Submitted:
29 June 2023
Posted:
30 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Challenges posed by creating microgrids on top of existing passive distribution networks
2.1. General requirements to be met by microgrids
2.2. Optimization problems in microgrids
2.3. Planning microgrid creation and expansion
2.3.1. Choosing generation technologies and ESS parameters
2.3.2. Microgrid sizing
2.3.3. Choosing microgrid connection points
2.3.4. Scheduling the use of energy resources
- online monitoring: the data on current electricity consumption make it possible to identify periods in which undesirable consumption of electricity from the distribution network occurs [100]. If there are production processes in the microgrid, it is required to coordinate the increase/decrease of power consumption with the DER operation schedules;
- optimal control algorithms: power consumption data allow us to determine demand coefficients for each consumer [101]. This makes it possible to obtain significant savings of non-renewable energy resources through maximum utilization of RES-based DERs and optimal use of ESSs.
2.3.5. Pricing in microgrids
2.4. Control and protection in microgrids
2.5. Information and communications technology infrastructure of microgrids
3. Implementation of optimization algorithms in microgrids
- evolutionary computations: methods that simulate the evolution of population members (genetic algorithms, differential evolution);
- methods of swarm intelligence: methods capturing the properties of self-organizing groups of biological organisms with “smart” global behavior (ant colonies, harmony search algorithm, particle swarm optimization, etc.);
- artificial immune systems: methods inspired by theoretical immunology and modeling the processes used by the immune system to respond to external threats;
- non-population-based metaheuristics: methods based on finding a single solution, i.e., temporarily taking the worst solution with a probability that decreases as more iterations are run (simulated annealing, tabu search).
3.1. Optimal power flow and scheduling methods
3.2. Methods for microgrid expansion planning
4. Approaches to the selection of microgrid ACS, protection system, and ICT infrastructure
4.1. Choosing the optimal ACS
- selection of the ACS type should be based on the analysis of the mix of DERs, microgrid configuration, possible operating conditions, and other factors;
- control algorithms that do not use communication links based on frequency and voltage droop control (independent of the geographical distance between DERs and the consumers’ electrical loads) are less efficient due to the lack of information exchange between the PECs of DERs [148];
- ACSs based on decentralized algorithms are increasingly being used because of the reduced risk of failure due to damage to a single component, as opposed to centralized or agent-based ACSs.
- reliable and efficient management of power flows both within the microgrid and between the microgrid and distribution network requires the implementation of complex control algorithms;
- they require an additional intermediate PEC between the DC and AC network in the microgrid, which is necessary to maintain the balance of power in the microgrid, both in grid-connected and islanded modes [149];
- the lack of a system-wide variable used to distribute power between heterogeneous DERs, as well as the lack of frequency and voltage regulation necessitates the use of the ACS with a complex structure [150].
4.2. Choosing the best protection system
- machine learning and artificial intelligence methods;
- Wide-Area Monitoring, Protection, and Control (WAMPAC) devices;
- a data exchange protocol compliant with IEC 61850 [154].
4.3. Choosing the best ICTs
5. Conclusion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| DER | distributed energy resources |
| ACS | automatic control systems |
| ICT | information and communications technology |
| ESS | energy storage systems |
| FC | fuel cell |
| PEC | power electronic converters |
| CERTS | Consortium for Electric Reliability Technology Solutions |
| PLC | Power Line Communication |
| WAMPAC | Wide-Area Monitoring, Protection, and Control |
References
- Filippov, S.P.; Dilman, M.D.; Ilyushin, P.V. Distributed Generation of Electricity and Sustainable Regional Growth. Thermal Engineering 2019, 66, 869–880. [Google Scholar] [CrossRef]
- Bassam, N.El. Grid challenges: Integration of distributed renewables with the national grid. Distributed Renewable Energies for Off-Grid Communities: Empowering a Sustainable, Competitive, and Secure Twenty-First Century 2021, 451–456. [Google Scholar] [CrossRef]
- Chen, X.; Zhai, J.; Jiang, Y.; Ni, C.; Wang, S.; Nimmegeers, P. Decentralized coordination between active distribution network and multi-microgrids through a fast decentralized adjustable robust operation framework. Sustainable Energy, Grids and Networks 2023, 34, 101068. [Google Scholar] [CrossRef]
- Abdulsalam, K. A., Adebisi, J., Emezirinwune, M., & Babatunde, O. (2023). An overview and multicriteria analysis of communication technologies for smart grid applications. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 3, 100121. [CrossRef]
- Panda, D.K.; Das, S. Smart grid architecture model for control, optimization and data analytics of future power networks with more renewable energy. Journal of Cleaner Production 2021, 301, 126877. [Google Scholar] [CrossRef]
- Sinsel, S.R.; Riemke, R.L.; Hoffmann, V. H. Challenges and solution technologies for the integration of variable renewable energy sources—a review. Renewable Energy 2020, 145, 2271–2285. [Google Scholar] [CrossRef]
- Park, C.; Heo, W.G. Review of the changing electricity industry value chain in the ICT convergence era. Journal of Cleaner Production 2020, 258, 120743. [Google Scholar] [CrossRef]
- Ilyushin, P.V.; Pazderin, A.V. Approaches to organization of emergency control at isolated operation of energy areas with distributed generation. In Proceedings of the International Ural Conference on Green Energy (URALCON), Chelyabinsk, Russia, 4–6 October 2018. [Google Scholar] [CrossRef]
- Kumar, S.; Islam, S.M.; Jolfaei, A. Microgrid communications – protocols and standards. Variability, Scalability and Stability of Microgrids 2019, 291–326. [Google Scholar] [CrossRef]
- Pena Ramirez, J.; Garcia, E.; Alvarez, J. Master-slave synchronization via dynamic control. Communications in Nonlinear Science and Numerical Simulation 2020, 80, 104977. [Google Scholar] [CrossRef]
- Ilyushin, P.; Volnyi, V.; Suslov, K.; Filippov, S. State-of-the-Art Literature Review of Power Flow Control Methods for Low-Voltage AC and AC-DC Microgrids. Energies 2023, 16, 3153. [Google Scholar] [CrossRef]
- IEEE joint task force on quadrennial energy review https://smartgrid.ieee.org/images/files/pdf/IEEE_QER_Microgrids_October_3_2014.pdf, 2014.
