Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Modified Nonlinear Hysteresis Approach of a Tactile Sensor

Version 1 : Received: 27 June 2023 / Approved: 28 June 2023 / Online: 29 June 2023 (05:52:16 CEST)

A peer-reviewed article of this Preprint also exists.

Abdul-Hussain, G.; Holderbaum, W.; Theodoridis, T.; Wei, G. Modified Nonlinear Hysteresis Approach for a Tactile Sensor. Sensors 2023, 23, 7293. Abdul-Hussain, G.; Holderbaum, W.; Theodoridis, T.; Wei, G. Modified Nonlinear Hysteresis Approach for a Tactile Sensor. Sensors 2023, 23, 7293.

Abstract

Soft tactile sensors based on piezoresistive materials have various large-area sensing applications. However, their accuracy is often affected by hysteresis, a phenomenon that poses a significant challenge during operation. This paper introduces a novel approach that employs a backpropagation (BP) neural network to address the hysteresis nonlinearity in conductive fibre-based tactile sensors. To assess the effectiveness of the proposed method, four sensor units with different layer configurations (1, 3, 6, and 12) were designed. These sensor units underwent force sequences to collect corresponding output resistances. A backpropagation network was trained using these force sequences, thereby correcting the resistance values. The training process exhibited excellent convergence, effectively adjusting the network's parameters to minimize the error between predicted and actual resistance values. As a result, the trained BP network accurately predicted the output resistances. Several validation experiments were conducted to highlight the primary contribution of this research. The proposed method reduced the maximum hysteresis error from 24.2% of the sensor's full-scale output to 13.5%. This improvement establishes the approach as a promising solution for enhancing the accuracy of soft tactile sensors based on piezoresistive materials. By effectively mitigating hysteresis nonlinearity, the capabilities of soft tactile sensors in various applications can be enhanced. These sensors become more reliable and more efficient tools for force measurement and control, particularly in the fields of soft robotics and wearable technology. Consequently, their widespread applications extend to robotics, medical devices, consumer electronics, and gaming. Notably, the complete elimination of hysteresis in tactile sensors may not be feasible. Nevertheless, the proposed method effectively modifies the hysteresis nonlinearity, leading to improved sensor output accuracy.

Keywords

Conductive Fabric, Hysteresis, Backpropagation Neural network

Subject

Engineering, Control and Systems Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.