Submitted:
03 July 2023
Posted:
06 July 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Outcome Measures
Rehabilitative Ultrasound Imaging Data
Balance Assessment
2.4. Statistical Analysis
3. Results
| Data | Total Sample (n = 24) |
Case (n = 12) |
Control (n = 12) |
p-Value |
|---|---|---|---|---|
| Age, y | 67 ± 8.5 | 67 ± 10.1 | 67 ± 7.9 | 0.728 |
| Height, m | 1.64 ± 0.1 | 1.64 ± 0.1 | 1.65 ± 0.1 | 0.852 |
| Weight, kg | 71.5 ± 11.9 | 70.0 ± 6.4 | 73 ± 15.5 | 0.689 |
| BMI, kg/m2 | 26.2 ± 2.8 | 25.9 ± 1.4 | 26.4 ± 3.8 | 0.650 |
| Stroke type | ||||
| Ischemic | N/A | 11 | N/A | N/A |
| Hemorrhagic | N/A | 1 | N/A | N/A |
| TUG | N/A | 22.0 ± 13.0 | N/A | N/A |
| BERG | N/A | 45.8 ± 12.4 | N/A | N/A |
4. Discussion
5. Conclusions
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Q.; Li, R.; Wang, L.; Yin, P.; Wang, Y.; Yan, C.; Ren, Y.; Qian, Z.; Vaughn, M.G.; McMillin, S.E.; et al. Temporal Trend and Attributable Risk Factors of Stroke Burden in China, 1990-2019: An Analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2021, 6, e897–e906. [Google Scholar] [CrossRef] [PubMed]
- Jamal, K.; Leplaideur, S.; Rousseau, C.; Cordillet, S.; Raillon, A.M.; Butet, S.; Cretual, A.; Bonan, I. The Effects of Repetitive Neck-Muscle Vibration on Postural Disturbances after a Chronic Stroke. Neurophysiol Clin 2020, 50, 269–278. [Google Scholar] [CrossRef]
- Mullie, Y.; Duclos, C. Role of Proprioceptive Information to Control Balance during Gait in Healthy and Hemiparetic Individuals. Gait Posture 2014, 40, 610–615. [Google Scholar] [CrossRef]
- Villafañe, J.H.; Zanetti, L.; Isgrò, M.; Cleland, J.A.; Bertozzi, L.; Gobbo, M.; Negrini, S. Methods for the Assessment of Neuromotor Capacity in Non-Specific Low Back Pain: Validity and Applicability in Everyday Clinical Practice. J Back Musculoskelet Rehabil 2015, 28, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Pollet, J.; Buraschi, R.; Villafañe, J.H.; Piovanelli, B.; Negrini, S. Gait Parameters Assessed with Inertial Measurement Unit during 6-Minute Walk Test in People after Stroke. Int J Rehabil Res 2021, 44, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Leplaideur, S.; Leblong, E.; Jamal, K.; Rousseau, C.; Raillon, A.M.; Coignard, P.; Damphousse, M.; Bonan, I. Short-Term Effect of Neck Muscle Vibration on Postural Disturbances in Stroke Patients. Exp Brain Res 2016, 234, 2643–2651. [Google Scholar] [CrossRef]
- Borboni, A.; Villafañe, J.H.; Mullè, C.; Valdes, K.; Faglia, R.; Taveggia, G.; Negrini, S. Robot-Assisted Rehabilitation of Hand Paralysis After Stroke Reduces Wrist Edema and Pain: A Prospective Clinical Trial. J Manipulative Physiol Ther 2017, 40, 21–30. [Google Scholar] [CrossRef]
- Worsley, P.R.; Kitsell, F.; Samuel, D.; Stokes, M. Validity of Measuring Distal Vastus Medialis Muscle Using Rehabilitative Ultrasound Imaging versus Magnetic Resonance Imaging. Man Ther 2014, 19, 259–263. [Google Scholar] [CrossRef]
- Hebert, J.J.; Koppenhaver, S.L.; Parent, E.C.; Fritz, J.M. A Systematic Review of the Reliability of Rehabilitative Ultrasound Imaging for the Quantitative Assessment of the Abdominal and Lumbar Trunk Muscles. Spine (Phila Pa 1976) 2009, 34, E848–856. [Google Scholar] [CrossRef]
- Onat, Ş.Ş.; Polat, C.S.; Gürçay, E.; Özcan, D.S.; Orhan, A. Muscle Architecture and Clinical Parameters in Stroke Patients: An Ultrasonographic Study. J Clin Ultrasound 2022, 50, 713–718. [Google Scholar] [CrossRef]