- Onu, U.G.; Zambroni de Souza, A.C.; Bonatto, B.D. Drivers of microgrid projects in developed and developing economies. Utilities Policy 2023, 80. [Google Scholar] [CrossRef]
- Kroposki, B.; Pink, C.; Lynch, J.; John, V.; Daniel, S.M.; Benedict, E.; Vihinen, I. Development of a high-speed static switch for distributed energy and microgrid applications. Fourth Power Conversion Conference-NAGOYA, PCC-NAGOYA 2007 – Conference Proceedings 2007, 1418–1423. [Google Scholar] [CrossRef]
- Ilyushin, P.V.; Suslov, K.V. Operation of automatic transfer switches in the networks with distributed generation. In Proceedings of the 2019 IEEE Milan PowerTech. Milan, Italy, 23-27 June 2019. [Google Scholar] [CrossRef]
- Chatterjee, A.; Burmester, D.; Brent, A.; Rayudu, R. Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries. Energies 2019, 12, 2008. [Google Scholar] [CrossRef]
- Jiang, J.; Bao, Y.; Wang, L.Y. Topology of a Bidirectional Converter for Energy Interaction between Electric Vehicles and the Grid. Energies 2014, 7, 4858–4894. [Google Scholar] [CrossRef]
- Wang, X.; Taul, M.G.; Wu, H.; Liao, Y.; Blaabjerg, F.; Harnefors, L. Grid-Synchronization Stability of Converter-Based Resources—An Overview. IEEE Open Journal of Industry Applications 2020, 1, 115–134. [Google Scholar] [CrossRef]
- Wang, J.; Jin, C.; Wang, P. A Uniform Control Strategy for the Interlinking Converter in Hierarchical Controlled Hybrid AC/DC Microgrids. IEEE Transactions on Industrial Electronics 2018, 65, 6188–6197. [Google Scholar] [CrossRef]
- Rocabert, J.; Luna, A.; Blaabjerg, F.; Rodríguez, P. Control of power converters in AC microgrids. IEEE Transactions on Power Electronics 2012, 27, 4734–4749. [Google Scholar] [CrossRef]
- López González, D.M.; Garcia Rendon, J. Opportunities and challenges of mainstreaming distributed energy resources towards the transition to more efficient and resilient energy markets. Renewable and Sustainable Energy Reviews 2022, 157, 112018. [Google Scholar] [CrossRef]
- Ilyushin, P.V.; Pazderin, A.V. Requirements for power stations islanding automation an influence of power grid parameters and loads. In Proceedings of the 2018 Int. Conf. on Industrial Engineering, Applications and Manufacturing (ICIEAM), Moscow, Russia, 15–18 May 2018. [Google Scholar]
- Prabhakar, K.; Jain, S.K.; Padhy, P.K. Inertia estimation in modern power system: A comprehensive review. Electric Power Systems Research 2022, 211, 108222. [Google Scholar] [CrossRef]
- Musca, R.; Vasile, A.; Zizzo, G. Grid-forming converters. A critical review of pilot projects and demonstrators. Renewable and Sustainable Energy Reviews 2022, 165, 112551. [Google Scholar] [CrossRef]
- Ilyushin, P.; Volnyi, V.; Suslov, K.; Filippov, S. Review of Methods for Addressing Challenging Issues in the Operation of Protection Devices in Microgrids with Voltages of up to 1 kV That Integrates Distributed Energy Resources. Energies 2022, 15, 9186. [Google Scholar] [CrossRef]
- Ghadi, M. J.; Rajabi, A.; Ghavidel, S.; Azizivahed, A.; Li, L.; Zhang, J. From active distribution systems to decentralized microgrids: A review on regulations and planning approaches based on operational factors. Applied Energy 2019, 253, 113543. [Google Scholar] [CrossRef]
- Sivakumar, K.; Jayashree, R.; Danasagaran, K. Efficiency-driven planning for sizing of distributed generators and optimal construction of a cluster of microgrids. Engineering Science and Technology, an International Journal 2021, 24, 1153–1167. [Google Scholar] [CrossRef]
- Sanusi, J.; Oghenewvogaga, O.; Adetokun, B.B.; Abba, A.M. In Proceedings of the 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON). Lagos, Nigeria, 05-07 April 2022. [Google Scholar] [CrossRef]
- Jabbari-Sabet, R.; Moghaddas-Tafreshi, S.M.; Mirhoseini, S.S. Microgrid operation and management using probabilistic reconfiguration and unit commitment. International Journal of Electrical Power & Energy Systems 2016, 75, 328–336. [Google Scholar] [CrossRef]
- Dorahaki, S.; Rashidinejad, M.; Fatemi Ardestani, S.F.; Abdollahi, A.; Salehizadeh, M.R. An integrated model for citizen energy communities and renewable energy communities based on clean energy package: A two-stage risk-based approach. Energy 2023, 277, 127727. [Google Scholar] [CrossRef]
- Hai, T.; Zhou, J.; Rezvani, A.; Le, B.N.; Oikawa, H. Optimal energy management strategy for a renewable based microgrid with electric vehicles and demand response program. Electric Power Systems Research 2023, 221, 109370. [Google Scholar] [CrossRef]
