Preprint
Review

Antioxidants in a Morning Cup: Molecular Insights on Coffee Components

Submitted:

25 June 2023

Posted:

27 June 2023

You are already at the latest version

Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in an oxidative world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in various ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their ways of action and trends in activity are analyzed, considering the data gathered so far from both theory and experiments. The influence of the media and pH in aqueous solution, and structure-activity relationships are discussed. The protective role of the explored compounds is examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. Hopefully, the information provided here will promote further investigations into the amazing chemistry contained in our morning cup.
Keywords: 
free radicals; scavengers; reaction mechanisms; kinetics; trends in activity; coffee components.
Subject: 
Chemistry and Materials Science  -   Food Chemistry

1. Introduction

Since ancient times, natural products have been widely appreciated by humankind. The main reason is that they are beneficial for health issues and our general wellbeing. However, only in the last centuries technology and science developments have allowed to pass empiricism and deepened into the knowledge about the bioactive substances found in natural products, as well as on their specific functions and medicinal effects.
Regarding coffee, its origin has been traced to Ethiopia,[1] which is currently the fifth producer worldwide.[2] The legend says that goat herders noticed their animals restless at night after eating the berries of the coffee plant. After trying the fruit, they felt energized and got used to consuming it. Such a stimulating effect is still one of this beverage’s appeals, albeit coffee is much better understood and more widely consumed today than twelve centuries ago. In fact, coffee is currently one of the most consumed beverages and the second commodity worldwide.[3]
According to the annual review (2021/2022) of the International Coffee Organization, the Arabica variety represents 56% of the coffee production, and Robusta the other 44% (Figure 1). The top producers are Brazil, Vietnam and Colombia, in that order, with ~58, 30 and 14 billion bags of 60 kg, respectively. On the other hand, the top consumers are USA, Brazil, Germany, Japan and France (27, 22, 8.7, 7.5 and 6.2 billion bags of 60 kg, respectively).
Based on the data obtained from the Scopus database (Figure 2), the number of scientific publications on coffee has grown exponentially over the years. The same trend is followed by its antioxidant properties. Today, many of the chemical components of coffee have been identified and a large proportion of them have been investigated. For example, there are 65,825 reports on caffeine, 2,634 of them published last year. The oldest record found in the search for antioxidative properties of coffee dates back to 1940.[4] It dealt with the “antioxygens” produced by roasting and considered several species. Among them, pyrrole, proline, thioglycolic acid, and caffeic acid were identified as those with the highest protection factor against rancidity.
Antioxidants, in general, are appealing substances from both scientific and pragmatic points of view. They help counteracting the dangerous effects of oxidative stress (OS),[5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52] which arises from the unbalance between production and consumption of oxidants in living systems. It is considered a chemical stress and has been associated with multiple health issues, including neurodegeneration,[35,39,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137] cancer,[138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181] cardiovascular diseases,[49,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228] diabetes,[10,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252] rheumatoid arthritis,[253,254,255,256,257,258,259,260,261,262,263] renal [264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295] and pulmonary[296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319] failures, ocular disorders,[20,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334] preeclampsia and fetal development complications.[203,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368]
Antioxidant protection is one of the many health benefits attributed to coffee,[369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408] and other natural products.[409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436] However, not all its components exhibit such activity and, those that do, have diverse mechanisms of action and efficiency. Phenolic compounds, in general, are recognized as very efficient for counteracting the deleterious effects of OS.[437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455] Phenolic acids, in particular, are among the most potent antioxidants present in coffee.[456,457,458,459,460,461] Other components that have been identified as efficient antioxidants are melanoidins,[462,463,464,465] heterocycles[466,467] Maillard reaction products,[456,466,467,468,469] and some volatile compounds.[470,471,472,473,474] Regarding caffeine, some studies suggest that it acts as an antioxidant, [465,475,476] while others indicate that the antioxidant properties of coffee are not directly related to caffeine but to the presence of other components.[401,477,478]
Quantifying antioxidant activity is a challenging task. This is probably because there is no universal assays to do it,[479] and because the available ones depend on the reaction mechanism, which can vary from one antioxidant to another. In fact, they have been classified as electron transfer and hydrogen atom transfer-based assays. In addition, some of these assays are meant to estimate the antioxidant capacity of total phenols. Thus, they are not meant to differentiate among different phenolic compounds. Moreover, it has been reported that conflicting trends may be obtained when using different experimental techniques to evaluate the antioxidant activity of phytochemicals.[480]
When using theoretical chemistry, other difficulties arise. Probably, the most important ones are: (i) the unavoidable use of simplified models for mimicking chemical environments; (ii) the necessary balance between accuracy and computing time that must be taken into account when a particular level of theory is chosen; (iii) the fact that for establishing reliable trends, calculations must be performed using the same methodology and approximations; (iv) the importance of considering all the possible mechanisms and sites of reaction.[481] Therefore, it becomes evident that assessing antioxidant activity is a complex task, regardless of if it is pursued using experimental or theoretical approaches.
There are previous publications where experimental techniques were used to evaluate the antioxidant activity of coffee and its components in vitro, have been thoroughly reviewed.[369,370] Therefore, molecular insights on such activity are the main focus of the analyses and discussion here. Several aspects are considered, including structure-activity relationships, the influence of solvent and pH, reaction mechanisms, and the influence of redox metals. Trends in antioxidant activity are proposed for several coffee components and compared with Trolox as a reference. Hopefully, the reviewed data will help improving the current knowledge on the chemical aspects related to the antioxidant effects of coffee and promote further investigations on the chemistry of this fantastic beverage.

2. Chemical overview

Chemical components are responsible for the taste, aroma and bioactivities of coffee. However, its chemical composition is complex and depends on the variety, growing conditions, and processing.[482] Nevertheless, it has been reported that the main components of raw coffee beans are carbohydrates, which account for about 60% of their total weight.[483] They also have significant amounts of cellulose, grease, proteins, amino acids, tannic acid, and starch. In addition, there is a diversity of other minor and trace substances in coffee beans. There are numerous publications providing detailed information on the chemical composition of coffee.[483,484,485,486,487,488] Thus, it is going to be only briefly summarized here (Table 1).

3. Bioactivity overview

The versatile bioactivity of coffee has also been thoroughly reviewed.[527,528,529,530,531,532] Coffee has numerous health benefits from its chemical composition, provided it is moderately consumed. Some of them are summarized in Table 2. However, as it is the case with almost everything, amounts mediate the balance between benefits and harms. It has been pointed out that high consumption of coffee may compromise coronary health, threaten pregnant and postmenopausal women, and cause addiction (withdrawal would trigger muscle fatigue and related problems).[527]
Based on the data in Table 2, it becomes evident that moderate consumption of coffee, i.e., one to four cups a day,[532] may provide beneficial effects. In particular, for inflammation, obesity, diabetes, cancer, cardiovascular diseases, microbial infections, and neurodegeneration. Since antioxidant activity is the main focus of this review, the following section has been entirely devoted to it.

4. Derivatives

Considering the myriad of benefits offered by coffee components, it is not surprising that many investigations have been devoted to designing and synthesizing derivatives based on their molecular frameworks. Many of them keep the bioactivity of the parent molecules, and many others have shown new and improved actions. Albeit a detailed analysis of this point escapes the purpose of this review, it seems worthwhile summarizing (Table 3) some of the great efforts made so far to obtain new molecules from coffee components. Thus, the interested reader can get more comprehensive information on this topic from the provided references.

5. Antioxidant activity

Many of the chemicals found in coffee are considered as antioxidants. Twenty of them (Table 4) were selected to illustrate such activity in more detail. The references in this table correspond only to a fraction of the literature supporting their antioxidant activity. Otherwise, they would be too many to be included here. Actually, may of the health benefits of coffee mentioned in the previous section have been attributed to the antioxidant activity of its components.
Antioxidant activity (AOx) can arise from a variety of processes. This review focuses on chemical one, albeit there are other protection routes that involve enzymatic systems. From a chemical point of view, AOx can be roughly grouped into the following categories.
  • AOX-I (or primary AOX, or chain braking, or free radical scavenging activity):
It involves the direct reaction with oxidants, mainly free radicals yielding less reactive species or ending the radical chain process. During such a process, the antioxidant acts as a sacrificial target that prevents the oxidation of crucial biomolecules, such as DNA, proteins, and lipids. However, the amounts of these biomolecules in living organisms are significantly higher than those of chemical antioxidants that might be consumed in the diet or as dietary supplements. Consequently, a molecule must react with oxidants faster than the biological target to be efficient as a primary antioxidant. This makes imperative to establish some quantitative thresholds that allow identifying a particular chemical as a primary antioxidant. The rate constants of the ŸOOH damage to polyunsaturated fatty acids have been proposed to that purpose.[481] It ranges from 1.18×103 to 3.05×103 M-1s-1,[1229] at acid pH values, i.e. when the molar fraction of HOOŸ is ~1. Since lipids are the most easily oxidized among the biomolecules mentioned above, i.e., those reacting the fastest with free radicals, it is expected that any molecule capable of protecting them from oxidation would also be capable of protecting proteins and DNA. An important point arises from this analysis. The first is that kinetics is a key aspect when evaluating free radical scavenging activity. In addition, it is also important to consider that ŸOH is so reactive that it would react with almost any molecule, usually at diffusion-limited rates. In fact, it might be assumed that ŸOH will react with the first molecule it finds near its production site. It has been known for over a decade that peroxyl radicals are among the oxidants likely to be efficiently scavenged to counteract oxidative stress.[1230–1233] This kind of AOX, will be further discussed in the following sections. The other categories are briefly summarized next.
  • AOX-II (or secondary AOX, or preventing, or OIL behavior):
It may involve diverse chemical routes besides direct free radical scavenging processes. Among them, probably the most relevant one is usually referred to as OH-inactivating ligands (OIL) behavior.[1234,1235] It involves metal chelation and may occur by sequestering metal ions from reductants or by deactivating OH radicals as soon as they are produced via Fenton-like, or Haber-Weiss recombination, processes. The metal chelation step can take place, at least, through two pathways. Namely, by the direct chelation mechanism (DCM) or by the coupled deprotonation-chelation mechanism (CDCM). The latter may become the most important one for antioxidants acid protons.
  • AOX-III (or tertiary AOX, or fixing AOX, or repairing AOX):
Preventing biomolecules from oxidative damage is not always possible. Therefore, repairing them after the damage occurs is an important way of preserving their chemical integrity. The routes involved in such a process depend on the nature of the damage. Formal hydrogen atom transfer (f-HAT) restores allylic hydrogens to lipids. The same mechanism is involved when the most frequent lesions on Cys, Tyr, Leu, Met, and His are fixed, while single electron transfer (SET) repairs oxidized Tyr and Trp. DNA damage, on the other hand, may occur in at least three different ways. One electron loss from guanine, the nucleobase most easily oxidizable; [1236] which is repaired by SET from the antioxidant. One H loss from the deoxyribose units, yielding C-centered radicals; [1237–1240] which is repaired by f-HAT from the antioxidant. The formation of the 8-OH-dG adduct by addition of an OH radical, which in turn yields the most abundant DNA lesion, i.e., 8-oxo-7,8-dihydro-2′-deoxyguanosine. [1241]. The latter is considered a biomarker of oxidative stress, [1243,1244] and it has been proposed that such a damage can be fixed via sequential hydrogen atom transfer followed by dehydration (SHATD). [1242]
  • AOX-IV (or versatile AOX, or multifunctional AOX, or multipurpose AOX):
This would apply to molecules capable of exerting their antioxidant activity through two or more of the above-described mechanisms.

