Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

A Proposed Explainable Artificial Intelligence-Based Machine Learning Model for Discriminative Metabolites for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Version 1 : Received: 22 July 2023 / Approved: 24 July 2023 / Online: 25 July 2023 (04:33:22 CEST)

A peer-reviewed article of this Preprint also exists.

Yagin, F.H.; Alkhateeb, A.; Raza, A.; Samee, N.A.; Mahmoud, N.F.; Colak, C.; Yagin, B. An Explainable Artificial Intelligence Model Proposed for the Prediction of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and the Identification of Distinctive Metabolites. Diagnostics 2023, 13, 3495. Yagin, F.H.; Alkhateeb, A.; Raza, A.; Samee, N.A.; Mahmoud, N.F.; Colak, C.; Yagin, B. An Explainable Artificial Intelligence Model Proposed for the Prediction of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and the Identification of Distinctive Metabolites. Diagnostics 2023, 13, 3495.

Abstract

Background: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and debilitating disease with a significant global prevalence of over 65 million individuals. It affects various systems, including the immune, neurological, gastrointestinal, and circulatory systems. Studies have shown abnormalities in immune cell types, increased inflammatory cytokines, and brain abnormalities. Further research is needed to identify consistent biomarkers and develop targeted therapies. A multidisciplinary approach is essential for diagnosing, treating, and managing this complex disease. The current study aims at employing explainable artificial intelligence (XAI) and machine learning (ML) techniques to identify discriminative metabolites for ME/CFS. Material and Methods: The present study used a metabolomics dataset of CFS patients and healthy controls, including 26 healthy controls and 26 ME/CFS patients aged 22-72. The dataset encapsulated 768 metabolites, classified into nine metabolic super-pathways: amino acids, carbohydrates, cofactors, vitamins, energy, lipids, nucleotides, peptides, and xenobiotics. Random forest-based feature selection and Bayesian Approach based-hyperparameter optimization were implemented on the target data. Four different ML algorithms [Gaussian Naive Bayes (GNB), Gradient Boosting Classifier (GBC), Logistic regression (LR) and Random Forest Classifier (RFC)] were used to classify individuals as ME/CFS patients and healthy individuals. XAI approaches were applied to clinically explain the prediction decisions of the optimum model. Performance evaluation was performed using the indices of accuracy, precision, recall, F1 score, Brier score, and AUC. Results: The metabolomics of C-glycosyltryptophan, oleoylcholine, cortisone, and 3-hydroxydecanoate were determined to be crucial for ME/CFS diagnosis. The RFC learning model outperformed GNB, GBC, and LR in ME/CFS prediction using the 1000 iteration bootstrapping method, achieving 98% accuracy, precision, recall, F1 score, 0.01 Brier score, and 99% AUC. Conclusion: RFC model proposed in this study correctly classified and evaluated ME/CFS patients through the selected biomarker candidate metabolites. The methodology combining ML and XAI can provide a clear interpretation of risk estimation for ME/CFS, helping physicians intuitively understand the impact of key metabolomics features in the model.

Keywords

Explainable artificial intelligence; Myalgic encephalomyelitis/chronic fatigue syndrome; Metabolomics data; Clinical classification.

Subject

Computer Science and Mathematics, Artificial Intelligence and Machine Learning

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.