Submitted:
12 July 2023
Posted:
13 July 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
| No. | Group | Order | Comb. Type | Zones | Belts |
| 16.256 | 8(8) | ||||
| 112.272 | 136(0) | ||||
| 48.576 | 24(0) | ||||
| 272.1120 | 56(0) | ||||
| 240.19449 | 8760(0) | ||||
| 264.5304 | 36(0) | ||||
| 24.1296 | 12(12) | ||||
| 348.3588 | 93(0) | ||||
| 60.10404 | 18(18) | ||||
| 72.510 | 9(9) | ||||
| 186.5940 | 174(0) | ||||
| 402.94254 | 1497(0) | ||||
| 510.362880 | 36(36) | ||||
| 40.900 | 10(10) | ||||
| 360.3840 | 180(0) | ||||
| 60.14400 | 20(20) | ||||
| 290.43310 | 1195(0) | ||||
| 390.106200 | 450(0) | ||||
| 180.6510 | 15(15) | ||||
| 1152 | 296.13696 | 580(0) | |||
| 1152 | 200.2992 | 304(0) | |||
| 456.28632 | 264(0) | ||||
| 672 | 398.90384 | 297(0) | |||
| 672 | 426.37638 | 21(21) | |||
| 672 | 308.8028 | 1011(0) | |||
| 672 | 398.127848 | 1036(0) |
2. The Irreducible Subgroup
3. The Neighbourhood of
References
- P.G.L. Dirichlet, Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen, J. reine angew. Math. 40 (1850) 209-227; [Oeuvre Vol. II, p. 41-59].
- P. Engel, On the enumeration of four-dimensional polytopes, Discrete Math 91 (1991) 9-31.
- P. Engel, The contraction types of parallelohedra in E5, Acta Cryst. A 56 (2000) 491-496.
- P. Engel, On Fedorov’s parallelohedra - a review and new results, Cryst. Res. Technol. 50, No. 12 (2015) 929-943.
- P. Engel, On the Σ-classes in E6, Acta Cryst. A 76 (2020) 622-626.
- P. Engel, On Σ-classes in E7, JSODS (2023), Vol. 1 No. 1.
- P. Engel, On Σ-classes in E8. I. The neighbourhood of F5, Crystals (2023) 13(2),246.
- P. Engel, On Σ-classes in E8. II. The neighbourhood of F8, IJMSOR (2023), Vol. 3 No. 1.
- P. Engel, On Σ-classes in E8. III. The neighbourhood of F15, to be published.
- E.S. Fedorov, Nachala ucheniya o figurah, Verhandlungen der russisch-kaiserlichen mineralogischen Gesellschaft zu St. Petersburg 21 (1885), 1-279; [Reprint: Akad. Nauk SSSR, 1953; Résumé in German, E.S. Fedorov, Elemente der Gestaltungslehre, Z. Kristallogr. 21 (1893), 679-694].
- W. Plesken, M. W. Plesken, M. Pohst, The eight dimensional case and complete description of dimensions less than ten, Math. Comp. 34 (1980) 277-301.
- G.M. Voronoï, Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. recherches sur les paralléloèdres primitifs, J. reine angew. Math. 134 (1008) 198-287.
- G.M. Voronoï, Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. recherches sur les paralléloèdres primitifs, J. reine angew. Math. 135 (1909) 67-181.

