.; Balakrishnan NY Abdel-Aty, Y. Bayesian inference based on a jointly type-II censored sample from two exponential populations. Journal of Statistical Computation and Simulation 2014, 2427–2440. [Google Scholar] [CrossRef]
- Su, F. Exact likelihood inference for multiple exponential populations under joint censoring. Ph.D. Thesis, McMaster University, 2013. [Google Scholar]
- Abdel-Aty, Y. Exact likelihood inference for two populations from two-parameter exponential distributions under joint Type-II censoring. Communications in Statistics—Theory and Methods 2017, 9026–9041. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Kundu, D. Hybrid censoring: Models, inferential results and applications. Computational Statistics Data Analysis 2013, 57, 166–209. [Google Scholar] [CrossRef]
- Nelson, W. Applied Life Data Analysis 1982.
| (10,10,10) | (20, 2) | 0.73 | 16.9 | (3.3,6.2,8.3) | (0.345, 0.625, 1.070) | (0.460, 0.300, 0.443) |
| (20, 3) | 0.17 | 18.2 | (3.8,7,8.9) | (0.286, 0.604, 1.046) | (0.235, 0.274, 0.408) | |
| (25, 4) | 0.62 | 22.7 | (5.3,8.5,9.7) | (0.256, 0.590, 1.024) | (0.177, 0.246, 0.385) | |
| (25, 5) | 0.29 | 23.2 | (5.8,8.9,9.8) | (0.250, 0.583, 1.022) | (0.123, 0.231, 0.368) | |
| (8, 9,13) | (20, 2) | 0.55 | 17.4 | (2.6,5.5,10.6) | (0.427, 0.643, 1.022) | (1.126, 0.336, 0.352) |
| (20, 3) | 0.06 | 18.5 | (2.8,5.9,11.2) | (0.372, 0.620, 1.013) | (1.464, 0.316, 0.349) | |
| (25, 4) | 0.41 | 23.1 | (4.1,7.6,12.5) | (0.280, 0.602, 1.003) | (0.192, 0.261, 0.318) | |
| (25, 5) | 0.15 | 23.5 | (4.4,7.8,12.6) | (0.271, 0.595, 0.996) | (0.218, 0.255, 0.316) | |
| (12,11,7) | (20, 2) | 0.86 | 16.1 | (3.9,6.9,5.8) | (0.299, 0.613, 1.155) | (0.670, 0.269, 0.618) |
| (20, 3) | 0.33 | 17.9 | (4.9,8.1,6.3) | (0.263, 0.593, 1.115) | (0.219, 0.245, 0.556) | |
| (25, 4) | 0.77 | 22.1 | (6.5,9.5,6.8) | (0.243, 0.583, 1.088) | (0.108, 0.220, 0.518) | |
| (25, 5) | 0.46 | 22.9 | (7.2,9.9,6.9) | (0.239, 0.578, 1.063) | (0.103, 0.212, 0.488) | |
| (20,20,20) | (40, 2) | 0.85 | 35 | (6.6,12.6,16.7) | (0.244, 0.557, 0.985) | (0.106, 0.171, 0.261) |
| (40, 3) | 0.12 | 37.9 | (7.7,14.2,17.8) | (0.232, 0.547, 0.978) | (0.094, 0.155, 0.254) | |
| (50, 4) | 0.73 | 46.6 | (10.9,17.2,19.4) | (0.226, 0.546, 0.968) | (0.074, 0.144, 0.236) | |
| (50, 5) | 0.30 | 47.8 | (11.8,17.9,19.6) | (0.222, 0.541, 0.959) | (0.070, 0.141, 0.231) | |
| (16,18,26) | (40, 2) | 0.63 | 36.4 | (5.1,11.1,21.4) | (0.262, 0.562, 0.963) | (0.269, 0.183, 0.224) |