5.1. AOX-I chemical routes

Free radical scavenging processes in living organisms occur in complex chemical environments. Numerous species are present in biological media, which may influence or be involved in competing reactions. In addition, antioxidants’ reactivity depends on their chemical nature and may be modulated by the polarity of the environment and pH. Some of the most common chemical routes that may contribute to the observable AOX-I activity are detailed in Table 5.

5.3. Trends in activity

As previously mentioned, kinetics is crucial to assess free radical scavenging activity. Therefore, this analysis will be based on rate constants. However, for trends to be fair, it is essential to consider reactions with the same radical and that the rate constants (k) are estimated with the same methodology and under the same conditions. Those reported in Table 6 correspond to reactions between coffee components and the HOO radical, in non-polar media that mimic lipid environments. Those reported in Table 7 correspond to the same reactions but in aqueous solution at physiological pH, i.e., pH=7.4. To facilitate comparisons, their log(k) have been plotted in Figure 3. Trolox has been included as a referent antioxidant.
According to the gathered data dihydrocaffeic acid and ferulic acid are the most efficient HOO scavengers in non-polar media and aqueous solution, at pH=7.4, respectively. The trend in non-polar environment was found to be dihydrocaffeic acid > caffeic acid > ferulic acid > vanillyl alcohol > protocatechuic acid > p-coumaric acid > eugenol > guaiacol > vainillin > caffeine > theobromine > vanillic acid > theophylline > p-xanthine. In aqueous solution such a trend changes to ferulic acid > caffeic acid > dihydrocaffeic acid > p-coumaric acid > vanillic acid > protocatechuic acid > vanillyl alcohol > guaiacol > eugenol > vainillin > p-xanthine > caffeine > theobromine > theophylline.
The threshold above-mentioned, i.e. 103 M-1s-1, corresponds to the reaction of HOO with polyunsaturated fatty acids have been used to identify the coffee components that are expected to be efficient as free radical scavengers in biological systems. It has been marked with a red line in Figure 3. According to this criterion, dihydrocaffeic, caffeic, ferulic, protocatechuic, and p-coumaric acids, as well as vanillyl alcohol, eugenol, and guaiacol should be capable of preventing peroxyl damage to biomolecules both in lipid and in aqueous environments. For the latter, vanillin and vanillic acid also seem to be suitable for that purpose.
It seems worthwhile mentioning that the reactions of caffeine and its metabolites p-xanthine, theobromine, and theophylline with HOO are too slow to protect lipids and, therefore, proteins and DNA from the oxidative damage caused by this kind of free radicals. This is in line with previous works. Šeremet et. al. found that the antioxidant properties of coffee brews do not depend on their caffeine content. [401] Miłek et. al. reported that while ‘specialty’ quality coffees have similar caffeine content as other brands, they significantly surpass them in antioxidant activity. [477] Based on the likeliness of f-HAT and SET mechanisms, Petrucci et. al. concluded that caffeine can hardly be considered as an antioxidant. Thus, despite being the most emblematic coffee component, this brew's antioxidant activity arises from its phenolic species, not from caffeine.

5.4. Structure-activity relationships

The reaction mechanism contributing the most to the antioxidant activity of the analyzed coffee components is reported in Table 8 and Table 9 for lipid and aqueous environments, respectively. The most reactive site or species are also reported in these tables. It becomes evident that the relatively low reactive of caffeine and its metabolites p-xanthine, theobromine, and theophylline is due to their lack of the phenol moiety. Thus, the main chemical route involved in their reactions with HOO is the radical adduct formation. They have not labile H atoms to be involved in f-HAT, nor acid protons that favored deprotonation and, consequently, the SPLET mechanisms, i.e., SET from the anions.
The phenolic structural feature seems to be the key to the high efficiency of coffee components as peroxyl radical scavengers. In lipid media, the OH group acts as H donor leading to AOX-I via f-HAT. In aqueous solution, their acid-base equilibria rule reactivity. At physiological pH, there is enough phenolate fraction, which is an excellent electron donor. Thus, under such conditions, the SPLET mechanism becomes the highest contributor to the antioxidant activity of phenolic compounds.
The solvent also plays an important role in this context. The antioxidant + HOO reactions are faster in aqueous solution, i.e., polar and protic solvent, than in lipid media (Table 6 and Table 7, and Figure 3). In addition, the fact that water is a polar and protic solvent promotes the SPLET mechanism, which was proposed by Litwinienko and Ingold, [1278,1317–1319] and it is recognized as most efficient for phenols scavenging free radicals than f-HAT, and certainly much more than RAF.

6. Perspectives

Albeit much information has been retrieved from the investigations on coffee, some aspects still deserve further research. Some of the many questions to be answered in more detail are:
  • -How much does the presence of redox metals modify the chemistry of the coffee components?
  • -How effective are they as chelating agents?
  • -Would they act as OH inactivating ligands?
  • -Are any of them capable of repairing oxidatively damaged biological targets?
  • -Which of them can be considered multifunctional antioxidants?
  • -Are their derivatives safe enough to be used as medical drugs?
  • -What are the metabolites of these derivatives, and what properties do they have?
  • Nature gave us coffee. Revealing its chemical wonders is up to us.

7. Summary

Many natural products are known for their health benefits, but they comprise a large variety of components. Thus, it is essential to identify their bioactive substances as well as the specific functions and medicinal effects of these substances.
Coffee is a complex mixture containing many chemicals, including alkaloids, amino acids, carbohydrates, carotenoids, fatty acids, flavonoids, organic acids, phenolic acids, sugars, terpenes, and volatile compounds. It is also known to provide many beneficial properties such as antibacterial, anticarcinogenic, antidiabetic, antifungal, anti-inflammatory, antiobesity, cardioprotective, gastroprotective, hepatoprotective, and neuroprotective effects, provided that it is consumed in moderate amounts. The chemicals responsible for such valuable effects have been summarized in this review, as well as numerous investigations devoted to the design and synthesis of their derivatives.
The antioxidative protection of coffee has been related to most of its benefits. Several reaction mechanisms contributing to this protection were overviewed. Namely: radical adduct formation (RAF), single electron transfer (SET), formal hydrogen atom transfer (f-HAT), sequential proton loss electron transfer (SPLET), sequential electron proton transfer (SEPT), and sequential proton loss hydrogen atom transfer (SPLHAT). The ones contributing the most to the antioxidant activity of several coffee components were discussed.
The trends in free radical scavenging activity showed that phenolic acids are the ones contributing the most to the antioxidant effects of coffee, while alkaloids are not efficient for that purpose, at least as chemical antioxidants. Thus, despite being the most emblematic coffee component, the antioxidant activity of this brew does not arise from caffeine. In fact, it is not expected to be a good free radical scavenger.
The structure-activity relationships were associated with the main reaction mechanisms and the role of the solvent on the reactivity of the explored compounds. Alkaloids, i.e. caffeine and its metabolites p-xanthine, theobromine, and theophylline, mainly react via RAF, regardless of the solvent nature. Phenolic compounds, on the other hand, mainly react via f-HAT in non-polar media, and via SPLET in aqueous solution, at physiological pH.
Although there are many aspects to explore in the context of coffee chemistry, this review is meant to provide molecular insights on one of its main effects, i.e., antioxidant protection. Hopefully, it will contribute to a better understanding of the chemistry of our morning cup and promote further investigations on this topic.

Author Contributions

Conceptualization, A.G.; Investigation, L.F.H.-A., E.G.G.-L., M.R., A.P.-G. and A.G.; Formal Analysis, L.F.H.-A., E.G.G.-L., M.R., A.P.-G. and A.G.; Project Administration, A.G.; Supervision, A.G.; Validation, L.F.H.-A., E.G.G.-L., M.R., A.P.-G. and A.G.; Visualization, L.F.H.-A., E.G.G.-L., M.R., A.P.-G. and A.G.; Writing—Original Draft Preparation, L.F.H.-A., E.G.G.-L., M.R., A.P.-G. and A.G.; Writing—Review & Editing, A.G. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data is contained within the article.

