Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Quantifying Aboveground Grass Biomass Using Space-Borne Sensors: A Meta-Analysis and Systematic Review

Version 1 : Received: 26 June 2023 / Approved: 27 June 2023 / Online: 27 June 2023 (10:32:36 CEST)

A peer-reviewed article of this Preprint also exists.

Maake, R.; Mutanga, O.; Chirima, G.; Sibanda, M. Quantifying Aboveground Grass Biomass Using Space-Borne Sensors: A Meta-Analysis and Systematic Review. Geomatics 2023, 3, 478-500. Maake, R.; Mutanga, O.; Chirima, G.; Sibanda, M. Quantifying Aboveground Grass Biomass Using Space-Borne Sensors: A Meta-Analysis and Systematic Review. Geomatics 2023, 3, 478-500.

Abstract

Recently, the move from cost-tied to open-access data has led to the mushrooming of research in pursuit of algorithms for estimating aboveground grass biomass (AGGB). Nevertheless, a comprehensive synthesis or direction on the milestones archived or an overview of how these models perform is lacking. This study synthesises the research work from decades of experiments in order to point researchers in the direction of what was done, the challenges faced, as well as how the models perform. A pool of findings from 108 remote sensing-based AGGB studies published from 1972 to 2020 show that about 62% of the remote sensing-based algorithms were tested in the Steppe grasslands, mostly in the temperate climate zone. An uneven annual publication yield was observed with approximately 36% of the research output from Asia whereas countries in the global south yielded few publications (<10%). Optical sensors, particularly MODIS, remain a major source of satellite data for AGGB studies, whilst studies in the global south rarely use active sensors such as Sentinel-1. Optical data tend to produce poor regression accuracies that are highly inconsistent across the studies compared to Radar. Vegetation indices, particularly the Normalised Difference Vegetation Index (NDVI), remain a major predictor variable. Predictor variables such as Sward height, Red edge position and Backscatter coefficients produced slightly consistent accuracies. Deciding on the optimal algorithm for estimating AGGB is daunting due to the lack of overlap in the grassland type, location, sensor types, and predictor variables, signalling the need for further studies around the transferability of remote sensing-based AGGB models.

Keywords

meta-analysis; grass biomass; Savannah ecosystems; remote sensing

Subject

Environmental and Earth Sciences, Remote Sensing

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.