| (40, 3) | 0.02 | 38.2 | (5.6,12,22.4) | (0.248, 0.557, 0.957) | (0.122, 0.179, 0.218) | |
| (50, 4) | 0.47 | 47.4 | (8.5,15.3,25.1) | (0.232, 0.549, 0.952) | (0.088, 0.154, 0.205) | |
| (50, 5) | 0.11 | 48.3 | (8.9,15.6,25.3) | (0.229, 0.546, 0.949) | (0.086, 0.152, 0.200) | |
| (24,22,14) | (40, 2) | 0.96 | 33.1 | (7.9,13.9,11.7) | (0.233, 0.554, 1.023) | (0.091, 0.162, 0.336) |
| (40, 3) | 0.32 | 37.3 | (10,16.4,12.8) | (0.225, 0.544, 1.010) | (0.076, 0.146, 0.316) | |
| (50, 4) | 0.89 | 45.2 | (13.1,19,13.6) | (0.220, 0.541, 0.996) | (0.063, 0.133, 0.304) | |
| (50, 5) | 0.54 | 47.2 | (14.7,20,13.8) | (0.216, 0.537, 0.984) | (0.059, 0.129, 0.293) |
| (10,10,10) | (20, 2) | 0.27 | 21 | (4,7.3,9) | (0.282, 0.599, 1.043) | (0.397, 0.267, 0.406) |
| (20, 3) | 0.83 | 22.3 | (4.6,7.9,9.4) | (0.266, 0.598, 1.041) | (0.154, 0.246, 0.390) | |
| (25, 4) | 0.38 | 25.8 | (6.2,9.2,9.9) | (0.246, 0.578, 1.009) | (0.124, 0.225, 0.361) | |
| (25, 5) | 0.71 | 26.3 | (6.7,9.4,9.9) | (0.245, 0.581, 1.004) | (0.114, 0.222, 0.355) | |
| (8, 9,13) | (20, 2) | 0.45 | 21.3 | (3,6.2,11.4) | (0.336, 0.625, 1.017) | (0.487, 0.310, 0.352) |
| (20, 3) | 0.94 | 23 | (3.6,7,12.2) | (0.302, 0.610, 1.009) | (0.272, 0.273, 0.320) | |
| (25, 4) | 0.59 | 26.1 | (4.8,8.1,12.8) | (0.264, 0.596, 0.990) | (0.155, 0.252, 0.302) | |
| (25, 5) | 0.85 | 26.7 | (5.2,8.4,12.9) | (0.261, 0.591, 0.987) | (0.145, 0.242, 0.306) | |
| (12,11,7) | (20, 2) | 0.14 | 20.8 | (5.2,8.4,6.5) | (0.254, 0.583, 1.106) | (0.135, 0.239, 0.531) |
| (20, 3) | 0.67 | 21.8 | (5.7,8.8,6.6) | (0.250, 0.587, 1.095) | (0.122, 0.230, 0.517) | |
| (25, 4) | 0.23 | 25.9 | (8,10.3,6.9) | (0.233, 0.570, 1.063) | (0.097, 0.210, 0.507) | |
| (25, 5) | 0.54 | 26.1 | (8.2,10.4,7) | (0.234, 0.567, 1.058) | (0.096, 0.199, 0.502) | |
| (20,20,20) | (40, 2) | 0.15 | 41.3 | (7.9,14.5,17.9) | (0.234, 0.548, 0.976) | (0.095, 0.161, 0.256) |
| (40, 3) | 0.88 | 43.9 | (9.1,15.6,18.7) | (0.230, 0.550, 0.973) | (0.084, 0.152, 0.243) | |
| (50, 4) | 0.27 | 51.2 | (12.4,18.2,19.7) | (0.221, 0.540, 0.959) | (0.069, 0.139, 0.233) | |
| (50, 5) | 0.70 | 52.1 | (13.1,18.6,19.8) | (0.221, 0.541, 0.956) | (0.068, 0.136, 0.228) | |
| (16,18,26) | (40, 2) | 0.37 | 41.8 | (5.8,12.2,22.6) | (0.248, 0.557, 0.960) | (0.117, 0.177, 0.219) |
| (40, 3) | 0.98 | 44.7 | (7.3,14,24.3) | (0.240, 0.556, 0.958) | (0.100, 0.165, 0.207) | |
| (50, 4) | 0.53 | 51.6 | (9.3,16,25.5) | (0.229, 0.545, 0.949) | (0.084, 0.148, 0.199) | |