Acknowledgments

E.G.G.L. acknowl-edges CONACyT for Doctoral fellowship. L.F.H.A thanks to Estancias Posdoctorales por México (2022) CONACyT program for postdoctoral grant.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Nolan, L. , The world's favorite beverage- coffee- and health. J. Herbs Spices Med. Plants 2001, 8, 119–159. [Google Scholar] [CrossRef]
  2. Muhie, S. H. , Strategies to improve the quantity and quality of export coffee in Ethiopia, a look at multiple opportunities. J. Agric.Food Res. 2022, 10, 100372. [Google Scholar] [CrossRef]
  3. Mussatto, S. I.; Machado, E. M. S.; Martins, S.; Teixeira, J. A. , Production, Composition, and Application of Coffee and Its Industrial Residues. Food Bioproc. Tech. 2011, 4, 661–672. [Google Scholar] [CrossRef]
  4. Elder, L. W. Staling vs. Rancidity in Roasted Coffee: Antioxygens Produced by Roasting. Ind. Eng. Chem. 1940, 32, 798–801. [Google Scholar] [CrossRef]
  5. Adhikari, R.; Shiwakoti, S.; Ko, J. Y.; Dhakal, B.; Park, S. H.; Choi, I. J.; Kim, H. J.; Oak, M. H. , Oxidative Stress in Calcific Aortic Valve Stenosis: Protective Role of Natural Antioxidants. Antioxidants 2022, 11, 1169. [Google Scholar] [CrossRef]
  6. Amponsah-Offeh, M.; Diaba-Nuhoho, P.; Speier, S.; Morawietz, H. , Oxidative Stress, Antioxidants and Hypertension. Antioxidants 2023, 12, 281. [Google Scholar] [CrossRef]
  7. Angwa, L. M.; Jiang, Y.; Pei, J.; Sun, D. , Antioxidant Phytochemicals for the Prevention of Fluoride-Induced Oxidative Stress and Apoptosis: a Review. Biol. Trace Elem. Res. 2022, 200, 1418–1441. [Google Scholar] [CrossRef] [PubMed]
  8. Baboo, K.; Chen, Z. Y.; Zhang, X. M. , Role of oxidative stress and antioxidant therapies in endometriosis. Reprod. Dev. Med. 2019, 3, 170–176. [Google Scholar] [CrossRef]
  9. Berríos-Cárcamo, P.; Quezada, M.; Quintanilla, M. E.; Morales, P.; Ezquer, M.; Herrera-Marschitz, M.; Israel, Y.; Ezquer, F. Oxidative stress and neuroinflammation as a pivot in drug abuse. A focus on the therapeutic potential of antioxidant and anti-inflammatory agents and biomolecules. Antioxidants 2020, 9, 830. [Google Scholar] [CrossRef] [PubMed]
  10. Black, H. S. , A Synopsis of the Associations of Oxidative Stress, ROS, and Antioxidants with Diabetes Mellitus. Antioxidants 2022, 11, 2003. [Google Scholar] [CrossRef]
  11. Bouyahya, A.; Menyiy, N. E.; Oumeslakht, L.; Allam, A. E.; Balahbib, A.; Rauf, A.; Muhammad, N.; Kuznetsova, E.; Derkho, M.; Thiruvengadam, M.; Shariati, M. A.; Omari, N. E. , Preclinical and clinical antioxidant effects of natural compounds against oxidative stress-induced epigenetic instability in tumor cells. Antioxidants 2021, 10, 1553. [Google Scholar] [CrossRef] [PubMed]
  12. De Luca, M. N.; Colone, M.; Gambioli, R.; Stringaro, A.; Unfer, V. , Oxidative stress and male fertility: Role of antioxidants and inositols. Antioxidants 2021, 10, 1283. [Google Scholar] [CrossRef]
  13. Deng, L.; Du, C.; Song, P.; Chen, T.; Rui, S.; Armstrong, D. G.; Deng, W. , The Role of Oxidative Stress and Antioxidants in Diabetic Wound Healing. Oxid. Med. Cell. Longev. 2021, 2021, 8852759. [Google Scholar] [CrossRef]
  14. Dong, C.; Zhang, N. J.; Zhang, L. J. , Oxidative stress in leukemia and antioxidant treatment. Chin. Med. J. 2021, 134, 1897–1907. [Google Scholar] [CrossRef] [PubMed]
  15. Engwa, G. A.; Nweke, F. N.; Nkeh-Chungag, B. N. , Free Radicals, Oxidative Stress-Related Diseases and Antioxidant Supplementation. Altern. Ther. Health Med. 2022, 28, 144–128. [Google Scholar]
  16. Forman, H. J.; Zhang, H. , Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
  17. Gomes, A. R. Q.; Cunha, N.; Varela, E. L. P.; Brígido, H. P. C.; Vale, V. V.; Dolabela, M. F.; de Carvalho, E. P.; Percário, S. , Oxidative Stress in Malaria: Potential Benefits of Antioxidant Therapy. Int. J. Mol. Sci. 2022, 23, 5949. [Google Scholar] [CrossRef] [PubMed]
  18. Han, M.; Lee, D.; Lee, S. H.; Kim, T. H. , Oxidative stress and antioxidant pathway in allergic rhinitis. Antioxidants 2021, 10, 1266. [Google Scholar] [CrossRef]
  19. Hou, T. Y.; Wu, S. B.; Kau, H. C.; Tsai, C. C. , The role of oxidative stress and therapeutic potential of antioxidants in graves’ ophthalmopathy. Biomedicines 2021, 9, 1871. [Google Scholar] [CrossRef]
  20. Hsueh, Y. J.; Chen, Y. N.; Tsao, Y. T.; Cheng, C. M.; Wu, W. C.; Chen, H. C. , The Pathomechanism, Antioxidant Biomarkers, and Treatment of Oxidative Stress-Related Eye Diseases. Int. J. Mol. Sci. 2022, 23, 1255. [Google Scholar] [CrossRef]
  21. Hu, X.; Dong, D.; Xia, M.; Yang, Y.; Wang, J.; Su, J.; Sun, L.; Yu, H. , Oxidative stress and antioxidant capacity: Development and prospects. New J. Chem. 2020, 44, 11405–11419. [Google Scholar] [CrossRef]
  22. Hussain, T.; Murtaza, G.; Metwally, E.; Kalhoro, D. H.; Kalhoro, M. S.; Rahu, B. A.; Sahito, R. G. A.; Yin, Y.; Yang, H.; Chughtai, M. I.; Tan, B. , The Role of Oxidative Stress and Antioxidant Balance in Pregnancy. Mediators Inflamm. 2021, 2021, 9962860. [Google Scholar] [CrossRef]
  23. Iakovou, E.; Kourti, M. , A Comprehensive Overview of the Complex Role of Oxidative Stress in Aging, The Contributing Environmental Stressors and Emerging Antioxidant Therapeutic Interventions. Front. Aging Neurosci. 2022, 14, 827900. [Google Scholar] [CrossRef]
  24. Kishimoto-Urata, M.; Urata, S.; Fujimoto, C.; Yamasoba, T. , Role of Oxidative Stress and Antioxidants in Acquired Inner Ear Disorders. Antioxidants 2022, 11, 1469. [Google Scholar] [CrossRef]
  25. Kumar, H.; Bhardwaj, K.; Nepovimova, E.; Kuča, K.; Dhanjal, D. S.; Bhardwaj, S.; Bhatia, S. K.; Verma, R.; Kumar, D. , Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials 2020, 10, 1334. [Google Scholar] [CrossRef] [PubMed]
  26. Kumar, S.; Saxena, J.; Srivastava, V. K.; Kaushik, S.; Singh, H.; Abo-El-Sooud, K.; Abdel-Daim, M. M.; Jyoti, A.; Saluja, R. , The Interplay of Oxidative Stress and ROS Scavenging: Antioxidants as a Therapeutic Potential in Sepsis. Vaccines 2022, 10, 1575. [Google Scholar] [CrossRef] [PubMed]
  27. Liu, P.; Li, Y.; Wang, R.; Ren, F.; Wang, X. , Oxidative Stress and Antioxidant Nanotherapeutic Approaches for Inflammatory Bowel Disease. Biomedicines 2022, 10, 85. [Google Scholar] [CrossRef] [PubMed]
  28. Macvanin, M. T.; Gluvic, Z.; Zafirovic, S.; Gao, X.; Essack, M.; Isenovic, E. R. , The protective role of nutritional antioxidants against oxidative stress in thyroid disorders. Front. Endocrinol. (Lausanne) 2023, 13, 1092837. [Google Scholar] [CrossRef]
  29. Marcucci, G.; Domazetovic, V.; Nediani, C.; Ruzzolini, J.; Favre, C.; Brandi, M. L. , Oxidative Stress and Natural Antioxidants in Osteoporosis: Novel Preventive and Therapeutic Approaches. Antioxidants 2023, 12, 373. [Google Scholar] [CrossRef]
  30. Meli, R.; Monnolo, A.; Annunziata, C.; Pirozzi, C.; Ferrante, M. C. , Oxidative stress and BPA toxicity: An antioxidant approach for male and female reproductive dysfunction. Antioxidants 2020, 9, 405. [Google Scholar] [CrossRef]
  31. Meulmeester, F. L.; Luo, J.; Martens, L. G.; Mills, K.; van Heemst, D.; Noordam, R. , Antioxidant Supplementation in Oxidative Stress-Related Diseases: What Have We Learned from Studies on Alpha-Tocopherol? Antioxidants 2022, 11, 2322. [Google Scholar] [CrossRef]
  32. Nandi, S.; Ahmed, S.; Saxena, A. K. , Exploring the Role of Antioxidants to Combat Oxidative Stress in Malaria Parasites. Curr. Top. Med. Chem. 2022, 22, 2029–2044. [Google Scholar] [CrossRef]
  33. Nantachai, G.; Vasupanrajit, A.; Tunvirachaisakul, C.; Solmi, M.; Maes, M. , Oxidative stress and antioxidant defenses in mild cognitive impairment: A systematic review and meta-analysis. Ageing Res. Rev. 2022, 79, 101639. [Google Scholar] [CrossRef] [PubMed]
  34. Olufunmilayo, E. O.; Gerke-Duncan, M. B.; Holsinger, R. M. D. , Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants 2023, 12, 517. [Google Scholar] [CrossRef] [PubMed]