- di Somma, M.; Graditi, G.; Heydarian-Forushani, E.; Shafie-khah, M.; Siano, P. Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects. Renewable Energy 2018, 116, 272–287. [Google Scholar] [CrossRef]
- Bornapour, M.; Hooshmand, R.A.; Khodabakhshian, A.; Parastegari, M. Optimal stochastic scheduling of CHP-PEMFC, WT, PV units and hydrogen storage in reconfigurable micro grids considering reliability enhancement. Energy Conversion and Management 2017, 150, 725–741. [Google Scholar] [CrossRef]
- Kumar, A.; Deng, Y.; He, X.; Singh, A.R.; Kumar, P.; Bansal, R.C.; Bettayeb, M.; Ghenai, C.; Naidoo, R.M. Impact of demand side management approaches for the enhancement of voltage stability load ability and customer satisfaction index. Applied Energy 2023, 339, 120949. [Google Scholar] [CrossRef]
- Mochi, P.; Pandya, K.; Soares, J.; Vale, Z. Optimizing Power Exchange Cost Considering Behavioral Intervention in Local Energy Community. Mathematics 2023, 11. [Google Scholar] [CrossRef]
- Beenish, S.; Ahmad, A. Optimization of Microgrid Energy Cost with Electrical Vehicles and Demand Response. PakJET 2023, 6, 57–62. [Google Scholar] [CrossRef]
- Hemmati, R. Dynamic expansion planning in active distribution grid integrated with seasonally transferred battery swapping station and solar energy. Energy 2023, 277, 127719. [Google Scholar] [CrossRef]
- Ilyushin, P.; Filippov, S.; Kulikov, A.; Suslov, K.; Karamov, D. Specific Features of Operation of Distributed Generation Facilities Based on Gas Reciprocating Units in Internal Power Systems of Industrial Entities. Machines 2022, 10, 693. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Reviews 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Zhan, W.; Wang, Z.; Zhang, L.; Liu, P.; Cui, D.; Dorrell, D.G. A review of siting, sizing, optimal scheduling, and cost-benefit analysis for battery swapping stations. Energy 2022, 258, 124723. [Google Scholar] [CrossRef]
- Rahimi, M.; Ardakani, F.J.; Olatujoye, O. Improving flexible optimal scheduling of virtual power plants considering dynamic line rating and flexible supply and demand. International Journal of Electrical Power & Energy Systems 2023, 150, 109099. [Google Scholar] [CrossRef]
- Cagnano, A.; de Tuglie, E.; Mancarella, P. Microgrids: Overview and guidelines for practical implementations and operation. Applied Energy 2020, 258, 114039. [Google Scholar] [CrossRef]
- IEEE STD 1547-2018; IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. IEEE: Manhattan, NY, USA, 2018; pp. 1–138.
- IEC 61000-4-30:2015+AMD1:2021 CSV|IEC Webstore. (n.d.). IEEE 115 [115-2019—IEEE Guide for Test Procedures for Synchronous Machines Including Acceptance and Performance Testing and Parameter Determination for Dynamic Analysis. 2020. Available online: https://webstore.iec.ch/publication/68642]/ (accessed on 10 June 2023).
- IEC 61508:2010 CMV|IEC Webstore. (n.d.). Available online: https://webstore.iec.ch/publication/22273 (accessed on 11 June 2023).
- IEC 61499-1:2012|IEC Webstore. (n.d.). Available online: https://webstore.iec.ch/publication/5506&preview=1 (accessed on 11 June 2023).
- IEC 61499-2:2012|IEC Webstore. (n.d.). Available online: https://webstore.iec.ch/publication/5507 (accessed on 11 June 2023).
- IEC 61499-4:2013|IEC Webstore. (n.d.). Available online: https://webstore.iec.ch/publication/5508 (accessed on 11 June 2023).
- IEC 61970:2023 SER|IEC Webstore| Automation, Cyber Security, Smart City, Smart Energy, Smart Grid, CGMES. (n.d.). Available online: https://webstore.iec.ch/publication/61167 (accessed on 11 June 2023).
- IEC Smart Grid Standardization Roadmap. International Electrotechnical Commission (IEC), Tech. Rep. Ed. 1.0, 2010. SMB Smart Grid Strategic Group (SG3). Publishing house: IEC, Geneva, Switzerland. – 136 p. https://www.smartgrid.gov/files/documents/IEC_Smart_Grid_Standardization_Roadmap_201005.pdf. (accessed on 10 June 2023).
- Tissue Overview of All Parts|IEC 61850 Tissue Database. (n.d.). Available online: https://iec61850.tissue-db.com/parts.mspx (accessed on 12 June 2023).
- IEC 62351:2023 SER|IEC Webstore|Cyber Security, Smart City. (n.d.). Available online: https://webstore.iec.ch/publication/6912 (accessed on 14 June 2023).
- IEC TR 62357-1:2016|IEC Webstore|Smart Energy, Smart Grid. (n.d.). Available online: https://webstore.iec.ch/publication/26251 (accessed on 14 June 2023).
- IEC TR 62357-2:2019|IEC Webstore. (n.d.). Available online: https://webstore.iec.ch/publication/28523 (accessed on 14 June 2023).
