de Faria, L.B.; Teixeira, G.F.; Alves, A.C.F.; Linares, J.J.; Oliveira, S.B.; Motheo, A.J.; Comate, F. Electrochemical Degradation of Diuron by Anodic Oxidation on a Commercial Ru0.3Ti0.7O2 Anode in a Sulfate Medium. ChemEngineering2023, 7, 73.
de Faria, L.B.; Teixeira, G.F.; Alves, A.C.F.; Linares, J.J.; Oliveira, S.B.; Motheo, A.J.; Comate, F. Electrochemical Degradation of Diuron by Anodic Oxidation on a Commercial Ru0.3Ti0.7O2 Anode in a Sulfate Medium. ChemEngineering 2023, 7, 73.
de Faria, L.B.; Teixeira, G.F.; Alves, A.C.F.; Linares, J.J.; Oliveira, S.B.; Motheo, A.J.; Comate, F. Electrochemical Degradation of Diuron by Anodic Oxidation on a Commercial Ru0.3Ti0.7O2 Anode in a Sulfate Medium. ChemEngineering2023, 7, 73.
de Faria, L.B.; Teixeira, G.F.; Alves, A.C.F.; Linares, J.J.; Oliveira, S.B.; Motheo, A.J.; Comate, F. Electrochemical Degradation of Diuron by Anodic Oxidation on a Commercial Ru0.3Ti0.7O2 Anode in a Sulfate Medium. ChemEngineering 2023, 7, 73.
Abstract
This work presents the electrochemical degradation of the herbicide Diuron by anodic oxidation on a Ti/Ru0.3Ti0.7O2 dimensionally stable anode (DSA) using sulfate as electrolyte. The study includes the influence of the Diuron concentration and the current density on the anodic oxidation. The results evidence a first-order degradation, with the highest degradation capacity achieved at 40 mA cm2 and an initial Diuron concentration of 38 mg L1. Nevertheless, in terms of efficiency and energy demand, the operation at 10 mA cm2 is favored due to the more efficient and less energy-consuming condition. To discern the optimum design and operation conditions, this work presents the results of a preliminary technical-economical analysis, demonstrating that, to minimize the total costs of the system, it is recommended to seek the most efficient conditions, i.e., the conditions demanding the lowest applied charges with the highest Diuron degradation. At the same time, attention must be given to the required cell voltage to not increase excessively the operating costs.
Environmental and Earth Sciences, Sustainable Science and Technology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.