| 1 0 0 0 0 0 0 0 | 0 1 0 0 0 0 0 0 | 1 1 0 0 0 0 0 0 | |||
| 0 0 1 0 0 0 0 0 | 0 1 1 0 0 0 0 0 | 1 0 -1 0 0 0 0 0 | |||
| 1 1 -1 0 0 0 0 0 | 0 0 0 1 0 0 0 0 | 0 1 0 1 0 0 0 0 | |||
| 0 1 -1 1 0 0 0 0 | 1 1 -1 1 0 0 0 0 | 1 0 0 -1 0 0 0 0 | |||
| 0 0 1 -1 0 0 0 0 | 1 0 1 -1 0 0 0 0 | 0 0 0 0 1 0 0 0 | |||
| 0 0 0 1 1 0 0 0 | 0 1 -1 1 1 0 0 0 | 1 0 0 0 -1 0 0 0 | |||
| 0 1 0 0 -1 0 0 0 | 1 1 0 0 -1 0 0 0 | 0 0 1 0 -1 0 0 0 | |||
| 0 1 1 0 -1 0 0 0 | 1 1 1 0 -1 0 0 0 | 1 0 0 -1 -1 0 0 0 | |||
| 1 1 0 -1 -1 0 0 0 | 0 0 1 -1 -1 0 0 0 | 1 0 1 -1 -1 0 0 0 | |||
| 1 1 1 -1 -1 0 0 0 | 1 0 1 -2 -1 0 0 0 | 0 0 0 0 0 1 0 0 | |||
| 1 0 0 0 0 1 0 0 | 1 1 0 0 0 1 0 0 | 1 0 -1 0 0 1 0 0 | |||
| 1 0 0 -1 0 1 0 0 | 0 0 0 0 1 1 0 0 | 1 0 -1 0 1 1 0 0 | |||
| 0 1 -1 1 1 1 0 0 | 0 0 1 0 0 -1 0 0 | 0 0 0 1 0 -1 0 0 | |||
| 0 1 0 1 0 -1 0 0 | 1 0 0 0 -1 -1 0 0 | 0 1 0 0 -1 -1 0 0 | |||
| 1 1 0 0 -1 -1 0 0 | 0 0 1 0 -1 -1 0 0 | 0 1 1 0 -1 -1 0 0 | |||
| 1 1 1 0 -1 -1 0 0 | 0 1 0 1 -1 -1 0 0 | 1 0 0 -1 -1 -1 0 0 | |||
| 0 0 1 -1 -1 -1 0 0 | 1 0 1 -1 -1 -1 0 0 | 1 1 1 -1 -1 -1 0 0 | |||
| 1 0 1 -1 -2 -1 0 0 | 1 1 1 -1 -2 -1 0 0 | 0 0 0 0 0 0 1 0 | |||
| 0 1 0 0 0 0 1 0 | 1 1 0 0 0 0 1 0 | 0 0 1 0 0 0 1 0 | |||
| 0 1 1 0 0 0 1 0 | 0 1 0 1 0 0 1 0 | 1 0 0 -1 0 0 1 0 | |||
| 1 1 0 -1 0 0 1 0 | 0 0 1 -1 0 0 1 0 | 0 1 1 -1 0 0 1 0 | |||
| 1 1 1 -1 0 0 1 0 | 0 0 0 0 1 0 1 0 | 0 1 0 0 1 0 1 0 | |||
| 0 1 0 1 1 0 1 0 | 0 1 -1 1 1 0 1 0 | 1 1 1 -1 -1 0 1 0 | |||
| 0 1 0 0 0 -1 1 0 | 1 1 0 0 0 -1 1 0 | 0 0 1 0 0 -1 1 0 | |||
| 0 1 1 0 0 -1 1 0 | 0 1 0 1 0 -1 1 0 | 0 0 1 -1 0 -1 1 0 | |||
| 0 1 1 -1 0 -1 1 0 | 0 1 0 0 -1 -1 1 0 | 1 1 0 0 -1 -1 1 0 | |||
| 0 0 1 0 -1 -1 1 0 | 0 1 1 0 -1 -1 1 0 | 1 1 1 0 -1 -1 1 0 | |||
| 0 0 1 -1 -1 -1 1 0 | 1 0 1 -1 -1 -1 1 0 | 0 1 1 -1 -1 -1 1 0 | |||