- Stokes, M.; Hides, J.; Elliott, J.; Kiesel, K.; Hodges, P. Rehabilitative Ultrasound Imaging of the Posterior Paraspinal Muscles. J Orthop Sports Phys Ther 2007, 37, 581–595. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.S.; You, J.S.H. Reflex-Mediated Dynamic Neuromuscular Stabilization in Stroke Patients: EMG Processing and Ultrasound Imaging. Technol Health Care 2017, 25, 99–106. [Google Scholar] [CrossRef]
- Lyu, P.-Z.; Zhu, R.T.-L.; Ling, Y.T.; Wang, L.-K.; Zheng, Y.-P.; Ma, C.Z.-H. How Paretic and Non-Paretic Ankle Muscles Contract during Walking in Stroke Survivors: New Insight Using Novel Wearable Ultrasound Imaging and Sensing Technology. Biosensors (Basel) 2022, 12, 349. [Google Scholar] [CrossRef]
- Estrada-Barranco, C.; Cano-de-la-Cuerda, R.; Molina-Rueda, F. Construct Validity of the Wisconsin Gait Scale in Acute, Subacute and Chronic Stroke. Gait Posture 2019, 68, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, J.; Nam, H.; Kim, H.D.; Eom, M.J.; Jung, S.H.; Han, N. Ultrasound Imaging of the Trunk Muscles in Acute Stroke Patients and Relations With Balance Scales. Ann Rehabil Med 2020, 44, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Pillastrini, P.; Ferrari, S.; Rattin, S.; Cupello, A.; Villafañe, J.H.; Vanti, C. Exercise and Tropism of the Multifidus Muscle in Low Back Pain: A Short Review. J Phys Ther Sci 2015, 27, 943–945. [Google Scholar] [CrossRef]
- Whittaker, J.L.; Warner, M.B.; Stokes, M. Comparison of the Sonographic Features of the Abdominal Wall Muscles and Connective Tissues in Individuals with and without Lumbopelvic Pain. J Orthop Sports Phys Ther 2013, 43, 11–19. [Google Scholar] [CrossRef]
- Cuenca-Zaldivar, J.N.; Monroy Acevedo, Á.; Fernández-Carnero, J.; Sánchez-Romero, E.A.; Villafañe, J.H.; Barragán Carballar, C. Effects of a Multicomponent Exercise Program on Improving Frailty in Post-COVID-19 Older Adults after Intensive Care Units: A Single-Group Retrospective Cohort Study. Biology (Basel) 2022, 11, 1084. [Google Scholar] [CrossRef]
- Negrini, S.; Bissolotti, L.; Ferraris, A.; Noro, F.; Bishop, M.D.; Villafañe, J.H. Nintendo Wii Fit for Balance Rehabilitation in Patients with Parkinson’s Disease: A Comparative Study. J Bodyw Mov Ther 2017, 21, 117–123. [Google Scholar] [CrossRef]
- Marchesi, G.; Ballardini, G.; Barone, L.; Giannoni, P.; Lentino, C.; De Luca, A.; Casadio, M. Modified Functional Reach Test: Upper-Body Kinematics and Muscular Activity in Chronic Stroke Survivors. Sensors (Basel) 2021, 22, 230. [Google Scholar] [CrossRef]
- Buraschi, R.; Pollet, J.; Alghisi, B.; Beltrami, S.; Pedersini, P.; Piovanelli, B.; Negrini, S. P 159 - Gait in Stroke Patients Is Influenced by Upper Limb Functioning: A Quantitative Analysis Correlating QuickDASH with Instrumented TUG and 10MWT. Gait and Posture 2018, 65, 503–504. [Google Scholar] [CrossRef]
- Alghadir, A.H.; Al-Eisa, E.S.; Anwer, S.; Sarkar, B. Reliability, Validity, and Responsiveness of Three Scales for Measuring Balance in Patients with Chronic Stroke. BMC Neurol 2018, 18, 141. [Google Scholar] [CrossRef] [PubMed]
- Tamai, K.; Grisdela, P.; Romanu, J.; Paholpak, P.; Nakamura, H.; Wang, J.C.; Buser, Z. The Impact of Cervical Spinal Muscle Degeneration on Cervical Sagittal Balance and Spinal Degenerative Disorders. Clin Spine Surg 2019, 32, E206–E213. [Google Scholar] [CrossRef] [PubMed]
- Peolsson, A.; Karlsson, A.; Peterson, G.; Borén, H.; Zsigmond, P.; Elliott, J.M.; Leinhard, O.D. Morphology and Composition of the Ventral Neck Muscles in Individuals with Chronic Whiplash Related Disorders Compared to Matched Healthy Controls: A Cross-Sectional Case–Control Study. BMC Musculoskeletal Disorders 2022, 23, 867. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, C.; Hu, J.; Chen, Y.; Yu, W.; Wang, Z.; Wang, X.; Yuan, W. Association Between the Cervical Extensor Musculature and the Demographic Features, Symptoms, and Sagittal Balance in Patients with Multilevel Cervical Spondylotic Myelopathy. World Neurosurg 2023, 169, e40–e50. [Google Scholar] [CrossRef]