- IEEE Std P2030|IEEE Standards Coordinating Committee 21 (SCC21). (n.d.). Available online: https://sagroups.ieee.org/scc21/standards/ieee-std-2030-2011/ (accessed on 14 June 2023).
- IEEE SA—IEEE 2030.10-2021. (n.d.). Available online: https://standards.ieee.org/ieee/2030.10/10742/ (accessed on 14 June 2023).
- ISO—ISO 52016-1:2017—Energy Performance of Buildings—Energy Needs for Heating and Cooling, Internal Temperatures and Sensible and Latent Heat Loads—Part 1: Calculation Procedures. (n.d.). Available online: https://www.iso.org/standard/65696.html (accessed on 14 June 2023).
- IEC 61851-23:2014|IEC Webstore|LVDC. (n.d.). Available online: https://webstore.iec.ch/publication/6032 (accessed on June 2023).
- Refaat, S.S.; Ellabban, O.; Bayhan, S.; Abu-Rub, H.; Blaabjerg, F.; Begovic, M.M. Smart Grid and Enabling Technologies. John Wiley & Sons, 2021.
- Ilyushin, P.V.; Filippov, S.P. Under-frequency load shedding strategies for power districts with distributed generation. In Proceedings of the 2019 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). 25-29 March 2019. Sochi, Russia. [Google Scholar] [CrossRef]
- Ilyushin, P.V.; Pazderin, A.V.; Seit, R.I. Photovoltaic power plants participation in frequency and voltage regulation. In Proceedings of the 17th International Ural Conf. on AC Electric Drives (ACED 2018), Ekaterinburg, Russia, 26–30 March 2018. [Google Scholar] [CrossRef]
- Ajewole, T.O.; Olabode, O.E.; Babalola, O.S.; Omoigui, M.O. Use of experimental test systems in the application of electric microgrid technology across the sub-Saharan Africa: A review. Sci. Afr. 2020, 8, e00435. [Google Scholar] [CrossRef]
- The CERTS Microgrid Concept, as Demonstrated at the CERTS/AEP Microgrid Test Bed. (n.d.). Available online: https://www.researchgate.net/publication/328600356_The_CERTS_Microgrid_Concept_as_Demonstrated_at_the_CERTSAEP_Microgrid_Test_Bed (accessed on 4 June 2023).
- Jiayi, H.; Chuanwen, J.; Rong, X. A review on distributed energy resources and MicroGrid. Renew. Sustain. Energy Rev. 2008, 12, 2472–2483. [Google Scholar] [CrossRef]
- Hatziargyriou, N. (n.d.). Microgrids: Architectures and Control. Available online: https://books.google.com/books/about/Microgrids.html?hl=ru&id=ywxzAgAAQBA (accessed on 10 June 2023).
- Case Studies of Smart Community Demonstration Project|NEDO. (n.d.). Available online: https://www.nedo.go.jp/english/news/reports_20130222.html#India (accessed on 11 June 2023).
- Jayawarna, N.; Jones, C.; Barnes, M.; Jenkins, N. Operating MicroGrid energy storage control during network faults. In Proceedings of the 2007 IEEE International Conference on System of Systems Engineering, SOSE, San Antonio, TX, USA, 16–18 April 2007. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Jahns, T.M.; Lasseter, R.H. The operation of diesel gensets in a CERTS microgrid. In Proceedings of the IEEE Power and Energy Society 2008 General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century, PES, Pittsburgh, PA, USA, 20–24 July 2008. [Google Scholar] [CrossRef]
- Bossi, C.; Degner, T.; Tselepis, S. Distributed generation with high penetration of renewable energy sources. In Dispower, Final Public Report, Laboratory Tests Case Studies and Field Experience; Kessel, Germany, 2006. https://scholar.google.com/citations?view_op=view_citation&hl=en&user=wwOk4OoAAAAJ&citation_for_view=wwOk4OoAAAAJ:M3ejUd6NZC8C.
- Lidula, N.W.A.; Rajapakse, A.D. Microgrids research: A review of experimental microgrids and test systems. Renew. Sustain. Energy Rev. 2011, 15, 186–202. [Google Scholar] [CrossRef]
- Martin-Martínez, F.; Sánchez-Miralles, A.; Rivier, M. A literature review of Microgrids: A functional layer based classification. Renew. Sustain. Energy Rev. 2016, 62, 1133–1153. [Google Scholar] [CrossRef]
- Zhang, D.; Kong, Q. Renewable energy policy, green investment, and sustainability of energy firms. Renewable Energy 2022, 192, 118–133. [Google Scholar] [CrossRef]
- Kavousi-Fard, A.; Khodaei, A.; Bahramirad, S. Improved efficiency, enhanced reliability and reduced cost: The transition from static microgrids to reconfigurable microgrids. The Electricity Journal 2016, 29, 22–27. [Google Scholar] [CrossRef]
- Koubai, N.; Bouyakoub, F. Myrestaurant: A smart restaurant with a recommendation system. International Journal of Computing and Digital Systems 2019, 8, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Shahidehpour, M.; Fotuhi-Friuzabad, M. Grid modernization for enhancing the resilience, reliability, economics, sustainability, and security of electricity grid in an uncertain environment. In Scientia Iranica D (Issue 6), 2016. www.scientiairanica.com.