| 1 1 1 -1 -1 -1 1 0 | 0 0 2 -1 -1 -1 1 0 | 0 1 2 -1 -1 -1 1 0 | |||
| 0 1 1 0 -1 -2 1 0 | 1 0 0 0 0 0 -1 0 | 1 0 -1 0 0 0 -1 0 | |||
| 0 0 0 1 0 0 -1 0 | 1 0 0 0 -1 0 -1 0 | 1 1 0 0 -1 0 -1 0 | |||
| 0 0 1 0 -1 0 -1 0 | 1 0 -1 0 -1 0 -1 0 | 0 0 0 1 -1 0 -1 0 | |||
| 1 0 0 -1 -1 0 -1 0 | 1 -1 0 -1 -1 0 -1 0 | 1 0 1 -1 -1 0 -1 0 | |||
| 0 0 0 0 0 1 -1 0 | 1 0 0 0 0 1 -1 0 | 1 0 -1 0 0 1 -1 0 | |||
| 1 -1 -1 0 0 1 -1 0 | 0 0 0 1 0 1 -1 0 | 1 0 -1 1 0 1 -1 0 | |||
| 1 0 0 -1 0 1 -1 0 | 1 -1 0 -1 0 1 -1 0 | 1 0 0 0 -1 1 -1 0 | |||
| 1 0 0 -1 -1 1 -1 0 | 0 1 1 0 0 -1 2 0 | 0 1 1 -1 0 -1 2 0 | |||
| 0 0 0 0 0 0 0 1 | 0 1 0 0 0 0 0 1 | 1 1 0 0 0 0 0 1 | |||
| 1 0 -1 0 0 0 0 1 | 0 1 -1 0 0 0 0 1 | 1 1 -1 0 0 0 0 1 | |||
| 0 1 -1 1 0 0 0 1 | 1 0 0 -1 0 0 0 1 | 1 1 0 -1 0 0 0 1 | |||
| 0 0 1 -1 0 0 0 1 | 1 0 -1 -1 0 0 0 1 | 0 0 0 0 1 0 0 1 | |||
| 0 1 0 0 1 0 0 1 | 0 1 -1 0 1 0 0 1 | 1 1 -1 0 1 0 0 1 | |||
| 0 1 -1 1 1 0 0 1 | 1 1 0 0 -1 0 0 1 | 1 0 0 -1 -1 0 0 1 | |||
|---|---|---|---|---|---|
| 1 1 0 -1 -1 0 0 1 | 2 1 0 -1 -1 0 0 1 | 1 1 1 -1 -1 0 0 1 | |||
| 0 1 0 0 0 -1 0 1 | 1 1 0 0 0 -1 0 1 | 1 1 -1 0 0 -1 0 1 | |||
| 0 1 0 1 0 -1 0 1 | 0 1 -1 1 0 -1 0 1 | 1 0 0 -1 0 -1 0 1 | |||
| 1 1 0 -1 0 -1 0 1 | 0 0 1 -1 0 -1 0 1 | 0 1 0 0 -1 -1 0 1 | |||
| 1 1 0 0 -1 -1 0 1 | 1 2 0 0 -1 -1 0 1 | 0 1 1 0 -1 -1 0 1 | |||
| 1 0 0 -1 -1 -1 0 1 | 1 1 0 -1 -1 -1 0 1 | 2 1 0 -1 -1 -1 0 1 | |||
| 0 0 1 -1 -1 -1 0 1 | 1 0 1 -1 -1 -1 0 1 | 0 1 1 -1 -1 -1 0 1 | |||
| 1 1 1 -1 -1 -1 0 1 | 1 0 1 -2 -1 -1 0 1 | 1 1 1 -1 -2 -1 0 1 | |||
| 1 1 0 -1 0 0 1 1 | 0 1 0 0 1 0 1 1 | 0 1 0 0 0 -1 1 1 | |||
| 1 1 0 0 0 -1 1 1 | 1 2 0 0 0 -1 1 1 | 0 1 1 0 0 -1 1 1 | |||
| 0 1 0 -1 0 -1 1 1 | 1 1 0 -1 0 -1 1 1 | 0 0 1 -1 0 -1 1 1 | |||
| 0 1 1 -1 0 -1 1 1 | 1 1 1 -1 0 -1 1 1 | 0 1 0 0 1 -1 1 1 | |||