| (50, 5) | 0.89 | 52.9 | (10.2,16.6,25.7) | (0.228, 0.545, 0.946) | (0.079, 0.147, 0.194) | |
| (24,22,14) | (40, 2) | 0.04 | 41 | (10.4,16.7,12.9) | (0.224, 0.538, 1.005) | (0.076, 0.145, 0.302) |
| (40, 3) | 0.68 | 42.7 | (11.2,17.5,13.1) | (0.224, 0.545, 1.001) | (0.073, 0.144, 0.309) | |
| (50, 4) | 0.11 | 50.9 | (15.7,2.5,13.9) | (0.214, 0.535, 0.977) | (0.058, 0.128, 0.287) | |
| (50, 5) | 0.46 | 51.5 | (16.1,20.6,13.9) | (0.215, 0.535, 0.977) | (0.059, 0.129, 0.291) |
| (10,10,10) | (20, 2) | (0.249, 0.608, 1.014) | (0.058, 0.125, 0.150) | (0.214, 0.531, 0.931) | (0.029, 0.079, 0.093) |
| (20, 3) | (0.245, 0.598, 0.999) | (0.052, 0.122, 0.153) | (0.210, 0.524, 0.926) | (0.029, 0.080, 0.098) | |
| (25, 4) | (0.244, 0.586, 1.001) | (0.049, 0.125, 0.137) | (0.212, 0.526, 0.922) | (0.030, 0.080, 0.097) | |
| (25, 5) | (0.239, 0.581, 0.988) | (0.052, 0.123, 0.151) | (0.210, 0.525, 0.921) | (0.031, 0.080, 0.096) | |
| (20, 2) | (0.204, 0.505, 0.905) | (0.024, 0.075, 0.095) | (0.193, 0.483, 0.878) | (0.024, 0.071, 0.094) | |
| (20, 3) | (0.202, 0.502, 0.898) | (0.025, 0.075, 0.094) | (0.192, 0.484, 0.873) | (0.028, 0.074, 0.095) | |
| (25, 4) | (0.202, 0.501, 0.893) | (0.028, 0.077, 0.093) | (0.194, 0.486, 0.873) | (0.028, 0.074, 0.094) | |
| (25, 5) | (0.202, 0.509, 0.893) | (0.028, 0.075, 0.094) | (0.191, 0.486, 0.871) | (0.028, 0.075, 0.096) | |
| (20, 2) | (0.240, 0.564, 0.976) | (0.075, 0.175, 0.228) | (0.217, 0.534, 0.940) | (0.064, 0.155, 0.211) | |
| (20, 3) | (0.233, 0.557, 0.959) | (0.073, 0.164, 0.227) | (0.211, 0.520, 0.932) | (0.064, 0.148, 0.207) | |
| (25, 4) | (0.229, 0.556, 0.952) | (0.070, 0.157, 0.214) | (0.212, 0.534, 0.925) | (0.061, 0.144, 0.196) | |
| (25, 5) | (0.225, 0.552, 0.959) | (0.068, 0.153, 0.213) | (0.207, 0.515, 0.924) | (0.060, 0.139, 0.196) | |
| (20, 2) | (0.203, 0.509, 0.917) | (0.060, 0.147, 0.205) | (0.186, 0.479, 0.878) | (0.062, 0.144, 0.199) | |
| (20, 3) | (0.200, 0.510, 0.917) | (0.061, 0.146, 0.200) | (0.185, 0.473, 0.872) | (0.062, 0.139, 0.193) | |
| (25, 4) | (0.203, 0.503, 0.901) | (0.061, 0.136, 0.191) | (0.187, 0.496, 0.865) | (0.057, 0.133, 0.187) | |
| (25, 5) | (0.199, 0.505, 0.890) | (0.058, 0.134, 0.190) | (0.191, 0.495, 0.967) | (0.057, 0.132, 0.189) | |
| (20, 2) | (0.254, 0.589, 1.012) | (0.106, 0.216, 0.304) | (0.220, 0.528, 0.951) | (0.087, 0.187, 0.267) | |
| (20, 3) | (0.245, 0.583, 0.999) | (0.101, 0.203, 0.283) | (0.214, 0.531, 0.937) | (0.086, 0.184, 0.257) | |