- Rodrigues, S.D.; Garcia, V.J. Transactive energy in microgrid communities: A systematic review. Renewable and Sustainable Energy Reviews 2023, 171, 112999. [Google Scholar] [CrossRef]
- Alemohammad, S.H.; Mashhour, E.; Saniei, M. A market-based method for reconfiguration of distribution network. Electric Power Systems Research 2015, 125, 15–22. [Google Scholar] [CrossRef]
- Gazijahani, F.S.; Salehi, J. Integrated DR and reconfiguration scheduling for optimal operation of microgrids using Hong’s point estimate method. International Journal of Electrical Power and Energy Systems 2018, 99, 481–492. [Google Scholar] [CrossRef]
- Papadimitrakis, M.; Giamarelos, N.; Stogiannos, M.; Zois, E.N.; Livanos, N.A.I.; Alexandridis, A. Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications. Renewable and Sustainable Energy Reviews 2021, 145, 111072. [Google Scholar] [CrossRef]
- Tooryan, F.; Hassanzadeh Fard, H.; Collins, E.R.; Jin, S.; Ramezani, B. Optimization and energy management of distributed energy resources for a hybrid residential microgrid. Journal of Energy Storage 2020, 30, 101556. [Google Scholar] [CrossRef]
- Chukkaluru, S.; Ramprabhakar, J. Optimization Techniques for Operationand Control of Microgrids Review. Journal of Green Engineering 2018, 8, 621–644. [Google Scholar] [CrossRef]
- Kiptoo, M.K.; Lotfy, M.E.; Adewuyi, O.B.; Conteh, A.; Howlader, A.M.; Senjyu, T. Integrated approach for optimal techno-economic planning for high renewable energy-based isolated microgrid considering cost of energy storage and demand response strategies. Energy Conversion and Management 2020, 215, 112917. [Google Scholar] [CrossRef]
- Esmaili, M.; Firozjaee, E.C.; Shayanfar, H.A. Optimal placement of distributed generations considering voltage stability and power losses with observing voltage-related constraints. Applied Energy 2014, 113, 1252–1260. [Google Scholar] [CrossRef]
- Gamarra, C.; Guerrero, J.M.; Montero, E. A knowledge discovery in databases approach for industrial microgrid planning. Renewable and Sustainable Energy Reviews 2016, 60, 615–630. [Google Scholar] [CrossRef]
- Zidan, A.; Gabbar, H.A.; Eldessouky, A. Optimal planning of combined heat and power systems within microgrids. Energy 2015, 93, 235–244. [Google Scholar] [CrossRef]
- Liu, X.; Yan, Z.; Wu, J. Optimal coordinated operation of a multi-energy community considering interactions between energy storage and conversion devices. Applied Energy 2019, 248, 256–273. [Google Scholar] [CrossRef]
- Khalilpour, R.; Vassallo, A. Planning and operation scheduling of PV-battery systems: A novel methodology. Renewable and Sustainable Energy Reviews 2016, 53, 194–208. [Google Scholar] [CrossRef]
- Alsaidan, I.; Gao, W.; Khodaei, A. Optimal design of battery energy storage in stand-alone brownfield microgrids. 2017 North American Power Symposium, NAPS 2017. [CrossRef]
- León, L.M.; Romero-Quete, D.; Merchán, N.; Cortés, C.A. Optimal design of PV and hybrid storage based microgrids for healthcare and government facilities connected to highly intermittent utility grids. Applied Energy 2023, 335, 120709. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H.; Aichhorn, A.; Zheng, J.; Greenleaf, M. Sizing strategy of distributed battery storage system with high penetration of photovoltaic for voltage regulation and peak load shaving. IEEE Transactions on smart grid 2013, 5, 982–991. [Google Scholar] [CrossRef]
- Yang, Y.; Bremner, S.; Menictas, C.; Kay, M. Battery energy storage system size determination in renewable energy systems: A review. Renewable and Sustainable Energy Reviews 2018, 91, 109–125. [Google Scholar] [CrossRef]
- Ilyushin, P.; Filippov, S.; Kulikov, A.; Suslov, K.; Karamov, D. Intelligent Control of the Energy Storage System for Reliable Operation of Gas-Fired Reciprocating Engine Plants in Systems of Power Supply to Industrial Facilities. Energies 2022, 15, 6333. [Google Scholar] [CrossRef]
- Chebabhi, A.; Tegani, I.; Benhamadouche, A.D.; Kraa, O. Optimal design and sizing of renewable energies in microgrids based on financial considerations a case study of Biskra, Algeria. Energy Conversion and Management 2023, 291, 117270. [Google Scholar] [CrossRef]
- Wong, L.A.; Ramachandaramurthy, V.K.; Taylor, P.; Ekanayake, J.B.; Walker, S.L.; Padmanaban, S. Review on the optimal placement, sizing and control of an energy storage system in the distribution network. Journal of Energy Storage 2019, 21, pp–489. [Google Scholar] [CrossRef]
- Jannesar, M.R.; Sedighi, A.; Savaghebi, M.; Guerrero, J.M. Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration. Applied Energy 2018, 226, 957–966. [Google Scholar] [CrossRef]
- Dulău, L.I.; Abrudean, M.; Bică, D. Optimal Location of a Distributed Generator for Power Losses Improvement. Procedia Technology 2016, 22, 734–739. [Google Scholar] [CrossRef]
- Kumar, M.; Soomro, A.M.; Uddin, W.; Kumar, L. Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review. Energies 2022, 15(21), 7850. [Google Scholar] [CrossRef]