| 1 1 0 -1 -1 -1 1 1 | 0 1 1 -1 -1 -1 1 1 | 1 1 1 -1 -1 -1 1 1 | |||
| 1 2 1 -1 -1 -1 1 1 | 1 1 1 -2 -1 -1 1 1 | 0 1 1 -1 -1 -2 1 1 | |||
| 1 1 1 -1 -1 -2 1 1 | 1 0 0 0 0 0 -1 1 | 1 1 0 0 0 0 -1 1 | |||
| 1 0 -1 0 0 0 -1 1 | 1 1 -1 0 0 0 -1 1 | 0 1 -1 1 0 0 -1 1 | |||
| 1 1 -1 1 0 0 -1 1 | 1 0 0 -1 0 0 -1 1 | 1 0 -1 -1 0 0 -1 1 | |||
| 1 0 0 0 -1 0 -1 1 | 1 1 0 0 -1 0 -1 1 | 1 0 -1 0 -1 0 -1 1 | |||
| 1 1 -1 0 -1 0 -1 1 | 1 0 0 -1 -1 0 -1 1 | 1 1 0 -1 -1 0 -1 1 | |||
| 2 1 0 -1 -1 0 -1 1 | 1 0 -1 0 0 1 -1 1 | 1 1 -1 0 0 1 -1 1 | |||
| 1 0 0 -1 0 1 -1 1 | 1 0 -1 -1 0 1 -1 1 | 1 0 -1 0 1 1 -1 1 | |||
| 1 1 0 0 -1 -1 -1 1 | 1 0 0 -1 -1 -1 -1 1 | 1 0 -1 0 0 1 -2 1 | |||
| 0 0 1 0 0 0 0 -1 | 0 0 0 1 0 0 0 -1 | 1 0 0 0 -1 0 0 -1 | |||
| 0 0 1 0 -1 0 0 -1 | 0 0 0 1 -1 0 0 -1 | 0 0 1 -1 -1 0 0 -1 | |||
| 1 0 1 -1 -1 0 0 -1 | 0 0 0 0 0 1 0 -1 | 1 0 0 0 0 1 0 -1 | |||
| 0 0 1 0 0 1 0 -1 | 0 0 0 1 0 1 0 -1 | 0 0 0 0 1 1 0 -1 | |||
| 0 0 0 1 1 1 0 -1 | 0 0 1 0 -1 -1 0 -1 | 0 0 0 0 0 0 1 -1 | |||
| 0 0 1 0 0 0 1 -1 | 0 1 1 0 0 0 1 -1 | 0 0 0 1 0 0 1 -1 | |||
| 0 1 0 1 0 0 1 -1 | 0 0 1 -1 0 0 1 -1 | 0 0 0 0 1 0 1 -1 | |||
| 0 0 1 0 -1 0 1 -1 | 0 0 1 -1 -1 0 1 -1 | 0 0 0 0 1 1 1 -1 | |||
| 0 0 1 0 0 -1 1 -1 | 0 0 1 0 -1 -1 1 -1 | 0 1 1 0 -1 -1 1 -1 | |||
| 0 0 1 -1 -1 -1 1 -1 | 0 0 2 -1 -1 -1 1 -1 | 0 0 0 1 0 1 -1 -1 | |||
| 1 1 0 -1 0 -1 0 2 | 1 1 0 -1 -1 -1 0 2 | 1 1 -1 0 0 0 -1 2 |
| 1 0 0 0 0 0 0 0 | 0 1 0 0 0 0 0 0 | 1 1 0 0 0 0 0 0 | |||
|---|---|---|---|---|---|
| 0 0 1 0 0 0 0 0 | 0 1 1 0 0 0 0 0 | 1 0 -1 0 0 0 0 0 | |||
| 1 1 -1 0 0 0 0 0 | 0 0 0 1 0 0 0 0 | 0 1 0 1 0 0 0 0 | |||
| 1 1 0 1 0 0 0 0 | 0 1 -1 1 0 0 0 0 | 1 1 -1 1 0 0 0 0 | |||
| 1 0 0 -1 0 0 0 0 | 0 0 1 -1 0 0 0 0 | 1 0 1 -1 0 0 0 0 | |||
| 0 0 0 0 1 0 0 0 | 0 0 0 1 1 0 0 0 | 0 1 -1 1 1 0 0 0 | |||
| 1 0 0 0 -1 0 0 0 | 0 1 0 0 -1 0 0 0 | 1 1 0 0 -1 0 0 0 | |||