- Huang, Z.; Bai, Z.; Yan, J.; Zhang, Y.; Li, S.; Yuan, L.; Huang, D.; Ye, W. Association Between Muscle Morphology Changes, Cervical Spine Degeneration, and Clinical Features in Patients with Chronic Nonspecific Neck Pain: A Magnetic Resonance Imaging Analysis. World Neurosurg 2022, 159, e273–e284. [Google Scholar] [CrossRef]
- Tasseel-Ponche, S.; Yelnik, A.P.; Bonan, I.V. Motor Strategies of Postural Control after Hemispheric Stroke. Neurophysiol Clin 2015, 45, 327–333. [Google Scholar] [CrossRef]
- Bolognini, N.; Russo, C.; Edwards, D.J. The Sensory Side of Post-Stroke Motor Rehabilitation. Restor Neurol Neurosci 2016, 34, 571–586. [Google Scholar] [CrossRef]
- Dinesh, M.; Thenmozhi, P.; KalaBarathi, S. Proprioceptive Neuromuscular Facilitation Neck Pattern and Trunk Specific Exercise on Trunk Control and Balance-an Experimental Study. Int J Ther Massage Bodywork 2022, 15, 9–17. [Google Scholar] [CrossRef]
- Villafañe, J.H.; Lopez-Royo, M.P.; Herrero, P.; Valdes, K.; Cantero-Téllez, R.; Pedersini, P.; Negrini, S. Prevalence of Myofascial Trigger Points in Poststroke Patients With Painful Shoulders: A Cross-Sectional Study. PM R 2019, 11, 1077–1082. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, Y.; Lou, T.; Shen, X. Correlation Between Proprioceptive Impairment and Motor Deficits After Stroke: A Meta-Analysis Review. Front Neurol 2021, 12, 688616. [Google Scholar] [CrossRef] [PubMed]
- Van Criekinge, T.; Truijen, S.; Schröder, J.; Maebe, Z.; Blanckaert, K.; van der Waal, C.; Vink, M.; Saeys, W. The Effectiveness of Trunk Training on Trunk Control, Sitting and Standing Balance and Mobility Post-Stroke: A Systematic Review and Meta-Analysis. Clin Rehabil 2019, 33, 992–1002. [Google Scholar] [CrossRef] [PubMed]
| Measurement | Non-Paretic Side | Paretic Side | p-Value |
|---|---|---|---|
| Multifidus distance | |||
| Grosor vertical REL (mm) | 117.44 ± 46.9 | 124.53 ± 34.2 | 0.478 |
| Grosor horizontal REL (mm) | 257.15 ± 37.2 | 291.42 ± 60.7 | 0.101 |
| AST REL (cm2) | 282.18 ± 122.1 | 317.04 ± 114.5 | 0.266 |
| Grosor vertical CON (mm) | 134.69 ± 49.2 | 136.79 ± 65.6 | 0.809 |
| Grosor horizontal CON (mm) | 285.96 ± 37.1 | 307.03 ± 73.7 | 0.756 |
| AST CON (cm2) | 327.56 ± 90.9 | 443.12 ± 266.0 | 0.426 |
| Measurement | Non-Paretic Side Cases | Controls | p-Value |
|---|---|---|---|
| Multifidus distance | |||
| Grosor vertical REL (mm) | 117.44 ± 46.9 | 68.05 ± 43.6 | 0.551 |
| Grosor horizontal REL (mm) | 257.15 ± 37.2 | 208.29 ± 79.3 | 0.068 |
| AST REL (cm2) | 282.18 ± 122.1 | 208.60 ± 57.2 | 0.128 |
| Grosor vertical CON (mm) | 134.69 ± 49.2 | 96.03 ± 38.5 | 0.040 |
| Grosor horizontal CON (mm) | 285.96 ± 37.1 | 285.81 ± 122.0 | 0.133 |
| AST CON (cm2) | 327.56 ± 90.9 | 309.34 ± 86.9 | 0.016 |
| Measurement | Spearman Correlation Coefficient | |||
|---|---|---|---|---|
| TUG Healthy |
TUG Affected |
BERG Healthy |
BERG Affected |
|
| Grosor vertical REL | 0.18 | 0.33 | 0.08 | -0.74 |
| Grosor horizonal REL | 0.66 | -0.11 | 0.68 | -0.43 |
| AST REL | 0.86 | 0.04 | 0.30 | -0.64 |
| Grosor vertical CON | 0.42 | 0.09 | -0.61 | -0.25 |
| Grosor horizontal CON | 0.52 | 0.93 | 0.95 | -0.69 |
| AST CON | 0.57 | 0.43 | -0.76 | -0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