  35. Percário, S.; Da Silva Barbosa, A.; Varela, E. L. P.; Gomes, A. R. Q.; Ferreira, M. E. S.; De Nazaré Araújo Moreira, T.; Dolabela, M. F. , Oxidative Stress in Parkinson's Disease: Potential Benefits of Antioxidant Supplementation. Oxid. Med. Cell. Longev. 2020, 2020, 2360872. [Google Scholar] [CrossRef] [PubMed]
  36. Pisoschi, A. M.; Pop, A.; Iordache, F.; Stanca, L.; Predoi, G.; Serban, A. I. , Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. Eur. J. Med. Chem. 2021, 209, 112891. [Google Scholar] [CrossRef]
  37. Poznyak, A. V.; Grechko, A. V.; Orekhova, V. A.; Chegodaev, Y. S.; Wu, W. K.; Orekhov, A. N. , Oxidative stress and antioxidants in atherosclerosis development and treatment. Biology 2020, 9, 60. [Google Scholar] [CrossRef]
  38. Rajoka, M. S. R.; Thirumdas, R.; Mehwish, H. M.; Umair, M.; Khurshid, M.; Hayat, H. F.; Phimolsiripol, Y.; Pallarés, N.; Martí-Quijal, F. J.; Barba, F. J. , Role of food antioxidants in modulating gut microbial communities: Novel understandings in intestinal oxidative stress damage and their impact on host health. Antioxidants 2021, 10, 1563. [Google Scholar] [CrossRef] [PubMed]
  39. Rana, K.; Gautam, P. , A Review on Antioxidants as Therapeutic in Use of Oxidative Stress and Neurodegenerative Disease. Int. J. Pharm. Qual. Assur. 2022, 13, 77–82. [Google Scholar]
  40. Rivas-Arancibia, S.; Hernández-Orozco, E.; Rodríguez-Martínez, E.; Valdés-Fuentes, M.; Cornejo-Trejo, V.; Pérez-Pacheco, N.; Dorado-Martínez, C.; Zequeida-Carmona, D.; Espinosa-Caleti, I. , Ozone Pollution, Oxidative Stress, Regulatory T Cells and Antioxidants. Antioxidants 2022, 11, 1553. [Google Scholar] [CrossRef]
  41. Shohag, S.; Akhter, S.; Islam, S.; Sarker, T.; Sifat, M. K.; Rahman, M. M.; Islam, M. R.; Sharma, R. , Perspectives on the Molecular Mediators of Oxidative Stress and Antioxidant Strategies in the Context of Neuroprotection and Neurolongevity: An Extensive Review. Oxid. Med. Cell. Longev. 2022, 2022, 7743705. [Google Scholar] [CrossRef]
  42. Taherkhani, S.; Valaei, K.; Arazi, H.; Suzuki, K. , An overview of physical exercise and antioxidant supplementation influences on skeletal muscle oxidative stress. Antioxidants 2021, 10, 1528. [Google Scholar] [CrossRef] [PubMed]
  43. Tai, J.; Shin, J. M.; Park, J.; Han, M.; Kim, T. H. , Oxidative Stress and Antioxidants in Chronic Rhinosinusitis with Nasal Polyps. Antioxidants 2023, 12, 195. [Google Scholar] [CrossRef] [PubMed]
  44. Tain, Y. L.; Hsu, C. N. , Oxidative Stress-Induced Hypertension of Developmental Origins: Preventive Aspects of Antioxidant Therapy. Antioxidants 2022, 11, 511. [Google Scholar] [CrossRef]
  45. Theofanous, T.; Kourti, M. , Abrogating Oxidative Stress as a Therapeutic Strategy Against Parkinson’s Disease: A Mini Review of the Recent Advances on Natural Therapeutic Antioxidant and Neuroprotective Agents. Med. Chem. 2022, 18, 772–783. [Google Scholar] [CrossRef]
  46. Tsermpini, E. E.; Plemenitaš Ilješ, A.; Dolžan, V. , Alcohol-Induced Oxidative Stress and the Role of Antioxidants in Alcohol Use Disorder: A Systematic Review. Antioxidants 2022, 11, 1374. [Google Scholar] [CrossRef] [PubMed]
  47. Varesi, A.; Chirumbolo, S.; Campagnoli, L. I. M.; Pierella, E.; Piccini, G. B.; Carrara, A.; Ricevuti, G.; Scassellati, C.; Bonvicini, C.; Pascale, A. , The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants 2022, 11, 1224. [Google Scholar] [CrossRef]
  48. Vona, R.; Sposi, N. M.; Mattia, L.; Gambardella, L.; Straface, E.; Pietraforte, D. , Sickle cell disease: Role of oxidative stress and antioxidant therapy. Antioxidants 2021, 10, 296. [Google Scholar] [CrossRef] [PubMed]
  49. Wang, W.; Kang, P. M. , Oxidative stress and antioxidant treatments in cardiovascular diseases. Antioxidants 2020, 9, 1292. [Google Scholar] [CrossRef]
  50. Yang, L.; Chen, Y.; Liu, Y.; Xing, Y.; Miao, C.; Zhao, Y.; Chang, X.; Zhang, Q. , The Role of Oxidative Stress and Natural Antioxidants in Ovarian Aging. Front. Pharmacol. 2021, 11, 617843. [Google Scholar] [CrossRef]
  51. Yang, N.; Guan, Q. W.; Chen, F. H.; Xia, Q. X.; Yin, X. X.; Zhou, H. H.; Mao, X. Y. , Antioxidants targeting mitochondrial oxidative stress: Promising neuroprotectants for epilepsy. Oxid. Med. Cell. Longev. 2020, 2020, 6687185. [Google Scholar] [CrossRef] [PubMed]
  52. Zafar, M. S.; Quarta, A.; Marradi, M.; Ragusa, A. , Recent developments in the reduction of oxidative stress through antioxidant polymeric formulations. Pharmaceutics 2019, 11, 505. [Google Scholar] [CrossRef] [PubMed]
  53. Behl, T.; Makkar, R.; Sehgal, A.; Singh, S.; Sharma, N.; Zengin, G.; Bungau, S.; Andronie-Cioara, F. L.; Munteanu, M. A.; Brisc, M. C.; Uivarosan, D.; Brisc, C. , Current trends in neurodegeneration: Cross talks between oxidative stress, cell death, and inflammation. Int. J. Mol. Sci. 2021, 22, 7432. [Google Scholar] [CrossRef] [PubMed]
  54. Carocci, A.; Catalano, A.; Sinicropi, M. S.; Genchi, G. , Oxidative stress and neurodegeneration: the involvement of iron. BioMetals 2018, 31, 715–735. [Google Scholar] [CrossRef]
  55. Cenini, G.; Lloret, A.; Cascella, R. , Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxid. Med. Cell. Longev. 2019, 2019, 2105607. [Google Scholar] [CrossRef]
  56. Elfawy, H. A.; Das, B. , Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci. 2019, 218, 165–184. [Google Scholar] [CrossRef]
  57. Espinós, C.; Galindo, M. I.; García-Gimeno, M. A.; Ibáñez-Cabellos, J. S.; Martínez-Rubio, D.; Millán, J. M.; Rodrigo, R.; Sanz, P.; Seco-Cervera, M.; Sevilla, T.; Tapia, A.; Pallardó, F. V. , Oxidative stress, a crossroad between rare diseases and neurodegeneration. Antioxidants 2020, 9, 313. [Google Scholar] [CrossRef]
  58. Franzoni, F.; Scarfò, G.; Guidotti, S.; Fusi, J.; Asomov, M.; Pruneti, C. , Oxidative Stress and Cognitive Decline: The Neuroprotective Role of Natural Antioxidants. Front. Neurosci. 2021, 15, 729757. [Google Scholar] [CrossRef]
  59. Gkekas, I.; Gioran, A.; Boziki, M. K.; Grigoriadis, N.; Chondrogianni, N.; Petrakis, S. , Oxidative stress and neurodegeneration: Interconnected processes in polyq diseases. Antioxidants 2021, 10, 1450. [Google Scholar] [CrossRef]
  60. Hahad, O.; Lelieveld, J.; Birklein, F.; Lieb, K.; Daiber, A.; Münzel, T. , Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress. Int. J. Mol. Sci. 2020, 21, 4306. [Google Scholar] [CrossRef]
  61. Hassan, W.; Noreen, H.; Rehman, S.; Kamal, M. A.; da Rocha, J. B. T. , Association of Oxidative Stress with Neurological Disorders. Curr. Neuropharmacol. 2022, 20, 1046–1072. [Google Scholar] [CrossRef]
  62. Korovesis, D.; Rubio-Tomás, T.; Tavernarakis, N. , Oxidative Stress in Age-Related Neurodegenerative Diseases: An Overview of Recent Tools and Findings. Antioxidants 2023, 12, 131. [Google Scholar] [CrossRef] [PubMed]
  63. Lananna, B. V.; Musiek, E. S. , The wrinkling of time: Aging, inflammation, oxidative stress, and the circadian clock in neurodegeneration. Neurobiol. Dis. 2020, 139, 104832. [Google Scholar] [CrossRef] [PubMed]
  64. Mallet, M. L.; Hadjivassiliou, M.; Sarrigiannis, P. G.; Zis, P. , The Role of Oxidative Stress in Peripheral Neuropathy. J. Mol. Neurosci. 2020, 70, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
  65. Martínez Leo, E. E.; Segura Campos, M. R. , Systemic Oxidative Stress: A Key Point in Neurodegeneration — A Review. J. Nutr. Health Aging 2019, 23, 694–699. [Google Scholar] [CrossRef]
  66. Mendonca, H.; Carpi-Santos, R.; Da Costa Calaza, K.; Blanco Martinez, A. , Neuroinflammation and oxidative stress act in concert to promote neurodegeneration in the diabetic retina and optic nerve: Galectin-3 participation. Neural Regen. Res. 2020, 15, 625–635. [Google Scholar]
  67. Merelli, A.; Repetto, M.; Lazarowski, A.; Auzmendi, J. Hypoxia, Oxidative Stress, and Inflammation: Three Faces of Neurodegenerative Diseases. J. Alzheimer’s Dis. 2021, 82, S109–S126. [Google Scholar] [CrossRef]
  68. Michalska, P.; León, R. , When it comes to an end: Oxidative stress crosstalk with protein aggregation and neuroinflammation induce neurodegeneration. Antioxidants 2020, 9, 740. [Google Scholar] [CrossRef]