| 0 0 1 0 -1 0 0 0 | 0 1 1 0 -1 0 0 0 | 1 1 1 0 -1 0 0 0 | |||
| 0 1 0 1 -1 0 0 0 | 1 0 0 -1 -1 0 0 0 | 1 1 0 -1 -1 0 0 0 | |||
| 0 0 1 -1 -1 0 0 0 | 1 0 1 -1 -1 0 0 0 | 1 1 1 -1 -1 0 0 0 | |||
| 1 0 1 -2 -1 0 0 0 | 0 0 0 0 0 1 0 0 | 1 0 0 0 0 1 0 0 | |||
| 0 1 0 0 0 1 0 0 | 1 1 0 0 0 1 0 0 | 1 0 -1 0 0 1 0 0 | |||
| 1 1 -1 0 0 1 0 0 | 1 0 0 -1 0 1 0 0 | 0 0 0 0 1 1 0 0 | |||
| 1 0 -1 0 1 1 0 0 | 0 0 0 1 1 1 0 0 | 0 1 -1 1 1 1 0 0 | |||
| 0 0 1 0 0 -1 0 0 | 0 0 0 1 0 -1 0 0 | 0 1 0 1 0 -1 0 0 | |||
| 1 0 0 0 -1 -1 0 0 | 0 1 0 0 -1 -1 0 0 | 1 1 0 0 -1 -1 0 0 | |||
| 0 0 1 0 -1 -1 0 0 | 0 1 1 0 -1 -1 0 0 | 1 1 1 0 -1 -1 0 0 | |||
| 0 1 0 1 -1 -1 0 0 | 1 0 0 -1 -1 -1 0 0 | 0 0 1 -1 -1 -1 0 0 | |||
| 1 0 1 -1 -1 -1 0 0 | 1 1 1 -1 -1 -1 0 0 | 0 0 1 -1 -2 -1 0 0 | |||
| 1 0 1 -1 -2 -1 0 0 | 1 1 1 -1 -2 -1 0 0 | 0 0 0 0 0 0 1 0 | |||
| 0 1 0 0 0 0 1 0 | 1 1 0 0 0 0 1 0 | 0 0 1 0 0 0 1 0 | |||
| 0 1 1 0 0 0 1 0 | 0 1 0 1 0 0 1 0 | 1 0 0 -1 0 0 1 0 | |||
| 1 1 0 -1 0 0 1 0 | 0 0 1 -1 0 0 1 0 | 1 0 1 -1 0 0 1 0 | |||
| 0 1 1 -1 0 0 1 0 | 1 1 1 -1 0 0 1 0 | 0 0 0 0 1 0 1 0 | |||
| 0 1 0 0 1 0 1 0 | 1 1 -1 0 1 0 1 0 | 0 1 0 1 1 0 1 0 | |||
| 0 1 -1 1 1 0 1 0 | 1 1 1 -1 -1 0 1 0 | 0 0 0 0 1 1 1 0 | |||
| 0 1 0 0 0 -1 1 0 | 1 1 0 0 0 -1 1 0 | 0 0 1 0 0 -1 1 0 | |||
| 0 1 1 0 0 -1 1 0 | 0 1 0 1 0 -1 1 0 | 0 0 1 -1 0 -1 1 0 | |||
| 0 1 1 -1 0 -1 1 0 | 0 1 0 0 -1 -1 1 0 | 1 1 0 0 -1 -1 1 0 | |||
| 0 0 1 0 -1 -1 1 0 | 0 1 1 0 -1 -1 1 0 | 1 1 1 0 -1 -1 1 0 | |||
| 0 0 1 -1 -1 -1 1 0 | 1 0 1 -1 -1 -1 1 0 | 0 1 1 -1 -1 -1 1 0 | |||
| 1 1 1 -1 -1 -1 1 0 | 0 0 2 -1 -1 -1 1 0 | 0 1 2 -1 -1 -1 1 0 | |||
| 0 1 1 0 -1 -2 1 0 | 1 0 0 0 0 0 -1 0 | 1 0 -1 0 0 0 -1 0 | |||
| 0 0 0 1 0 0 -1 0 | 1 0 0 0 -1 0 -1 0 | 1 1 0 0 -1 0 -1 0 | |||
| 0 0 1 0 -1 0 -1 0 | 1 0 -1 0 -1 0 -1 0 | 0 0 0 1 -1 0 -1 0 | |||