- Park, H.; Kim, J.K.; Yi, S.C. Optimization of site utility systems for renewable energy integration. Energy 2023, 269, 126799. [Google Scholar] [CrossRef]
- Zou, W.; Sun, Y.; Gao, D.; Zhang, X.; Liu, J. A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective. Applied Energy 2023, 331, 120393. [Google Scholar] [CrossRef]
- Kamal, M.M.; Ashraf, I.; Fernandez, E. Planning and optimization of microgrid for rural electrification with integration of renewable energy resources. Journal of Energy Storage 2022, 52, 104782. [Google Scholar] [CrossRef]
- Akram, U.; Khalid, M.; Shafiq, S. Optimal sizing of a wind/solar/battery hybrid grid-connected microgrid system. IET Renewable Power Generation 2018, 12, 72–80. [Google Scholar] [CrossRef]
- Rehman, A.U.; Shafiq, A.; Ullah, Z.; Iqbal, S.; Hasanien, H.M. Implications of smart grid and customer involvement in energy management and economics. Energy 2023, 276, 127626. [Google Scholar] [CrossRef]
- Vankudoth, L. Badar A. Lokesh Optimal Sizing of RES and BESS in Networked Microgrids based on Proportional Peer-to-Peer and Peer-to-Grid Energy Trading. Energy Storage 2023. [Google Scholar] [CrossRef]
- Rezaei, N.; Pezhmani, Y.; Khazali, A. Economic-environmental risk-averse optimal heat and power energy management of a grid-connected multi microgrid system considering demand response and bidding strategy. Energy 2022, 240, 122844. [Google Scholar] [CrossRef]
- Kryukov, A.; Suslov, K.; Ilyushin, P.; Akhmetshin, A. Parameter Identification of Asynchronous Load Nodes. Energies 2023, 16, 1893. [Google Scholar] [CrossRef]
- Alam, M.S.; Al-Ismail, F.S. , Rahman, S.M., Shafiullah, M.; Hossain, M.A. Planning and protection of DC microgrid: A critical review on recent developments. Engineering Science and Technology, an International Journal 2023, 41, 101404. [Google Scholar] [CrossRef]
- Kulikov, A.; Ilyushin, P.; Suslov, K.; Filippov, S. Organization of Control of the Generalized Power Quality Parameter Using Wald’s Sequential Analysis Procedure. Inventions 2023, 8, 17. [Google Scholar] [CrossRef]
- Ahmed, M.; Meegahapola, L.; Vahidnia, A.; Datta, M. Stability and Control Aspects of Microgrid Architectures-A Comprehensive Review. IEEE Access 2020, 8, 144730–144766. [Google Scholar] [CrossRef]
- Eroshenko, S.A.; Ilyushin, P.V. Features of implementing multi-parameter islanding protection in power districts with distributed generation units. In Proceedings of the 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 12–14 November 2018. [Google Scholar] [CrossRef]
- Ali, S.S.; Choi, B.J. State-of-the-art artificial intelligence techniques for distributed smart grids: A review. Electronics 2020, 9. [Google Scholar] [CrossRef]
- Khan, F.; Siddiqui, M.A.B.; Rehman, A.U.; Khan, J.; Asad, M.T.S.A.; Asad, A. IoT based power monitoring system for smart grid applications. In 2020 International Conference on Engineering and Emerging Technologies (ICEET). IEEE 2020, 1–5. [Google Scholar]
- Dunuweera, M.S.; Porawagamage, G.D.; Hemapala, K.T.M.U.; De Silva, N. Design and implementation of an optimized communication method for Remote Meter Reading using Zigbee. In 2017 Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB). IEEE 2017, pp. 231-236.
- Ben Youssef, N.E.H. Analytical analysis of information-centric networking in smart grids. International Journal of Wireless Information Networks 2022, 29, 354–364. [Google Scholar] [CrossRef]
- Dileep, G. A survey on smart grid technologies and applications. Renewable energy 2020, 146, 2589–2625. [Google Scholar] [CrossRef]
- Abdi, H.; Beigvand, S.D.; Scala, M. A review of optimal power flow studies applied to smart grids and microgrids. Renewable and Sustainable Energy Reviews 2017, 71, 742–766. [Google Scholar] [CrossRef]
- Koltsaklis, N.E.; Giannakakis, M.; Georgiadis, M.C. Optimal energy planning and scheduling of microgrids. Chemical Engineering Research and Design 2018, 131, 318–332. [Google Scholar] [CrossRef]
- Zheng, Z.; Yang, S.; Guo, Y.; Jin, X.; Wang, R. Meta-heuristic Techniques in Microgrid Management: A Survey. Swarm and Evolutionary Computation 2023, 78, 101256. [Google Scholar] [CrossRef]
- Maier, H.R.; Razavi, S.; Kapelan, Z.; Matott, L.S.; Kasprzyk, J.; Tolson, B.A. Introductory overview: Optimization using evolutionary algorithms and other metaheuristics. Environmental Modelling & Software 2019, 114, 195–213. [Google Scholar] [CrossRef]
- Memari, M.; Karimi, A.; Hashemi-Dezaki, H. Reliability evaluation of smart grid using various classic and metaheuristic clustering algorithms considering system uncertainties. International Transactions on Electrical Energy Systems 2021, 31. [Google Scholar] [CrossRef]
- Das, B.K.; Hoque, N.; Mandal, S.; Pal, T.K.; Raihan, M.A. A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh. Energy 2017, 134, 775–788. [Google Scholar] [CrossRef]
- Li, W.; Wang, R.; Zhang, T.; Ming, M.; Lei, H. Multi-scenario microgrid optimization using an evolutionary multi-objective algorithm. Swarm and Evolutionary Computation 2019, 50, 100570. [Google Scholar] [CrossRef]