| (25, 4) | (0.238, 0.561, 0.979) | (0.090, 0.187, 0.269) | (0.215, 0.526, 0.936) | (0.079, 0.167, 0.246) | |
| (25, 5) | (0.235, 0.565, 0.988) | (0.088, 0.183, 0.270) | (0.210, 0.522, 0.913) | (0.075, 0.161, 0.235) | |
| (20, 2) | (0.198, 0.510, 0.913) | (0.084, 0.180, 0.259) | (0.183, 0.490, 0.899) | (0.083, 0.179, 0.254) | |
| (20, 3) | (0.196, 0.497, 0.921) | (0.081, 0.173, 0.251) | (0.185, 0.496, 0.888) | (0.080, 0.169, 0.247) | |
| (25, 4) | (0.197, 0.522, 0.901) | (0.073, 0.161, 0.237) | (0.193, 0.494, 0.876) | (0.074, 0.159, 0.227) | |
| (25, 5) | (0.200, 0.503, 0.899) | (0.074, 0.155, 0.240) | (0.191, 0.492, 0.873) | (0.071, 0.153, 0.232) | |
| (10,10,10) | |||||
| (20, 2) | (0.245, 0.599, 1.008) | (0.051, 0.120, 0.141) | (0.210, 0.523, 0.927) | (0.031, 0.085, 0.098) | |
| (20, 3) | (0.246, 0.594, 1.009) | (0.053, 0.127, 0.137) | (0.212, 0.525, 0.927) | (0.032, 0.084, 0.097) | |
| (25, 4) | (0.238, 0.584, 0.988) | (0.052, 0.119, 0.145) | (0.207, 0.520, 0.920) | (0.033, 0.084, 0.097) | |
| (25, 5) | (0.238, 0.585, 0.988) | (0.052, 0.116, 0.146) | (0.210, 0.524, 0.914) | (0.033, 0.080, 0.099) | |
| (20, 2) | (0.201, 0.501, 0.903) | (0.027, 0.077, 0.095) | (0.191, 0.479, 0.872) | (0.029, 0.075, 0.095) | |
| (20, 3) | (0.204, 0.502, 0.903) | (0.028, 0.078, 0.092) | (0.194, 0.484, 0.873) | (0.028, 0.076, 0.092) | |
| (25, 4) | (0.201, 0.501, 0.895) | (0.031, 0.076, 0.095) | (0.190, 0.487, 0.872) | (0.031, 0.077, 0.097) | |
| (25, 5) | (0.201, 0.500, 0.886) | (0.031, 0.075, 0.095) | (0.192, 0.483, 0.867) | (0.031, 0.075, 0.096) | |
| (20, 2) | (0.236, 0.561, 0.978) | (0.076, 0.165, 0.223) | (0.212, 0.524, 0.930) | (0.067, 0.151, 0.204) | |
| (20, 3) | (0.232, 0.555, 0.947) | (0.075, 0.164, 0.217) | (0.214, 0.536, 0.920) | (0.065, 0.150, 0.199) | |
| (25, 4) | (0.226, 0.540, 0.958) | (0.070, 0.152, 0.210) | (0.209, 0.493, 0.925) | (0.063, 0.138, 0.196) | |
| (25, 5) | (0.224, 0.555, 0.942) | (0.070, 0.151, 0.212) | (0.212, 0.513, 0.908) | (0.062, 0.135, 0.192) | |
| (20, 2) | (0.201, 0.501, 0.905) | (0.063, 0.143, 0.198) | (0.186, 0.483, 0.870) | (0.063, 0.144, 0.197) | |
| (20, 3) | (0.205, 0.514, 0.901) | (0.063, 0.144, 0.196) | (0.190, 0.492, 0.874) | (0.063, 0.140, 0.190) | |
| (25, 4) | (0.201, 0.507, 0.902) | (0.062, 0.134, 0.194) | (0.188, 0.497, 0.890) | (0.059, 0.130, 0.189) | |
| (25, 5) | (0.203, 0.502, 0.886) | (0.060, 0.131, 0.192) | (0.193, 0.483, 0.923) | (0.060, 0.127, 0.191) | |
| (20, 2) | (0.245, 0.569, 0.994) | (0.101, 0.199, 0.288) | (0.208, 0.533, 0.948) | (0.085, 0.182, 0.260) | |