| 1 0 0 -1 -1 0 -1 0 | 1 -1 0 -1 -1 0 -1 0 | 0 0 1 -1 -1 0 -1 0 | |||
| 1 0 1 -1 -1 0 -1 0 | 0 0 0 0 0 1 -1 0 | 1 0 0 0 0 1 -1 0 | |||
| 1 0 -1 0 0 1 -1 0 | 1 -1 -1 0 0 1 -1 0 | 0 0 0 1 0 1 -1 0 | |||
| 1 0 -1 1 0 1 -1 0 | 1 1 -1 1 0 1 -1 0 | 1 0 0 -1 0 1 -1 0 | |||
| 1 -1 0 -1 0 1 -1 0 | 1 0 -1 0 1 1 -1 0 | 1 0 0 0 -1 1 -1 0 | |||
| 1 0 0 -1 -1 1 -1 0 | 0 1 1 0 0 -1 2 0 | 0 1 1 -1 0 -1 2 0 | |||
| 0 0 0 0 0 0 0 1 | 1 0 0 0 0 0 0 1 | 0 1 0 0 0 0 0 1 | |||
| 1 1 0 0 0 0 0 1 | 1 0 -1 0 0 0 0 1 | 0 1 -1 0 0 0 0 1 | |||
| 1 1 -1 0 0 0 0 1 | 0 1 0 1 0 0 0 1 | 0 1 -1 1 0 0 0 1 | |||
| 1 1 -1 1 0 0 0 1 | 1 0 0 -1 0 0 0 1 | 1 1 0 -1 0 0 0 1 | |||
| 0 0 1 -1 0 0 0 1 | 1 0 -1 -1 0 0 0 1 | 0 0 0 0 1 0 0 1 | |||
| 0 1 0 0 1 0 0 1 | 1 0 -1 0 1 0 0 1 | 0 1 -1 0 1 0 0 1 | |||
| 1 1 -1 0 1 0 0 1 | 0 1 -1 1 1 0 0 1 | 1 1 0 0 -1 0 0 1 | |||
| 1 0 0 -1 -1 0 0 1 | 1 1 0 -1 -1 0 0 1 | 2 1 0 -1 -1 0 0 1 | |||
| 1 1 1 -1 -1 0 0 1 | 1 1 -1 0 1 1 0 1 | 0 1 0 0 0 -1 0 1 | |||
| 1 1 0 0 0 -1 0 1 | 0 1 -1 0 0 -1 0 1 | 1 1 -1 0 0 -1 0 1 | |||
| 0 1 0 1 0 -1 0 1 | 0 1 -1 1 0 -1 0 1 | 1 0 0 -1 0 -1 0 1 | |||
| 1 1 0 -1 0 -1 0 1 | 0 0 1 -1 0 -1 0 1 | 1 0 -1 -1 0 -1 0 1 | |||
| 0 1 0 0 -1 -1 0 1 | 1 1 0 0 -1 -1 0 1 | 1 2 0 0 -1 -1 0 1 | |||
| 0 1 1 0 -1 -1 0 1 | 1 0 0 -1 -1 -1 0 1 | 1 1 0 -1 -1 -1 0 1 | |||
| 2 1 0 -1 -1 -1 0 1 | 0 0 1 -1 -1 -1 0 1 | 1 0 1 -1 -1 -1 0 1 | |||
| 0 1 1 -1 -1 -1 0 1 | 1 1 1 -1 -1 -1 0 1 | 1 0 1 -2 -1 -1 0 1 | |||
| 1 1 1 -1 -2 -1 0 1 | 1 1 0 -1 0 0 1 1 | 0 1 0 0 1 0 1 1 | |||
| 0 1 -1 0 1 0 1 1 | 0 1 0 0 0 -1 1 1 | 1 1 0 0 0 -1 1 1 | |||
| 1 2 0 0 0 -1 1 1 | 0 1 1 0 0 -1 1 1 | 0 1 0 -1 0 -1 1 1 | |||
| 1 1 0 -1 0 -1 1 1 | 0 0 1 -1 0 -1 1 1 | 0 1 1 -1 0 -1 1 1 | |||
| 1 1 1 -1 0 -1 1 1 | 0 1 0 0 1 -1 1 1 | 1 1 0 -1 -1 -1 1 1 | |||