- Bharothu, J.N.; Sridhar, M.; Rao, R.S. Modified adaptive differential evolution based optimal operation and security of AC-DC microgrid systems. International Journal of Electrical Power & Energy Systems 2018, 103, 185–202. [Google Scholar] [CrossRef]
- Mukherjee, D.; Mallick, S. Utilization of adaptive swarm intelligent metaheuristic in designing an efficient photovoltaic interfaced Static Synchronous Series Compensator. Engineering Applications of Artificial Intelligence 2023, 123, 106346. [Google Scholar] [CrossRef]
- Suvorov, A.; Askarov, A.; Kievets, A. A freely configurable structure of virtual synchronous generator for grid-forming converters. Electrical Engineering 2023. [Google Scholar] [CrossRef]
- Tavana, M.; Kazemi, M.R.; Vafadarnikjoo, A.; Mobin, M. An Artificial Immune Algorithm for Ergonomic Product Classification Using Anthropometric Measurements. Measurement: Journal of the International Measurement Confederation 2016, 93, 621–629. [Google Scholar] [CrossRef]
- Katsigiannis, Y.A.; Georgilakis, P.S.; Karapidakis, E.S. Hybrid simulated annealing-tabu search method for optimal sizing of autonomous power systems with renewables. IEEE Transactions on Sustainable Energy 2012, 3, 330–338. [Google Scholar] [CrossRef]
- Thirunavukkarasu, M.; Sawle, Y.; Lala, H. A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques. Renewable and Sustainable Energy Reviews 2023, 176, 113192. [Google Scholar] [CrossRef]
- Srinivasan, D.; Ng, W.S.; Liew, A.C. Neural-network-based signature recognition for harmonic source identification. IEEE Transactions on Power Delivery 2006, 21, 398–405. [Google Scholar] [CrossRef]
- Maulik, A.; Das, D. Optimal operation of microgrid using four different optimization techniques. Sustainable Energy Technologies and Assessments 2017, 21, 100–120. [Google Scholar] [CrossRef]
- Ahmed, M.; Abbas, G.; Jumani, T.; Rashid, N.; Bhutto, A.; Eldin, S. Techno-economic optimal planning of an industrial microgrid considering integrated energy resources. Frontiers in Energy Research 2023, 11, 12. [Google Scholar] [CrossRef]
- Borghei, M.; Ghassemi, M. Optimal planning of microgrids for resilient distribution networks. International Journal of Electrical Power & Energy Systems 2021, 128, 106682. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Wang, Y.; Li, F.; Zhang, Y.; Tian, C. Operation Optimization in a Smart Micro-Grid in the Presence of Distributed Generation and Demand Response. Sustainability 2018, 10, 847. [Google Scholar] [CrossRef]
- Moretti, L.; Astolfi, M.; Vergara, C.; Macchi, E.; Pérez-Arriaga, J.I.; Manzolini, G. A design and dispatch optimization algorithm based on mixed integer linear programming for rural electrification. Applied Energy 2019, 233–234, 1104–1121. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, C.; Chen, G.; Xu, Y.; Dong, Z.Y. Stochastic security-constrained optimal power flow for a microgrid considering tie-line switching. International Journal of Electrical Power & Energy Systems 2022, 134, 107357. [Google Scholar] [CrossRef]
- Grover-Silva, E.; Heleno, M.; Mashayekh, S.; Cardoso, G.; Girard, R.; Kariniotakis, G. A stochastic optimal power flow for scheduling flexible resources in microgrids operation. Applied Energy 2018, 229, 201–208. [Google Scholar] [CrossRef]
- Riva Sanseverino, E.; Nguyen Quang, N.; di Silvestre, M.L.; Guerrero, J.M.; Li, C. Optimal power flow in three-phase islanded microgrids with inverter interfaced units. Electric Power Systems Research 2015, 123, 48–56. [Google Scholar] [CrossRef]
- Hai, T.; Zhou, J.; Muranaka, K. Energy management and operational planning of renewable energy resources-based microgrid with energy saving. Electric Power Systems Research 2023, 214, 108792. [Google Scholar] [CrossRef]
- Shamarova, N.; Suslov, K.; Ilyushin, P.; Shushpanov, I. Review of Battery Energy Storage Systems Modeling in Microgrids with Renewables Considering Battery Degradation. Energies 2022, 15, 6967. [Google Scholar] [CrossRef]
- Ruban, N.; Suvorov, A.; Andreev, M.; Ufa, R.; Askarov, A.; Gusev, A.; Bhalja, B. Software and Hardware Decision Support System for Operators of Electrical Power Systems. IEEE Transactions on Power Systems 2021, 36, 3840–3848. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, Y.; Sun, S.; Wang, S.; Zhang, H. Multi-objective optimal dispatching of demand response-enabled microgrid considering uncertainty of renewable energy generations based on two-level iterative strategy. Energy Reports 2023, 9, 1842–1858. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, M.; Yang, H.; Wang, X.; Xu, J.; Hu, X. Decentralized and coordinated scheduling model of interconnected multi-microgrid based on virtual energy storage. International Journal of Electrical Power & Energy Systems 2023, 148, 108990. [Google Scholar] [CrossRef]
- Stevanato, N.; Pellecchia, G.; Sangiorgio, I.; Shendrikova, D.; Soares, C.A.; Mereu, R.; Colombo, E. Planning third generation minigrids: Multi-objective optimization and brownfield investment approaches in modelling village-scale on-grid and off-grid energy systems. Renewable and Sustainable Energy Transition 2023, 3, 100053. [Google Scholar] [CrossRef]