| (20, 3) | (0.246, 0.580, 0.984) | (0.098, 0.196, 0.276) | (0.214, 0.540, 0.931) | (0.083, 0.177, 0.252) | |
| (25, 4) | (0.238, 0.569, 0.964) | (0.088, 0.184, 0.260) | (0.213, 0.526, 0.908) | (0.077, 0.162, 0.239) | |
| (25, 5) | (0.236, 0.551, 0.991) | (0.086, 0.175, 0.264) | (0.209, 0.514, 0.930) | (0.075, 0.157, 0.242) | |
| (20, 2) | (0.198, 0.506, 0.911) | (0.082, 0.173, 0.245) | (0.183, 0.489, 0.885) | (0.081, 0.170, 0.245) | |
| (20, 3) | (0.199, 0.507, 0.916) | (0.080, 0.162, 0.242) | (0.196, 0.494, 0.885) | (0.081, 0.164, 0.239) | |
| (25, 4) | (0.200, 0.504, 0.899) | (0.073, 0.154, 0.235) | (0.191, 0.490, 0.875) | (0.071, 0.150, 0.231) | |
| (25, 5) | (0.202, 0.507, 0.898) | (0.073, 0.153, 0.232) | (0.196, 0.493, 0.871) | (0.071, 0.150, 0.231) | |
| (10,10,10) | |||||
| (20, 2) | (0.222, 0.584, 1.026) | (0.037, 0.115, 0.166) | (0.215, 0.539, 0.947) | (0.031, 0.086, 0.110) | |
| (20, 3) | (0.219, 0.570, 1.018) | (0.035, 0.112, 0.158) | (0.213, 0.535, 0.940) | (0.028, 0.084, 0.109) | |
| (25, 4) | (0.219, 0.568, 1.004) | (0.036, 0.110, 0.160) | (0.214, 0.542, 0.935) | (0.031, 0.082, 0.105) | |
| (25, 5) | (0.217, 0.562, 1.006) | (0.036, 0.110, 0.153) | (0.211, 0.528, 0.933) | (0.032, 0.086, 0.105) | |
| (20, 2) | (0.209, 0.501, 0.882) | (0.025, 0.069, 0.090) | (0.206, 0.491, 0.856) | (0.023, 0.067, 0.092) | |
| (20, 3) | (0.207, 0.499, 0.877) | (0.026, 0.071, 0.090) | (0.204, 0.486, 0.853) | (0.025, 0.069, 0.096) | |
| (25, 4) | (0.207, 0.509, 0.875) | (0.029, 0.072, 0.089) | (0.204, 0.496, 0.855) | (0.027, 0.072, 0.098) | |
| (25, 5) | (0.207, 0.499, 0.880) | (0.028, 0.072, 0.094) | (0.203, 0.490, 0.852) | (0.028, 0.070, 0.098) | |
| (10,10,10) | (20, 2) | (0.243, 0.574, 0.988) | (0.077, 0.178, 0.237) | (0.230, 0.537, 0.922) | (0.067, 0.150, 0.193) |
| (20, 3) | (0.234, 0.563, 0.970) | (0.074, 0.168, 0.228) | (0.225, 0.532, 0.898) | (0.067, 0.144, 0.187) | |
| (25, 4) | (0.232, 0.558, 0.958) | (0.070, 0.159, 0.220) | (0.223, 0.534, 0.907) | (0.065, 0.138, 0.184) | |
| (25, 5) | (0.227, 0.554, 0.967) | (0.068, 0.155, 0.216) | (0.222, 0.530, 0.899) | (0.064, 0.137, 0.182) | |
| (20, 2) | (0.227, 0.525, 0.895) | (0.067, 0.140, 0.184) | (0.199, 0.440, 0.724) | (0.050, 0.122, 0.217) | |
| (20, 3) | (0.222, 0.516, 0.882) | (0.065, 0.138, 0.181) | (0.198, 0.442, 0.727) | (0.051, 0.119, 0.215) | |
| (25, 4) | (0.221, 0.526, 0.885) | (0.063, 0.132, 0.173) | (0.201, 0.448, 0.728) | (0.052, 0.113, 0.208) | |