  69. Nishimura, Y.; Kanda, Y.; Sone, H.; Aoyama, H. , Oxidative Stress as a Common Key Event in Developmental Neurotoxicity. Oxid. Med. Cell. Longev. 2021, 2021, 6685204. [Google Scholar] [CrossRef]
  70. Obrador, E.; Salvador, R.; Estrela, J. M.; López-Blanch, R.; Jihad-Jebbar, A.; Vallés, S. L. , Oxidative stress, neuroinflammation and mitochondria in the pathophysiology of amyotrophic lateral sclerosis. Antioxidants 2020, 9, 901. [Google Scholar] [CrossRef]
  71. Pardillo-Díaz, R.; Pérez-García, P.; Castro, C.; Nunez-Abades, P.; Carrascal, L. , Oxidative Stress as a Potential Mechanism Underlying Membrane Hyperexcitability in Neurodegenerative Diseases. Antioxidants 2022, 11, 1511. [Google Scholar] [CrossRef]
  72. Picca, A.; Calvani, R.; Coelho-Júnior, H. J.; Landi, F.; Bernabei, R.; Marzetti, E. , Mitochondrial dysfunction, oxidative stress, and neuroinflammation: Intertwined roads to neurodegeneration. Antioxidants 2020, 9, 647. [Google Scholar] [CrossRef] [PubMed]
  73. Rekatsina, M.; Paladini, A.; Piroli, A.; Zis, P.; Pergolizzi, J. V.; Varrassi, G. , Pathophysiology and Therapeutic Perspectives of Oxidative Stress and Neurodegenerative Diseases: A Narrative Review. Adv. Ther. 2020, 37, 113–139. [Google Scholar] [CrossRef]
  74. Rivas, F.; Poblete-Aro, C.; Pando, M. E.; Allel, M. J.; Fernandez, V.; Soto, A.; Nova, P.; Garcia-Diaz, D. Effects of Polyphenols in Aging and Neurodegeneration Associated with Oxidative Stress. Curr. Med, Chem, 2022, 29, 1045–1060. [Google Scholar] [CrossRef] [PubMed]
  75. Sanz-Morello, B.; Ahmadi, H.; Vohra, R.; Saruhanian, S.; Freude, K. K.; Hamann, S.; Kolko, M. , Oxidative stress in optic neuropathies. Antioxidants 2021, 10, 1538. [Google Scholar] [CrossRef] [PubMed]
  76. Sharifi-Rad, J.; Rapposelli, S.; Sestito, S.; Herrera-Bravo, J.; Arancibia-Diaz, A.; Salazar, L. A.; Yeskaliyeva, B.; Beyatli, A.; Leyva-Gómez, G.; González-Contreras, C.; Gürer, E. S.; Martorell, M.; Calina, D. , Multi-Target Mechanisms of Phytochemicals in Alzheimer’s Disease: Effects on Oxidative Stress, Neuroinflammation and Protein Aggregation. J. Pers. Med. 2022, 12, 1515. [Google Scholar] [CrossRef]
  77. Sharma, S.; Advani, D.; Das, A.; Malhotra, N.; Khosla, A.; Arora, V.; Jha, A.; Yadav, M.; Ambasta, R. K.; Kumar, P. , Pharmacological intervention in oxidative stress as a therapeutic target in neurological disorders. J. Pharm. Pharmacol. 2022, 74, 461–484. [Google Scholar] [CrossRef]
  78. Sienes Bailo, P.; Llorente Martín, E.; Calmarza, P.; Montolio Breva, S.; Bravo Gómez, A.; Pozo Giráldez, A.; Sánchez-Pascuala Callau, J. J.; Vaquer Santamaría, J. M.; Dayaldasani Khialani, A.; Cerdá Micó, C.; Camps Andreu, J.; Sáez Tormo, G.; Fort Gallifa, I. , The role of oxidative stress in neurodegenerative diseases and potential antioxidant therapies. Adv. Lab. Med. 2022, 3, 342–350. [Google Scholar] [CrossRef]
  79. Simpson, D. S. A.; Oliver, P. L. , Ros generation in microglia: Understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants 2020, 9, 743. [Google Scholar] [CrossRef]
  80. Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. , Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef]
  81. Singh, E.; Devasahayam, G. , Neurodegeneration by oxidative stress: a review on prospective use of small molecules for neuroprotection. Mol. Biol. Rep. 2020, 47, 3133–3140. [Google Scholar] [CrossRef] [PubMed]
  82. Song, J.; Han, K.; Wang, Y.; Qu, R.; Liu, Y.; Wang, S.; Wang, Y.; An, Z.; Li, J.; Wu, H.; Wu, W. Microglial Activation and Oxidative Stress in PM2.5-Induced Neurodegenerative Disorders. Antioxidants 2022, 11, 1482. [Google Scholar] [CrossRef]
  83. Spaas, J.; van Veggel, L.; Schepers, M.; Tiane, A.; van Horssen, J.; Wilson, D. M.; Moya, P. R.; Piccart, E.; Hellings, N.; Eijnde, B. O.; Derave, W.; Schreiber, R.; Vanmierlo, T. , Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cellular and Molecular Life Sci. 2021, 78, 4615–4637. [Google Scholar] [CrossRef] [PubMed]
  84. Teleanu, D. M.; Niculescu, A. G.; Lungu, I. I.; Radu, C. I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A. M.; Teleanu, R. I. , An Overview of Oxidative Stress, Neuroinflammation and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef]
  85. Volkert, M. R.; Crowley, D. J. , Preventing Neurodegeneration by Controlling Oxidative Stress: The Role of OXR1. Front. Neurosci. 2020, 14, 611904. [Google Scholar] [CrossRef]
  86. Aborode, A. T.; Pustake, M.; Awuah, W. A.; Alwerdani, M.; Shah, P.; Yarlagadda, R.; Ahmad, S.; Silva Correia, I. F.; Chandra, A.; Nansubuga, E. P.; Abdul-Rahman, T.; Mehta, A.; Ali, O.; Amaka, S. O.; Zuñiga, Y. M. H.; Shkodina, A. D.; Inya, O. C.; Shen, B.; Alexiou, A. , Targeting Oxidative Stress Mechanisms to Treat Alzheimer's and Parkinson's Disease: A Critical Review. Oxid. Med. Cell. Longev. 2022, 2022, 7934442. [Google Scholar] [CrossRef]
  87. Allan Butterfield, D.; Boyd-Kimball, D. , Mitochondrial oxidative and nitrosative stress and Alzheimer disease. Antioxidants 2020, 9, 818. [Google Scholar] [CrossRef]
  88. Anwar, M. M. , Oxidative stress-A direct bridge to central nervous system homeostatic dysfunction and Alzheimer's disease. Cell Biochem. Funct. 2022, 40, 17–27. [Google Scholar] [CrossRef]
  89. Beura, S. K.; Dhapola, R.; Panigrahi, A. R.; Yadav, P.; Reddy, D. H.; Singh, S. K. , Redefining oxidative stress in Alzheimer's disease: Targeting platelet reactive oxygen species for novel therapeutic options. Life Sci. 2022, 306, 120855. [Google Scholar] [CrossRef] [PubMed]
  90. Bhatia, V.; Sharma, S. , Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer's disease. J. Neurol. Sci. 2021, 421, 117253. [Google Scholar] [CrossRef] [PubMed]
  91. Butterfield, D. A.; Halliwell, B. , Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 2019, 20, 148–160. [Google Scholar] [CrossRef]
  92. Cassidy, L.; Fernandez, F.; Johnson, J. B.; Naiker, M.; Owoola, A. G.; Broszczak, D. A. , Oxidative stress in alzheimer's disease: A review on emergent natural polyphenolic therapeutics. Complement. Ther. Med. 2020, 49, 102294. [Google Scholar] [CrossRef] [PubMed]
  93. Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. , Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol. 2018, 14, 450–464. [Google Scholar] [CrossRef] [PubMed]
  94. Cioffi, F.; Adam, R. H. I.; Bansal, R.; Broersen, K. A review of oxidative stress products and related genes in early alzheimer's disease. J. Alzheimer’s Dis. 2021, 83, 977–1001. [Google Scholar] [CrossRef] [PubMed]
  95. Cioffi, F.; Adam, R. H. I.; Broersen, K. Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer's Disease. J. Alzheimer’s Dis. 2019, 72, 981–1017. [Google Scholar] [CrossRef]
  96. Ionescu-Tucker, A.; Cotman, C. W. , Emerging roles of oxidative stress in brain aging and Alzheimer's disease. Neurobiol. Aging 2021, 107, 86–95. [Google Scholar] [CrossRef]
  97. Juszczyk, G.; Mikulska, J.; Kasperek, K.; Pietrzak, D.; Mrozek, W.; Herbet, M. , Chronic stress and oxidative stress as common factors of the pathogenesis of depression and alzheimer’s disease; the role of antioxidants in prevention and treatment. Antioxidants 2021, 10, 1439. [Google Scholar] [CrossRef]
  98. Kowalska, M.; Wize, K.; Prendecki, M.; Lianeri, M.; Kozubski, W.; Dorszewska, J. , Genetic variants and oxidative stress in alzheimer’s disease. Curr. Alzheimer Res. 2020, 17, 208–223. [Google Scholar] [CrossRef]
  99. Misrani, A.; Tabassum, S.; Yang, L. , Mitochondrial Dysfunction and Oxidative Stress in Alzheimer’s Disease. Front. Aging Neurosci. 2021, 13, 617588. [Google Scholar] [CrossRef]
  100. Rummel, N. G.; Butterfield, D. A. , Altered Metabolism in Alzheimer Disease Brain: Role of Oxidative Stress. Antioxid. Redox Signal. 2022, 36, 1289–1305. [Google Scholar] [CrossRef]
  101. Shabbir, U.; Tyagi, A.; Elahi, F.; Aloo, S. O.; Oh, D. H. , The potential role of polyphenols in oxidative stress and inflammation induced by gut microbiota in alzheimer’s disease. Antioxidants 2021, 10, 1370. [Google Scholar] [CrossRef]
