Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Recent Advances in mRNA Vaccine Development

Version 1 : Received: 31 July 2023 / Approved: 2 August 2023 / Online: 3 August 2023 (08:07:09 CEST)

How to cite: Aga, A.M.; Kelel, M.; Gemeda, M.T. Recent Advances in mRNA Vaccine Development. Preprints 2023, 2023080245. https://doi.org/10.20944/preprints202308.0245.v1 Aga, A.M.; Kelel, M.; Gemeda, M.T. Recent Advances in mRNA Vaccine Development. Preprints 2023, 2023080245. https://doi.org/10.20944/preprints202308.0245.v1

Abstract

Traditional vaccines are produced by using weakened or inactivated forms of disease-causing pathogens to produce the target antigen they are designed to protect against. Messenger RNA vaccines are a class of vaccines that employ a minute segment of genetic material, known as messenger RNA (mRNA), which contains directives for the cells in the body to generate a particular protein. This genetic material is synthesized in the laboratory and packaged into a lipid nanoparticle, which protects and helps it enter cells for further protein synthesis. During vaccination with mRNA vaccine, the lipid nanoparticles containing the mRNA are injected into the muscle of vaccinees. Once inside the cells, the mRNA instructs the cells to produce a protein which is then displayed on the surface of the cell, triggering an immune response. During this, the immune system recognizes the displayed protein as foreign and mounts a defense by producing antibodies and activating immune cells to target and eliminate the protein. Furthermore, these immune responses generate a memory cell, facilitating the immune system to promptly react in case of encountering the authentic pathogen as an infection in the future. The mRNA vaccines are flexible and the sequence can be easily synthesized in the lab based on the genetic information of the target pathogen. Additionally, mRNA vaccines can be developed for new strains or variants of the target disease easily. This was particularly evident during the COVID-19 pandemic, where mRNA vaccines like the Pfizer-BioNTech and Moderna vaccines were developed and authorized for emergency use within a year. But currently, available mRNA vaccines require extensive cold chain, antigen delivery, potential immune response variability optimization, and sophisticated manufacturing process. The efforts to explore next-generation mRNA vaccine development are aimed to further improve the effectiveness, stability, and delivery methods. One focus of research has been to enhance the stability of mRNA vaccines, particularly temperature sensitivity which makes storage and distribution easier, particularly in regions with limited access to cold chain infrastructure. Self-amplifying mRNA vaccines, on the other hand, are designed to generate multiple copies of the mRNA within cells which potentially leads to a higher production of the target protein, resulting in a stronger immune response. Additionally, studies are exploring new delivery systems to improve the target and efficiency of mRNA vaccines using specialized nanoparticles and liposomes to specifically deliver mRNA to certain cell types or immune cells. Another area of interest is the development of combination vaccines, where multiple mRNA sequences are included in a single vaccine protecting against multiple diseases targeting strains or variants of a particular pathogen simultaneously. While current mRNA vaccines are administered via intramuscular injection, studies are underway to deliver directly into the skin offering enhanced immune response and the ability to use smaller vaccine doses.

Keywords

COVID-19; Lipid nanoparticles; mRNA; Vaccines; Vaccine stability

Subject

Medicine and Pharmacology, Emergency Medicine

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.