| (25, 5) | (0.219, 0.518, 0.883) | (0.063, 0.131, 0.175) | (0.199, 0.451, 0.728) | (0.051, 0.114, 0.209) | |
| (10,10,10) | (20, 2) | (0.257, 0.568, 0.985) | (0.103, 0.201, 0.275) | (0.244, 0.551, 0.907) | (0.081, 0.181, 0.238) |
| (20, 3) | (0.241, 0.571, 0.950) | (0.096, 0.194, 0.266) | (0.233, 0.541, 0.914) | (0.091, 0.175, 0.229) | |
| (25, 4) | (0.238, 0.568, 0.970) | (0.090, 0.180, 0.253) | (0.230, 0.541, 0.914) | (0.083, 0.163, 0.219) | |
| (25, 5) | (0.230, 0.551, 0.950) | (0.085, 0.170, 0.249) | (0.228, 0.530, 0.904) | (0.080, 0.157, 0.217) | |
| (20, 2) | (0.230, 0.504, 0.846) | (0.082, 0.152, 0.209) | (0.200, 0.424, 0.692) | (0.065, 0.140, 0.255) | |
| (20, 3) | (0.221, 0.491, 0.835) | (0.080, 0.147, 0.207) | (0.199, 0.431, 0.693) | (0.066, 0.138, 0.251) | |
| (25, 4) | (0.216, 0.502, 0.844) | (0.075, 0.139, 0.197) | (0.199, 0.441, 0.698) | (0.062, 0.124, 0.237) | |
| (25, 5) | (0.218, 0.508, 0.820) | (0.072, 0.136, 0.193) | (0.199, 0.433, 0.699) | (0.061, 0.120, 0.246) | |
| (10,10,10) | |||||
| (20, 2) | (0.219, 0.569, 1.012) | (0.036, 0.114, 0.167) | (0.212, 0.531, 0.942) | (0.030, 0.088, 0.107) | |
| (20, 3) | (0.221, 0.569, 1.014) | (0.036, 0.115, 0.163) | (0.213, 0.530, 0.941) | (0.032, 0.092, 0.108) | |
| (25, 4) | (0.217, 0.560, 1.005) | (0.037, 0.110, 0.153) | (0.209, 0.531, 0.930) | (0.034, 0.085, 0.107) | |
| (25, 5) | (0.217, 0.561, 0.999) | (0.038, 0.108, 0.151) | (0.214, 0.527, 0.931) | (0.033, 0.085, 0.105) | |
| (20, 2) | (0.206, 0.499, 0.883) | (0.027, 0.074, 0.093) | (0.202, 0.486, 0.853) | (0.027, 0.071, 0.097) | |
| (20, 3) | (0.206, 0.510, 0.877) | (0.030, 0.073, 0.088) | (0.205, 0.491, 0.850) | (0.027, 0.071, 0.089) | |
| (25, 4) | (0.206, 0.504, 0.882) | (0.031, 0.073, 0.089) | (0.202, 0.490, 0.853) | (0.030, 0.072, 0.098) | |
| (25, 5) | (0.207, 0.499, 0.869) | (0.032, 0.072, 0.090) | (0.203, 0.489, 0.848) | (0.030, 0.069, 0.099) | |
| (10,10,10) | (20, 2) | (0.232, 0.569, 0.982) | (0.075, 0.170, 0.230) | (0.224, 0.536, 0.904) | (0.069, 0.146, 0.189) |
| (20, 3) | (0.233, 0.564, 0.984) | (0.075, 0.165, 0.226) | (0.225, 0.538, 0.916) | (0.068, 0.142, 0.185) | |
| (25, 4) | (0.228, 0.547, 0.959) | (0.070, 0.153, 0.214) | (0.217, 0.526, 0.900) | (0.065, 0.134, 0.182) | |
| (25, 5) | (0.222, 0.550, 0.956) | (0.070, 0.152, 0.212) | (0.221, 0.528, 0.898) | (0.066, 0.133, 0.180) | |
| (20, 2) | (0.222, 0.522, 0.884) | (0.067, 0.141, 0.180) | (0.197, 0.441, 0.729) | (0.054, 0.122, 0.220) | |