  102. Sharma, C.; Kim, S. R. , Linking oxidative stress and proteinopathy in alzheimer’s disease. Antioxidants 2021, 10, 1231. [Google Scholar] [CrossRef] [PubMed]
  103. Simunkova, M.; Alwasel, S. H.; Alhazza, I. M.; Jomova, K.; Kollar, V.; Rusko, M.; Valko, M. , Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch. Toxicol. 2019, 93, 2491–2513. [Google Scholar] [CrossRef] [PubMed]
  104. Tchekalarova, J.; Tzoneva, R. , Oxidative Stress and Aging as Risk Factors for Alzheimer’s Disease and Parkinson’s Disease: The Role of the Antioxidant Melatonin. Int. J. Mol. Sci. 2023, 24, 3022. [Google Scholar] [CrossRef]
  105. Zhao, Z. , Iron and oxidizing species in oxidative stress and Alzheimer's disease. Aging Med. 2019, 2, 82–87. [Google Scholar] [CrossRef]
  106. Chang, K. H.; Chen, C. M. , The role of oxidative stress in Parkinson’s disease. Antioxidants 2020, 9, 597. [Google Scholar] [CrossRef]
  107. Dionísio, P. A.; Amaral, J. D.; Rodrigues, C. M. P. , Oxidative stress and regulated cell death in Parkinson's disease. Ageing Res. Rev. 2021, 67, 101263. [Google Scholar] [CrossRef]
  108. Dorszewska, J.; Kowalska, M.; Prendecki, M.; Piekut, T.; Kozłowska, J.; Kozubski, W. , Oxidative stress factors in Parkinson's disease. Neural Regen. Res. 2021, 16, 1383–1391. [Google Scholar] [CrossRef]
  109. Guo, J. D.; Zhao, X.; Li, Y.; Li, G. R.; Liu, X. L. , Damage to dopaminergic neurons by oxidative stress in Parkinson's disease (Review). Int. J. Mol. Med. 2018, 41, 1817–1825. [Google Scholar] [CrossRef] [PubMed]
  110. 1https://doi.org/Hassanzadeh, K.; Rahimmi, A. Oxidative stress and neuroinflammation in the story of Parkinson’s disease: Could targeting these pathways write a good ending? J. Cell. Physiol. 2018, 234, 23–32. [Google Scholar] [CrossRef]
  111. Hor, S. L.; Teoh, S. L.; Lim, W. L. , Plant polyphenols as neuroprotective agents in parkinson’s disease targeting oxidative stress. Curr. Drug Targets 2020, 21, 458–476. [Google Scholar] [CrossRef]
  112. Monzani, E.; Nicolis, S.; Dell'Acqua, S.; Capucciati, A.; Bacchella, C.; Zucca, F. A.; Mosharov, E. V.; Sulzer, D.; Zecca, L.; Casella, L. , Dopamine, Oxidative Stress and Protein–Quinone Modifications in Parkinson's and Other Neurodegenerative Diseases. Angew. Chem. Int. Ed. 2019, 58, 6512–6527. [Google Scholar] [CrossRef]
  113. Puspita, L.; Chung, S. Y.; Shim, J. W. , Oxidative stress and cellular pathologies in Parkinson's disease. Mol. Brain 2017, 10, 53. [Google Scholar] [CrossRef]
  114. Pyatha, S.; Kim, H.; Lee, D.; Kim, K. , Association between Heavy Metal Exposure and Parkinson’s Disease: A Review of the Mechanisms Related to Oxidative Stress. Antioxidants 2022, 11, 2467. [Google Scholar] [CrossRef]
  115. Rizor, A.; Pajarillo, E.; Johnson, J.; Aschner, M.; Lee, E. , Astrocytic oxidative/nitrosative stress contributes to parkinson’s disease pathogenesis: The dual role of reactive astrocytes. Antioxidants 2019, 8, 265. [Google Scholar] [CrossRef]
  116. Trist, B. G.; Hare, D. J.; Double, K. L. , Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease. Aging Cell 2019, 18, e13031. [Google Scholar] [CrossRef] [PubMed]
  117. Vallée, A.; Lecarpentier, Y.; Guillevin, R.; Vallée, J. N. , Circadian rhythms, Neuroinflammation and Oxidative Stress in the Story of Parkinson's Disease. Cells 2020, 9. [Google Scholar] [CrossRef] [PubMed]
  118. Wei, Z.; Li, X.; Li, X.; Liu, Q.; Cheng, Y. , Oxidative Stress in Parkinson's Disease: A Systematic Review and Meta-Analysis. Front. Mol. Neurosci. 2018, 11, 236. [Google Scholar] [CrossRef] [PubMed]
  119. Bakunina, N.; Pariante, C. M.; Zunszain, P. A. , Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology 2015, 144, 365–373. [Google Scholar] [CrossRef]
  120. Behl, T.; Rana, T.; Alotaibi, G. H.; Shamsuzzaman, M.; Naqvi, M.; Sehgal, A.; Singh, S.; Sharma, N.; Almoshari, Y.; Abdellatif, A. A. H.; Iqbal, M. S.; Bhatia, S.; Al-Harrasi, A.; Bungau, S. , Polyphenols inhibiting MAPK signalling pathway mediated oxidative stress and inflammation in depression. Biomed. Pharmacother. 2022, 146, 112545. [Google Scholar] [CrossRef]
  121. Bhatt, S.; Nagappa, A. N.; Patil, C. R. , Role of oxidative stress in depression. Drug Discov. Today 2020, 25, 1270–1276. [Google Scholar] [CrossRef]
  122. Correia, A. S.; Cardoso, A.; Vale, N. , Oxidative Stress in Depression: The Link with the Stress Response, Neuroinflammation, Serotonin, Neurogenesis and Synaptic Plasticity. Antioxidants 2023, 12, 470. [Google Scholar] [CrossRef]
  123. Gorlova, A.; Svirin, E.; Pavlov, D.; Cespuglio, R.; Proshin, A.; Schroeter, C. A.; Lesch, K. P.; Strekalova, T. , Understanding the Role of Oxidative Stress, Neuroinflammation and Abnormal Myelination in Excessive Aggression Associated with Depression: Recent Input from Mechanistic Studies. Int. J. Mol. Sci. 2023, 24, 915. [Google Scholar] [CrossRef] [PubMed]
  124. Jiménez-Fernández, S.; Gurpegui, M.; Garrote-Rojas, D.; Gutiérrez-Rojas, L.; Carretero, M. D.; Correll, C. U. , Oxidative stress parameters and antioxidants in adults with unipolar or bipolar depression versus healthy controls: Systematic review and meta-analysis. J. Affect. Disord. 2022, 314, 211–221. [Google Scholar] [CrossRef] [PubMed]
  125. Lopresti, A. L.; Maker, G. L.; Hood, S. D.; Drummond, P. D. A review of peripheral biomarkers in major depression: The potential of inflammatory and oxidative stress biomarkers. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 48, 102–111. [Google Scholar] [CrossRef]
  126. Shao, A.; Lin, D.; Wang, L.; Tu, S.; Lenahan, C.; Zhang, J. , Oxidative stress at the crossroads of aging, stroke and depression. Aging Dis. 2020, 11, 1537–1566. [Google Scholar] [CrossRef] [PubMed]
  127. Vaváková, M.; ɰuračková, Z.; Trebatická, J. , Markers of Oxidative Stress and Neuroprogression in Depression Disorder. Oxid. Med. Cell. Longev. 2015, 2015, 898393. [Google Scholar] [CrossRef] [PubMed]
  128. Adamczyk, B.; Adamczyk-Sowa, M. , New Insights into the Role of Oxidative Stress Mechanisms in the Pathophysiology and Treatment of Multiple Sclerosis. Oxid. Med. Cell. Longev. 2016, 2016, 1973834. [Google Scholar] [CrossRef] [PubMed]
  129. Haider, L. , Inflammation, Iron, Energy Failure, and Oxidative Stress in the Pathogenesis of Multiple Sclerosis. Oxid. Med. Cell. Longev. 2015, 2015, 725370. [Google Scholar] [CrossRef] [PubMed]
  130. Hollen, C.; Neilson, L. E.; Barajas, R. F.; Greenhouse, I.; Spain, R. I. , Oxidative stress in multiple sclerosis—Emerging imaging techniques. Front. Neurol. 2023, 13, 1025659. [Google Scholar] [CrossRef]
  131. Ibitoye, R.; Kemp, K.; Rice, C.; Hares, K.; Scolding, N.; Wilkins, A. , Oxidative stress-related biomarkers in multiple sclerosis: A review. Biomark. Med. 2016, 10, 889–902. [Google Scholar] [CrossRef] [PubMed]
  132. Ohl, K.; Tenbrock, K.; Kipp, M. , Oxidative stress in multiple sclerosis: Central and peripheral mode of action. Exp. Neurol. 2016, 277, 58–67. [Google Scholar] [CrossRef] [PubMed]
  133. Ortiz, G. G.; Pacheco-Moisés, F. P.; Bitzer-Quintero, O. K.; Ramírez-Anguiano, A. C.; Flores-Alvarado, L. J.; Ramírez-Ramírez, V.; Macias-Islas, M. A.; Torres-Sánchez, E. D. , Immunology and oxidative stress in multiple sclerosis: Clinical and basic approach. Clin. Dev. Immunol. 2013, 2013, 708659. [Google Scholar] [CrossRef]
  134. Signorile, A.; Ferretta, A.; Ruggieri, M.; Paolicelli, D.; Lattanzio, P.; Trojano, M.; Rasmo, D. D. Mitochondria, oxidative stress, camp signalling and apoptosis: A crossroads in lymphocytes of multiple sclerosis, a possible role of nutraceutics. Antioxidants 2021, 10, 1–21. [Google Scholar] [CrossRef] [PubMed]
  135. Tobore, T. O. , Oxidative/Nitroxidative Stress and Multiple Sclerosis. J. Mol. Neurosci. 2021, 71, 506–514. [Google Scholar] [CrossRef]
  136. Zha, Z.; Liu, S.; Liu, Y.; Li, C.; Wang, L. , Potential Utility of Natural Products against Oxidative Stress in Animal Models of Multiple Sclerosis. Antioxidants 2022, 11, 1495. [Google Scholar] [CrossRef]