- Dufo-López, R.; Cristóbal-Monreal, I.R.; Yusta, J.M. Optimization of PV-wind-diesel-battery stand-alone systems to minimise cost and maximise human development index and job creation. Renewable Energy 2016, 94, 280–293. [Google Scholar] [CrossRef]
- Singh, P.; Pandit, M.; Srivastava, L. Multi-objective optimal sizing of hybrid micro-grid system using an integrated intelligent technique. Energy 2023, 269, 126756. [Google Scholar] [CrossRef]
- Azimian, M.; Amir, V.; Mohseni, S.; Brent, A.C.; Bazmohammadi, N.; Guerrero, J.M. Optimal Investment Planning of Bankable Multi-Carrier Microgrid Networks. Applied Energy 2022, 328, 120121. [Google Scholar] [CrossRef]
- Hubble, A.H.; Ustun, T.S. Composition, placement, and economics of rural microgrids for ensuring sustainable development. Sustainable Energy, Grids and Networks 2018, 13, 1–18. [Google Scholar] [CrossRef]
- Alagoz, B.B.; Kaygusuz, A.; Karabiber, A. A user-mode distributed energy management architecture for smart grid applications. Energy 2012, 44, 167–177. [Google Scholar] [CrossRef]
- Ilyushin, P.; Kulikov, A.; Suslov, K.; Filippov, S. An Approach to Assessing Spatial Coherence of Current and Voltage Signals in Electrical Networks. Mathematics 2022, 10, 1768. [Google Scholar] [CrossRef]
- Li, Q.; Gao, M.; Lin, H.; Chen, Z.; Chen, M. MAS-based distributed control method for multi-microgrids with high-penetration renewable energy. Energy 2019, 171, 284–295. [Google Scholar] [CrossRef]
- Muyeen, S.M.; Islam, S.M.; Blaabjerg, F. Variability, scalability and stability of microgrids. Variability, Scalability and Stability of Microgrids 2019, 1–623. [Google Scholar] [CrossRef]
- Marín-Quintero, J.; Orozco-Henao, C.; Percybrooks, W.S.; Vélez, J.C.; Montoya, O.D.; Gil-González, W. Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector. Applied Soft Computing 2021, 98, 106839. [Google Scholar] [CrossRef]
- Kulikov, A.L. , Ilyushin, P.V., Suslov, K.V., Karamov, D.N. Coherence of digital processing of current and voltage signals at decimation for power systems with a large share of renewable power stations. Energy Reports 2022, 8, 1464–1478. [Google Scholar] [CrossRef]
- Kaur, G.; Prakash, A.; Rao, K.U. A critical review of Microgrid adaptive protection techniques with distributed generation. Renewable Energy Focus 2021, 39, 99–109. [Google Scholar] [CrossRef]
- Alvarez de Sotomayor, A.; della Giustina, D.; Massa, G.; Dedè, A.; Ramos, F.; Barbato, A. IEC 61850-based adaptive protection system for the MV distribution smart grid. Sustainable Energy, Grids and Networks 2018, 15, 26–33. [Google Scholar] [CrossRef]
- Shobole, A.A.; Wadi, M. Multiagent systems application for the smart grid protection. Renewable and Sustainable Energy Reviews 2021, 149, 111352. [Google Scholar] [CrossRef]
- Marín-Quintero, J.; Orozco-Henao, C.; Velez, J.C.; Bretas, A.S. Micro grids decentralized hybrid data-driven cuckoo search based adaptive protection model. International Journal of Electrical Power & Energy Systems 2021, 130, 106960. [Google Scholar] [CrossRef]
- Fan, X.; Dudkina, E.; Gambuzza, L.V.; Frasca, M.; Crisostomi, E. A network-based structure-preserving dynamical model for the study of cascading failures in power grids. Electric Power Systems Research 2022, 209, 107987. [Google Scholar] [CrossRef]
- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. Smart grid technologies: Communication technologies and standards. IEEE transactions on Industrial informatics 2011, 7, 529–539. [Google Scholar] [CrossRef]
- Bayindir, R.; Colak, I.; Fulli, G.; Demirtas, K. Smart grid technologies and applications. Renewable and sustainable energy reviews 2016, 66, 499–516. [Google Scholar] [CrossRef]
- Ramezy, B.; Saadatmand, M.; Mozafari, B. Review of Communication Technologies for Smart Grid applications. In Proceedings of the National Conference on: New Approaches in Power Industry, Tehran, Iran, 2017. 31.




| Type | Technology | Data Rate | Coverage Range |
Network Topology |
Max Number of Cell Nodes | Limitations | Applications |
|---|---|---|---|---|---|---|---|
|
Wire- less |
GSM | Up to 14,4 kbps | 0,5-35 km | Multipoint to multipoint | 7cells/ cluster 9, 12, 13 |
Low date rates | AMI 1, HAN 2, Demand Response |
| GPRS | Up to 170 kbps | 0,5-35 km | Multipoint to multipoint | 7cells/ cluster 9, 12, 13 |
Low date rates | AMI, HAN, Demand Response | |
| 3G | Up to 2 Mbps |
0,1-10 km | Multipoint to multipoint | 1–7cells | Costly spectrum | AMI, HAN, Demand Response, Monitoring for Remote Distribution | |
| ZigBee | 250 kbps | 10-100 m | Star, mesh, cluster-tree | more than 65,000 | Low data rate, short range | Automation, Remote Load Control, AMI | |
| WiMAX |
Up to
50 Mbps |
10-50 km (LOS) 1-5 km (NLOS) |
Point to multipoint; multipoint to multipoint | 1 | Not widespread |
AMI, Demand Response, Wireless Automatic Meter Reading | |
| Wired | PLC | Up to 0,5/200 Mbps |
3/0,2 km |
Star, point-to-point |
1 | Harsh, noisy channel environment | AMI, Fraud Detection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
