Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Magic Numbers and Mixing Degree in Many-Fermion Systems

Version 1 : Received: 6 July 2023 / Approved: 7 July 2023 / Online: 7 July 2023 (10:51:53 CEST)

A peer-reviewed article of this Preprint also exists.

Monteoliva, D.; Plastino, A.; Plastino, A.R. Magic Numbers and Mixing Degree in Many-Fermion Systems. Entropy 2023, 25, 1206. Monteoliva, D.; Plastino, A.; Plastino, A.R. Magic Numbers and Mixing Degree in Many-Fermion Systems. Entropy 2023, 25, 1206.

Abstract

We consider an $N$ fermion system at low temperature $T$ in which we encounter special particle number values $N_m$ exhibiting special traits. These values arise in focusing attention upon the degree of mixture (DM) of the pertinent quantum states. Given the coupling constant of the Hamiltonian, the DMs stay constant for all $N$-values, but experience sudden jumps at the $N_m$. For a quantum state described by the matrix $\rho$, its purity is expressed by $Tr \rho^2$ and then the degree of mixture is given by $1 - Tr \rho^2$, a quantity that coincides with the entropy $S_q$ for $q=2$. Thus, Tsallis entropy of index two faithfully represents the degree of mixing of a state, that is, it measures the extent to which the state departs from maximal purity . Macroscopic manifestations of the degree of mixing can be observed through various physical quantities. Our present study is closely related to properties of many-fermion systemsn that are usually manipulated at zero temperature. Here we wish to study the subject at finite temperature. Gibbs' ensemble is appealed to. Some interesting insights are thereby gained.

Keywords

Tsallis entropy; Many fermion systems; Mixture-degree; Finite temperature; Magic numbers

Subject

Physical Sciences, Mathematical Physics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.