  137. Zhang, S. Y.; Gui, L. N.; Liu, Y. Y.; Shi, S.; Cheng, Y. , Oxidative Stress Marker Aberrations in Multiple Sclerosis: A Meta-Analysis Study. Front. Neurosci. 2020, 14, 823. [Google Scholar] [CrossRef]
  138. Akbari, A.; Majd, H. M.; Rahnama, R.; Heshmati, J.; Morvaridzadeh, M.; Agah, S.; Amini, S. M.; Masoodi, M. , Cross-talk between oxidative stress signaling and microRNA regulatory systems in carcinogenesis: Focused on gastrointestinal cancers. Biomed. Pharmacother. 2020, 131, 110729. [Google Scholar] [CrossRef] [PubMed]
  139. Allegra, A.; Pioggia, G.; Tonacci, A.; Musolino, C.; Gangemi, S. , Oxidative stress and photodynamic therapy of skin cancers: Mechanisms, challenges and promising developments. Antioxidants 2020, 9, 448. [Google Scholar] [CrossRef]
  140. Andrisic, L.; Dudzik, D.; Barbas, C.; Milkovic, L.; Grune, T.; Zarkovic, N. , Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer. Redox Biol. 2018, 14, 47–58. [Google Scholar] [CrossRef]
  141. Arfin, S.; Jha, N. K.; Jha, S. K.; Kesari, K. K.; Ruokolainen, J.; Roychoudhury, S.; Rathi, B.; Kumar, D. , Oxidative stress in cancer cell metabolism. Antioxidants 2021, 10, 642. [Google Scholar] [CrossRef]
  142. Basak, D.; Uddin, M. N.; Hancock, J. The role of oxidative stress and its counteractive utility in colorectal cancer (CRC). Cancers 2020, 12, 3336. [Google Scholar] [CrossRef]
  143. Bhatiya, M.; Pathak, S.; Banerjee, A. , Oxidative Stress and Cellular Senescence: The Key Tumor-promoting Factors in Colon Cancer and Beneficial Effects of Polyphenols in Colon Cancer Prevention. Curr. Cancer Ther. Rev. 2021, 17, 292–303. [Google Scholar] [CrossRef]
  144. Calaf, G. M.; Urzua, U.; Termini, L.; Aguayo, F. , Oxidative stress in female cancers. Oncotarget 2018, 9, 23824–23842. [Google Scholar] [CrossRef] [PubMed]
  145. Caliri, A. W.; Tommasi, S.; Besaratinia, A. , Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat. Res. Rev. Mutat. 2021, 787, 108365. [Google Scholar] [CrossRef] [PubMed]
  146. Chen, K.; Lu, P.; Beeraka, N. M.; Sukocheva, O. A.; Madhunapantula, S. V.; Liu, J.; Sinelnikov, M. Y.; Nikolenko, V. N.; Bulygin, K. V.; Mikhaleva, L. M.; Reshetov, I. V.; Gu, Y.; Zhang, J.; Cao, Y.; Somasundaram, S. G.; Kirkland, C. E.; Fan, R.; Aliev, G. , Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in breast cancers. Semin. Cancer Biol. 2022, 83, 556–569. [Google Scholar] [CrossRef] [PubMed]
  147. Cruz-Gregorio, A.; Aranda-Rivera, A. K.; Ortega-Lozano, A. J.; Pedraza-Chaverri, J.; Mendoza-Hoffmann, F. , Lipid metabolism and oxidative stress in HPV-related cancers. Free Radic. Biol. Med. 2021, 172, 226–236. [Google Scholar] [CrossRef] [PubMed]
  148. D'Souza, L. C.; Mishra, S.; Chakraborty, A.; Shekher, A.; Sharma, A.; Gupta, S. C. , Oxidative Stress and Cancer Development: Are Noncoding RNAs the Missing Links? Antioxid. Redox Signal. 2020, 33, 1209–1229. [Google Scholar] [CrossRef]
  149. Ding, D. N.; Xie, L. Z.; Shen, Y.; Li, J.; Guo, Y.; Fu, Y.; Liu, F. Y.; Han, F. J. , Insights into the Role of Oxidative Stress in Ovarian Cancer. Oxid. Med. Cell. Longev. 2021, 2021, 8388258. [Google Scholar] [CrossRef]
  150. Ebrahimi, S.; Soltani, A.; Hashemy, S. I. , Oxidative stress in cervical cancer pathogenesis and resistance to therapy. J. Cell. Biochem. 2019, 120, 6868–6877. [Google Scholar] [CrossRef]
  151. Ebrahimi, S. O.; Reiisi, S.; Shareef, S. , miRNAs, oxidative stress, and cancer: A comprehensive and updated review. J. Cell. Physiol. 2020, 235, 8812–8825. [Google Scholar] [CrossRef]
  152. García-Guede, Á.; Vera, O.; Ibáñez-de-Caceres, I. , When oxidative stress meets epigenetics: Implications in cancer development. Antioxidants 2020, 9, 468. [Google Scholar] [CrossRef] [PubMed]
  153. Gurer-Orhan, H.; Ince, E.; Konyar, D.; Saso, L.; Suzen, S. The role of oxidative stress modulators in breast cancer. Curr. Med, Chem, 2018, 25, 4084–4101. [Google Scholar] [CrossRef]
  154. Hayes, J. D.; Dinkova-Kostova, A. T.; Tew, K. D. , Oxidative Stress in Cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef]
  155. Jelic, M. D.; Mandic, A. D.; Maricic, S. M.; Srdjenovic, B. U. , Oxidative stress and its role in cancer. J. Cancer Res. Ther. 2021, 17, 22–28. [Google Scholar] [CrossRef] [PubMed]
  156. Kalinina, E. V.; Gavriliuk, L. A.; Pokrovsky, V. S. , Oxidative Stress and Redox-Dependent Signaling in Prostate Cancer. Biochemistry (Moscow) 2022, 87, 413–424. [Google Scholar] [CrossRef]
  157. Katakwar, P.; Metgud, R.; Naik, S.; Mittal, R. , Oxidative stress marker in oral cancer: A review. J. Cancer Res. Ther. 2016, 12, 438–446. [Google Scholar] [CrossRef] [PubMed]
  158. Kim, S. Y. , Oxidative stress and gender disparity in cancer. Free Radic. Res. 2022, 56, 90–105. [Google Scholar] [CrossRef]
  159. Klaunig, J. E. , Oxidative stress and cancer. Curr. Pharm. Des. 2018, 24, 4771–4778. [Google Scholar] [CrossRef]
  160. Kruk, J.; Aboul-Enein, H. Y. Reactive oxygen and nitrogen species in carcinogenesis: Implications of oxidative stress on the progression and development of several cancer types. Mini-Reviews Med. Chem. 2017, 17, 904–919. [Google Scholar] [CrossRef]
  161. Lee, D. Y.; Song, M. Y.; Kim, E. H. , Role of oxidative stress and nrf2/keap1 signaling in colorectal cancer: Mechanisms and therapeutic perspectives with phytochemicals. Antioxidants 2021, 10, 743. [Google Scholar] [CrossRef] [PubMed]
  162. Lu, C.; Zhou, D.; Wang, Q.; Liu, W.; Yu, F.; Wu, F.; Chen, C. , Crosstalk of MicroRNAs and Oxidative Stress in the Pathogenesis of Cancer. Oxid. Med. Cell. Longev. 2020, 2020, 2415324. [Google Scholar] [CrossRef]
  163. Mazzuferi, G.; Bacchetti, T.; Islam, M. O.; Ferretti, G. , High density lipoproteins and oxidative stress in breast cancer. Lipids Health Dis. 2021, 20, 143. [Google Scholar] [CrossRef]
  164. Mdkhana, B.; Goel, S.; Saleh, M. A.; Siddiqui, R.; Khan, N. A.; Elmoselhi, A. B. , Role of oxidative stress in angiogenesis and the therapeutic potential of antioxidants in breast cancer. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 4677–4692. [Google Scholar]
  165. Morry, J.; Ngamcherdtrakul, W.; Yantasee, W. , Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol. 2017, 11, 240–253. [Google Scholar] [CrossRef]
  166. Neganova, M.; Liu, J.; Aleksandrova, Y.; Klochkov, S.; Fan, R. , Therapeutic influence on important targets associated with chronic inflammation and oxidative stress in cancer treatment. Cancers 2021, 13, 6062. [Google Scholar] [CrossRef]
  167. Oh, B.; Figtree, G.; Costa, D.; Eade, T.; Hruby, G.; Lim, S.; Elfiky, A.; Martine, N.; Rosenthal, D.; Clarke, S.; Back, M. , Oxidative stress in prostate cancer patients: A systematic review of case control studies. Prostate Int. 2016, 4, 71–87. [Google Scholar] [CrossRef] [PubMed]
  168. Saed, G. M.; Diamond, M. P.; Fletcher, N. M. , Updates of the role of oxidative stress in the pathogenesis of ovarian cancer. Gynecol. Oncol. 2017, 145, 595–602. [Google Scholar] [CrossRef] [PubMed]
  169. Saha, S. K.; Lee, S. B.; Won, J.; Choi, H. Y.; Kim, K.; Yang, G. M.; Dayem, A. A.; Cho, S. G. , Correlation between oxidative stress, nutrition, and cancer initiation. Int. J. Mol. Sci. 2017, 18, 1544. [Google Scholar] [CrossRef]
  170. Sajadimajd, S.; Khazaei, M. , Oxidative stress and cancer: The role of Nrf2. Curr. Cancer Drug Targets 2018, 18, 538–557. [Google Scholar] [CrossRef]
  171. Sanati, M.; Afshari, A. R.; Kesharwani, P.; Sukhorukov, V. N.; Sahebkar, A. , Recent trends in the application of nanoparticles in cancer therapy: The involvement of oxidative stress. J. Control. Release 2022, 348, 287–304. [Google Scholar] [CrossRef] [PubMed]
  172. Shiau, J. P.; Chuang, Y. T.; Tang, J. Y.; Yang, K. H.; Chang, F. R.; Hou, M. F.; Yen, C. Y.; Chang, H. W. , The Impact of Oxidative Stress and AKT Pathway on Cancer Cell Functions and Its Application to Natural Products. Antioxidants 2022, 11, 1845. [Google Scholar] [CrossRef]
  173. Taucher, E.; Mykoliuk, I.; Fediuk, M.; Smolle-Juettner, F. M. , Autophagy, Oxidative Stress and Cancer Development. Cancers (Basel) 2022, 14, 1637. [Google Scholar] [CrossRef]