| 0 1 1 -1 -1 -1 1 1 | 1 1 1 -1 -1 -1 1 1 | 1 2 1 -1 -1 -1 1 1 | |||
| 1 1 1 -2 -1 -1 1 1 | 0 1 1 -1 -1 -2 1 1 | 1 1 1 -1 -1 -2 1 1 | |||
| 1 0 0 0 0 0 -1 1 | 0 1 0 0 0 0 -1 1 | 1 1 0 0 0 0 -1 1 | |||
| 1 0 -1 0 0 0 -1 1 | 1 1 -1 0 0 0 -1 1 | 0 1 -1 1 0 0 -1 1 | |||
| 1 1 -1 1 0 0 -1 1 | 1 0 0 -1 0 0 -1 1 | 1 0 -1 -1 0 0 -1 1 | |||
| 1 0 0 0 -1 0 -1 1 | 1 1 0 0 -1 0 -1 1 | 1 0 -1 0 -1 0 -1 1 | |||
| 1 1 -1 0 -1 0 -1 1 | 1 0 0 -1 -1 0 -1 1 | 1 1 0 -1 -1 0 -1 1 | |||
| 2 1 0 -1 -1 0 -1 1 | 1 0 -1 0 0 1 -1 1 | 1 1 -1 0 0 1 -1 1 | |||
| 1 0 0 -1 0 1 -1 1 | 1 0 -1 -1 0 1 -1 1 | 1 0 -1 0 1 1 -1 1 | |||
| 1 0 0 0 -1 -1 -1 1 | 1 1 0 0 -1 -1 -1 1 | 1 0 0 -1 -1 -1 -1 1 | |||
| 1 0 -1 0 0 1 -2 1 | 0 0 1 0 0 0 0 -1 | 0 0 0 1 0 0 0 -1 | |||
| 1 0 0 0 -1 0 0 -1 | 0 0 1 0 -1 0 0 -1 | 0 0 0 1 -1 0 0 -1 | |||
| 0 0 1 -1 -1 0 0 -1 | 1 0 1 -1 -1 0 0 -1 | 0 0 0 0 0 1 0 -1 | |||
| 1 0 0 0 0 1 0 -1 | 0 0 1 0 0 1 0 -1 | 0 0 0 1 0 1 0 -1 | |||
| 0 0 0 0 1 1 0 -1 | 0 0 0 1 1 1 0 -1 | 0 0 1 0 -1 -1 0 -1 | |||
| 0 0 0 0 0 0 1 -1 | 0 0 1 0 0 0 1 -1 | 0 1 1 0 0 0 1 -1 | |||
| 0 0 0 1 0 0 1 -1 | 0 1 0 1 0 0 1 -1 | 0 0 1 -1 0 0 1 -1 | |||
| 0 0 0 0 1 0 1 -1 | 0 0 0 1 1 0 1 -1 | 0 0 1 0 -1 0 1 -1 | |||
| 0 0 1 -1 -1 0 1 -1 | 1 0 1 -1 -1 0 1 -1 | 0 0 0 0 0 1 1 -1 | |||
| 0 0 0 0 1 1 1 -1 | 0 1 0 1 1 1 1 -1 | 0 0 1 0 0 -1 1 -1 | |||
| 0 0 1 0 -1 -1 1 -1 | 0 1 1 0 -1 -1 1 -1 | 0 0 1 -1 -1 -1 1 -1 | |||
| 0 0 2 -1 -1 -1 1 -1 | 0 0 0 1 0 1 -1 -1 | 1 1 0 -1 0 -1 0 2 | |||
| 1 1 0 -1 -1 -1 0 2 | 1 1 -1 0 0 0 -1 2 | 1 1 0 -1 -1 -1 -1 2 |
| Class | Representative wall normal | Order | Intersecting |
| (1 0 0 0 0 0 0 0) ⊗ (0 0 0 0 0 0 0 1) | 288 | 84 | |
| (0 1 0 -1 1 -1 1 1) ⊗ (0 0 0 0 1 0 0 0) | 288 | 13 | |
| (1 0 -1 0 0 0 0 0) ⊗ (0 0 0 1 0 1 0 -1) | 108 | 5 | |
| Total | 684 | 102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).