| (20, 3) | (0.221, 0.518, 0.883) | (0.066, 0.137, 0.176) | (0.198, 0.449, 0.730) | (0.054, 0.118, 0.211) | |
| (25, 4) | (0.217, 0.528, 0.867) | (0.064, 0.131, 0.173) | (0.198, 0.439, 0.724) | (0.054, 0.108, 0.215) | |
| (25, 5) | (0.216, 0.522, 0.879) | (0.064, 0.127, 0.173) | (0.200, 0.455, 0.728) | (0.053, 0.113, 0.214) | |
| (10,10,10) | (20, 2) | (0.241, 0.561, 0.984) | (0.099, 0.191, 0.267) | (0.235, 0.546, 0.916) | (0.092, 0.174, 0.233) |
| (20, 3) | (0.243, 0.557, 0.980) | (0.094, 0.184, 0.257) | (0.234, 0.528, 0.920) | (0.089, 0.166, 0.223) | |
| (25, 4) | (0.225, 0.541, 0.943) | (0.084, 0.168, 0.248) | (0.225, 0.538, 0.907) | (0.081, 0.158, 0.219) | |
| (25, 5) | (0.230, 0.543, 0.927) | (0.084, 0.168, 0.237) | (0.225, 0.522, 0.913) | (0.080, 0.154, 0.220) | |
| (20, 2) | (0.217, 0.501, 0.834) | (0.080, 0.149, 0.204) | (0.198, 0.435, 0.699) | (0.067, 0.140, 0.254) | |
| (20, 3) | (0.224, 0.491, 0.829) | (0.080, 0.145, 0.197) | (0.200, 0.449, 0.700) | (0.067, 0.137, 0.244) | |
| (25, 4) | (0.216, 0.504, 0.824) | (0.074, 0.137, 0.197) | (0.197, 0.435, 0.697) | (0.062, 0.122, 0.246) | |
| (25, 5) | (0.214, 0.504, 0.827) | (0.074, 0.133, 0.197) | (0.200, 0.441, 0.697) | (0.063, 0.122, 0.244) | |
| Sample | Data |
| X1 | 1.89, 4.03, 1.54, 0.31, 0.66, 1.7, 2.17, 1.82, 9.99, 2.24 |
| X2 | 1.17, 3.87, 2.8, 0.7, 3.82, 0.02, 0.5, 3.72, 0.06, 3.57 |
| X3 | 8.11, 3.17, 5.55, 0.80, 0.20, 1.13, 6.63, 1.08, 2.44, 0.78 |
| Ordered data (w, ji) | |
| (0.02,2), (0.06,2), (0.20,3), (0.31,1), (0.50,2), (0.66,1), (0.70,2), (0.78,3), (0.80,3), (1.083), (1.13,3), (1.17,2), (1.54,1), (1.70,1), (1.82,1), (1.89,1), (2.17,1), (2.24,1), (2.44,3), (2.80,2), (3.17,3), (3.57,2), (3.72,2), (3.82,2), (3.87,2), (4.03,1), (5.55,3), (6.63,3), (8.11,3), (9.99,1) | |
| 20 | (6,5,5) |
2 | MLE | (0.377, 0.402, 0.357) | |
| GB | |||||
| (0.382, 0.462, 0.341) | (0.379, 0.430, 0.349) | ||||
| (0.360, 0.435, 0.321) | (0.368, 0.416, 0.338) | ||||
| (0.305, 0.364, 0.268) | (0.341, 0.382, 0.310) | ||||
| (0.386, 0.470, 0.345) | (0.381, 0.433, 0.351) | ||||
| (0.369, 0.442, 0.330) | (0.373, 0.421, 0.343) | ||||
| (0.342, 0.403, 0.307) | (0.359, 0.402, 0.330) | ||||
| 20 | (8,6,6) |
3 | MLE | (0.476, 0.365, 0.371) | |
| GB | |||||
| (0.420, 0.439, 0.346) | (0.450, 0.396, 0.359) | ||||
| (0.399, 0.414, 0.327) | (0.440, 0.385, 0.349) | ||||
| (0.344, 0.351, 0.277) | (0.414, 0.357, 0.323) | ||||
| (0.425, 0.445, 0.350) | (0.453, 0.399, 0.361) | ||||
| (0.406, 0.422, 0.336) | (0.443, 0.389, 0.353) | ||||
