Submitted:
26 June 2023
Posted:
27 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. General properties of nilpotent Lie algebras
1.2. Solvable rigid Lie algebras
2. Structural properties of the nilpotent Lie algebra
2.1. Generation of rank one solvable Lie algebras
3. The solvable Lie algebras
4. Conclusions
Author Contributions
Funding
References
- Carles, R. Sur certaines classes d’orbites ouvertes dans les variétés d’algèbres de Lie. C. R. Acad. Sci. Paris 1981, 293, 545–547.
- Carles, R. Sur la structure des algèbres de Lie rigides. Ann. Inst. Fourier 1984,34, 65–82. [CrossRef]
- Carles, R. Déformations et éléments nilpotents dans les schémas définis par les identités de Jacobi. C. R. Acad. Sci. Paris 1991, 312, 671–674.
- Carles, R. Sur certaines classes d’algèbres de Lie rigides. Math. Ann. 1985, 272, 477–488. [CrossRef]
- Gerstenhaber, M. On the deformations of rings and algebras, Ann. Math. 1964, 79, 59–103. [CrossRef]
- Nijenhuis, A.; Richardson, R.W. Cohomology and deformations of algebraic structures. Bull. Amer. Math. Soc. 1964, 70, 406–411. [CrossRef]
- Chevalley, C.; Eilenberg, S. Cohomology theory of Lie groups and Lie algebras. Trans. Amer. Math. Soc. 1948, 63, 85–124. [CrossRef]
- Carles, R.; Márquez García, M.C. Different methods for the study of obstructions in the schemes of Jacobi. Ann. Inst. Fourier 2011, 61, 453–490. [CrossRef]
- Tôgô, S. Outer derivations of Lie algebras, Trans. Amer. Math. Soc., 1967 128, 264–276. [CrossRef]
- Bratzlavsky, F. Sur les algèbres admettant un tore d’automorphismes donné. J. Algebra 1974, 30, 305–316. [CrossRef]
- Favre, G. Système des poids sur une algèbre de Lie nilpotente. Manuscr. Math. 1973, 9, 53–90. [CrossRef]
- Ancochea, J. M.; Goze, M. Algorithme de construction des algèbres de Lie rigides, Publ. Math. Univ. Paris VII 1989 31, 277–298.
- Ancochea, J.M.; Goze, M. Le rang du système linéaire des racines d’une algèbre de Lie rigide résoluble complexe. Commun. Algebra 1992, 20, 875–887. [CrossRef]
- Goze, M.; Ancochea, J.M. Algèbres de Lie rigides dont le nilradical est filiforme. C. R. Acad. Sci. Paris 1991, 312, 21–24.
- Goze, M. Critères cohomologiques pour la rigidité de lois algébriques. Bull. Soc. Math. Belg. 1991 A 43, 33–42.
- Fialowski, A. Deformations and contractions of algebraic structures. Proc. Steklov Inst. Math. 2014, 286, 240–252. [CrossRef]
- Ancochea, J.M.; Campoamor-Stursberg, R. Classification of solvable real rigid Lie algebras with a nilradical of dimension n ≤ 6. Linear Algebra Appl. 2015, 451, 54–75. [CrossRef]
- Goze, M.; Ancochea, J.M. Algèbres de Lie rigides. Indag. Math. 1985, 47, 397–415. [CrossRef]
- Ancochea, J.M.; Campoamor-Stursberg, R. Cohomologically rigid solvable real Lie algebras with a nilradical of arbitrary characteristic sequence. Linear Algebra Appl. 2016, 488, 135–147. [CrossRef]
- Ancochea, J.M.; Campoamor-Stursberg, R. Rigidity-preserving and cohomology-decreasing extensions of solvable rigid Lie algebras. Linear Multilinear Algebra 2017, 66, 525–539. [CrossRef]
- Grozman, P.; Leites, D. Mathematica® aided study of Lie algebras and their cohomology. From supergravity to ballbearings and magnetic hydrodynamics. Trans. Eng. Sci. 1997, 15, 185–192. [CrossRef]
- Feger, R., Kephart, T. and Saskowski, R. LieART 2.0– a Mathematica® application for Lie algebras and representation theory. Comput. Phys. Commun. 2020 257, 107490. [CrossRef]
- Ancochea, J.M.; Campoamor-Stursberg, R.; Oviaño García, F. New examples of rank one solvable real rigid Lie algebras possessing a nonvanishing Chevalley cohomology. Appl. Math. Comput. 2018, 339, 431–440. [CrossRef]
- Campoamor-Stursberg, R.; Oviaño, F. Some features of rank one real solvable cohomologically rigid Lie algebras with a nilradical contracting onto the model filiform Lie algebra Qn. Axioms 2019, 8, 1–21. [CrossRef]
- Campoamor-Stursberg, R.; Oviaño, F. Algorithmic construction of solvable rigid Lie algebras determined by generating functions. Linear Multilinear Algebra 2022, 70, 280–296. [CrossRef]
- Campoamor-Stursberg, R.; Oviaño, F. Computer-aided analysis of solvable rigid Lie algebras with a given eigenvalue spectrum, Axioms 11 (2022), 442. [CrossRef]
- Mal’cev, A. I. Solvable Lie algebras. Izv. Akad. Nauk SSSR 1945, 9, 329–356.
- Hochschild, G.; Serre, J. P. Cohomology of Lie algebras. Annals Math. 1953, 57, 591–603. [CrossRef]
- Koszul, J.-L. Homologie et cohomologie des algèbres de Lie. Bull. Soc. Math. France 1950, 78, 65–127. [CrossRef]
- A. Nijenhuis, R. W. Richardson. Deformations of Lie algebra structures, J. Math. Mech. 1967 17, 89–105. [CrossRef]
- A. Nijenhuis, R. W. Richardson. Cohomology and deformations in graded Lie algebras, Bull. Amer. Math. Soc. 72 (1966), 1–29. [CrossRef]
- Rim, D.S. Deformation of transitive Lie algebras. Ann. Math. 1966, 83, 339–357. [CrossRef]
- Rauch, G. Effacement et déformation. Ann. Inst. Fourier 1972, 22, 239–269. 10.5802/AIF.405.
- Leger, G., Luks, E. Cohomology theorems for Borel-like solvable Lie algebras in arbitrary characteristic, Can. J. Phys. 1972 24, 1019–1026. [CrossRef]
- Campoamor-Stursberg, R. An alternative interpretation of the Beltrametti-Blasi formula by means of differential forms, Phys. Lett. A 2004 327, 138–145. [CrossRef]
- Vergne M. Cohomologie des algèbres de Lie nilpotentes. Application á l’étude de la variété des algèbres de Lie nilpotentes, Bull. Soc. Math. France 1970 98, 81–116. [CrossRef]
| 1 | This actually means that possesses functionally independent invariants for the coadjoint representation. |
| 2 | Incidentally, the algebras are actually cohomologically rigid. |
| 3 | This phenomenon cannot occur for filiform algebras, as these correspond to the maximal possible nilpotence index. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