| (0.378, 0.388, 0.314) | (0.428, 0.375, 0.341) | ||||
| 25 | (8,5,6) |
2.5 | MLE | (0.462, 0.334, 0.365) | |
| GB | |||||
| (0.415, 0.429, 0.345) | (0.441, 0.376, 0.355) | ||||
| (0.394, 0.403, 0.325) | (0.431, 0.364, 0.345) | ||||
| (0.340, 0.338, 0.275) | (0.405, 0.334, 0.320) | ||||
| (0.420, 0.435, 0.348) | (0.443, 0.378, 0.357) | ||||
| (0.402, 0.412, 0.334) | (0.434, 0.369, 0.350) | ||||
| (0.374, 0.377, 0.312) | (0.419, 0.354, 0.338) | ||||
| 25 | (8,10,7) |
4 | MLE | (0.475, 0.494, 0.366) | |
| GB | |||||
| (0.420, 0.497, 0.346) | (0.450, 0.495, 0.357) | ||||
| (0.399, 0.474, 0.328) | (0.440, 0.486, 0.348) | ||||
| (0.344, 0.416, 0.280) | (0.414, 0.462, 0.325) | ||||
| (0.425, 0.503, 0.350) | (0.453, 0.498, 0.359) | ||||
| (0.406, 0.479, 0.336) | (0.443, 0.488, 0.352) | ||||
| (0.378, 0.444, 0.315) | (0.428, 0.472, 0.341) | ||||
| 20 | (8,6,6) T2 < 3.17 |
2 | MLE | (0.476, 0.365, 0.371) | |
| GB | |||||
| (0.420, 0.439, 0.346) | (0.450, 0.396, 0.359) | ||||
| (0.399, 0.414, 0.327) | (0.440, 0.385, 0.349) | ||||
| (0.344, 0.351, 0.277) | (0.414, 0.357, 0.323) | ||||
| (0.425, 0.445, 0.350) | (0.453, 0.399, 0.361) | ||||
| (0.406, 0.422, 0.336) | (0.443, 0.389, 0.353) | ||||
| (0.378, 0.388, 0.314) | (0.428, 0.375, 0.341) | ||||
| 20 | (8,8,7) |
3.8 | MLE | (0.401 0.397 0.333) | |
| GB | |||||
| (0.392 0.448 0.333) | (0.397 0.418 0.333) | ||||
| (0.372 0.426 0.315) | (0.388 0.408 0.325) | ||||
| (0.321 0.367 0.270) | (0.365 0.384 0.304) | ||||
| (0.396 0.454 0.337) | (0.399 0.420 0.335) | ||||
| (0.380 0.432 0.324) | (0.392 0.412 0.329) | ||||
| (0.355 0.400 0.304) | (0.380 0.398 0.320) | ||||
| 25 | (8,10,7) < 4.03 |
4 | MLE | (0.394, 0.494, 0.324) | |
| GB | |||||
| (0.389, 0.497, 0.329) | (0.391, 0.495, 0.326) | ||||
| (0.369, 0.474, 0.312) | (0.382, 0.486, 0.318) | ||||
| (0.318, 0.416, 0.267) | (0.360, 0.462, 0.297) | ||||
| (0.393, 0.503, 0.333) | (0.393, 0.498, 0.328) | ||||
| (0.376, 0.479, 0.320) | (0.386, 0.488, 0.322) | ||||
| (0.352, 0.444, 0.301) | (0.374, 0.472, 0.313) | ||||
| 25 | (9,10,10) |
MLE | (0.355, 0.494, 0.335) | ||
| GB | |||||
| (0.370, 0.497, 0.334) | (0.361, 0.495, 0.334) | ||||
| (0.352, 0.474, 0.319) | (0.353, 0.486, 0.328) | ||||
| (0.306, 0.416, 0.279) | (0.344, 0.462, 0.311) | ||||
| (0.374, 0.503, 0.337) | (0.362, 0.498, 0.335) | ||||
| (0.360, 0.479, 0.326) | (0.357, 0.488, 0.331) | ||||
| (0.338, 0.444, 0.309) | (0.357, 0.472, 0.324) | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