  174. Trošelj, K. G.; Tomljanović, M.; Jaganjac, M.; Matijević Glavan, T.; Čipak Gašparović, A.; Milković, L.; Borović Šunjić, S.; Buttari, B.; Profumo, E.; Saha, S.; Saso, L.; Žarković, N. , Oxidative Stress and Cancer Heterogeneity Orchestrate NRF2 Roles Relevant for Therapy Response. Molecules 2022, 27, 1468. [Google Scholar] [CrossRef] [PubMed]
  175. Wang, Z.; Li, Z.; Ye, Y.; Xie, L.; Li, W. , Oxidative stress and liver cancer: Etiology and therapeutic targets. Oxid. Med. Cell. Longev. 2016, 2016, 7891574. [Google Scholar] [CrossRef]
  176. Wigner, P.; Grębowski, R.; Bijak, M.; Saluk-Bijak, J.; Szemraj, J. , The interplay between oxidative stress, inflammation and angiogenesis in bladder cancer development. Int. J. Mol. Sci. 2021, 22, 4483. [Google Scholar] [CrossRef]
  177. Yang, B.; Chen, Q. , Cross-Talk between Oxidative Stress and m6A RNA Methylation in Cancer. Oxid. Med. Cell. Longev. 2021, 2021, 6545728. [Google Scholar] [CrossRef]
  178. Zahra, K. F.; Lefter, R.; Ali, A.; Abdellah, E. C.; Trus, C.; Ciobica, A.; Timofte, D. , The Involvement of the Oxidative Stress Status in Cancer Pathology: A Double View on the Role of the Antioxidants. Oxid. Med. Cell. Longev. 2021, 2021, 9965916. [Google Scholar] [CrossRef] [PubMed]
  179. Zuo, T.; Zhu, M.; Xu, W. , Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid. Med. Cell. Longev. 2016, 2016, 8589318. [Google Scholar] [CrossRef] [PubMed]
  180. Ferraguti, G.; Terracina, S.; Petrella, C.; Greco, A.; Minni, A.; Lucarelli, M.; Agostinelli, E.; Ralli, M.; de Vincentiis, M.; Raponi, G.; Polimeni, A.; Ceccanti, M.; Caronti, B.; Di Certo, M. G.; Barbato, C.; Mattia, A.; Tarani, L.; Fiore, M. , Alcohol and Head and Neck Cancer: Updates on the Role of Oxidative Stress, Genetic, Epigenetics, Oral Microbiota, Antioxidants, and Alkylating Agents. Antioxidants 2022, 11, 145. [Google Scholar] [CrossRef]
  181. Liu, H. M.; Cheng, M. Y.; Xun, M. H.; Zhao, Z. W.; Zhang, Y.; Tang, W.; Cheng, J.; Ni, J.; Wang, W. , Possible Mechanisms of Oxidative Stress-Induced Skin Cellular Senescence, Inflammation, and Cancer and the Therapeutic Potential of Plant Polyphenols. Int. J. Mol. Sci. 2023, 24, 3755. [Google Scholar] [CrossRef] [PubMed]
  182. Barreiro Arcos, M. L. Role of thyroid hormones-induced oxidative stress on cardiovascular physiology. Biochim. Biophys. Acta - Gen. Subj. 2022, 1866, 130239. [Google Scholar] [CrossRef] [PubMed]
  183. Cai, H.; Liu, Y.; Men, H.; Zheng, Y. , Protective Mechanism of Humanin Against Oxidative Stress in Aging-Related Cardiovascular Diseases. Front. Endocrinol. (Lausanne) 2021, 12, 683151. [Google Scholar] [CrossRef] [PubMed]
  184. Chen, Z.; Jin, Z. X.; Cai, J.; Li, R.; Deng, K. Q.; Ji, Y. X.; Lei, F.; Li, H. P.; Lu, Z.; Li, H. , Energy substrate metabolism and oxidative stress in metabolic cardiomyopathy. J. Mol. Med. 2022, 100, 1721–1739. [Google Scholar] [CrossRef]
  185. De Almeida, A. J. P. O.; De Almeida Rezende, M. S.; Dantas, S. H.; De Lima Silva, S.; De Oliveira, J. C. P. L.; De Lourdes Assunção Araújo De Azevedo, F.; Alves, R. M. F. R.; De Menezes, G. M. S.; Dos Santos, P. F.; Gonçalves, T. A. F.; Schini-Kerth, V. B.; De Medeiros, I. A. , Unveiling the Role of Inflammation and Oxidative Stress on Age-Related Cardiovascular Diseases. Oxid. Med. Cell. Longev. 2020, 2020, 1954398. [Google Scholar] [CrossRef]
  186. De Geest, B.; Mishra, M. , Role of Oxidative Stress in Diabetic Cardiomyopathy. Antioxidants 2022, 11, 784. [Google Scholar] [CrossRef]
  187. Dos Santos, J. L.; de Quadros, A. S.; Weschenfelder, C.; Garofallo, S. B.; Marcadenti, A. , Oxidative stress biomarkers, nut-related antioxidants, and cardiovascular disease. Nutrients 2020, 12, 682. [Google Scholar] [CrossRef]
  188. Fabiani, I.; Aimo, A.; Grigoratos, C.; Castiglione, V.; Gentile, F.; Saccaro, L. F.; Arzilli, C.; Cardinale, D.; Passino, C.; Emdin, M. , Oxidative stress and inflammation: determinants of anthracycline cardiotoxicity and possible therapeutic targets. Heart Fail. Rev. 2021, 26, 881–890. [Google Scholar] [CrossRef]
  189. Farías, J. G.; Molina, V. M.; Carrasco, R. A.; Zepeda, A. B.; Figueroa, E.; Letelier, P.; Castillo, R. L. , Antioxidant therapeutic strategies for cardiovascular conditions associated with oxidative stress. Nutrients 2017, 9, 966. [Google Scholar] [CrossRef]
  190. Gaggini, M.; Ndreu, R.; Michelucci, E.; Rocchiccioli, S.; Vassalle, C. , Ceramides as Mediators of Oxidative Stress and Inflammation in Cardiometabolic Disease. Int. J. Mol. Sci. 2022, 23, 2719. [Google Scholar] [CrossRef] [PubMed]
  191. Ghosh, A.; Shcherbik, N. , Effects of oxidative stress on protein translation: Implications for cardiovascular diseases. Int. J. Mol. Sci. 2020, 21, 2661. [Google Scholar] [CrossRef] [PubMed]
  192. Izzo, C.; Vitillo, P.; Di Pietro, P.; Visco, V.; Strianese, A.; Virtuoso, N.; Ciccarelli, M.; Galasso, G.; Carrizzo, A.; Vecchione, C. The role of oxidative stress in cardiovascular aging and cardiovascular diseases. Life 2021, 11, 60. [Google Scholar] [CrossRef] [PubMed]
  193. Jakovljevic, V.; Djuric, D.; Pechanova, O.; Bolevich, S.; Tyagi, S. , Oxidative Stress and Cardiovascular Dysfunction: From Basic Science to Applied Investigations. Oxid. Med. Cell. Longev. 2020, 2020, 6985284. [Google Scholar] [CrossRef] [PubMed]
  194. Kander, M. C.; Cui, Y.; Liu, Z. , Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. J. Cell. Mol. Med. 2017, 21, 1024–1032. [Google Scholar] [CrossRef]
  195. Kelly, F. J.; Fussell, J. C. , Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution. Free Radic. Biol. Med. 2017, 110, 345–367. [Google Scholar] [CrossRef]
  196. Lin, D.; Wang, L.; Yan, S.; Zhang, Q.; Zhang, J. H.; Shao, A. , The Role of Oxidative Stress in Common Risk Factors and Mechanisms of Cardio-Cerebrovascular Ischemia and Depression. Oxid. Med. Cell. Longev. 2019, 2019, 2491927. [Google Scholar] [CrossRef]
  197. Lüscher, T. F. , Ageing, inflammation, and oxidative stress: Final common pathways of cardiovascular disease. Eur. Heart J. 2015, 36, 3381–3383. [Google Scholar] [CrossRef]
  198. Mei, Y.; Thompson, M. D.; Cohen, R. A.; Tong, X. Autophagy and oxidative stress in cardiovascular diseases. Biochim. Biophys. Acta - Mol. Basis Dis. 2015, 1852, 243–251. [Google Scholar] [CrossRef]
  199. Panda, P.; Verma, H. K.; Lakkakula, S.; Merchant, N.; Kadir, F.; Rahman, S.; Jeffree, M. S.; Lakkakula, B. V. K. S.; Rao, P. V. , Biomarkers of Oxidative Stress Tethered to Cardiovascular Diseases. Oxid. Med. Cell. Longev. 2022, 2022, 9154295. [Google Scholar] [CrossRef]
  200. Petek, T. H.; Petek, T.; Močnik, M.; Varda, N. M. , Systemic Inflammation, Oxidative Stress and Cardiovascular Health in Children and Adolescents: A Systematic Review. Antioxidants 2022, 11, 894. [Google Scholar] [CrossRef]
  201. Pignatelli, P.; Menichelli, D.; Pastori, D.; Violi, F. , Oxidative stress and cardiovascular disease: New insights. Kardiol. Pol. 2018, 76, 713–722. [Google Scholar] [CrossRef] [PubMed]
  202. Ping, Z.; Peng, Y.; Lang, H.; Xinyong, C.; Zhiyi, Z.; Xiaocheng, W.; Hong, Z.; Liang, S. , Oxidative Stress in Radiation-Induced Cardiotoxicity. Oxid. Med. Cell. Longev. 2020, 2020, 3579143. [Google Scholar] [CrossRef] [PubMed]
  203. Rodríguez-Rodríguez, P.; Ramiro-Cortijo, D.; Reyes-Hernández, C. G.; López de Pablo, A. L.; Carmen González, M.; Arribas, S. M. , Implication of oxidative stress in fetal programming of cardiovascular disease. Front. Physiol. 2018, 9, 602. [Google Scholar] [CrossRef] [PubMed]
  204. Rotariu, D.; Babes, E. E.; Tit, D. M.; Moisi, M.; Bustea, C.; Stoicescu, M.; Radu, A. F.; Vesa, C. M.; Behl, T.; Bungau, A. F.; Bungau, S. G. , Oxidative stress – Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed. Pharmacother. 2022, 152, 113238. [Google Scholar] [CrossRef]
  205. Senoner, T.; Dichtl, W. , Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients 2019, 11, 2090. [Google Scholar] [CrossRef]
  206. Shaito, A.; Aramouni, K.; Assaf, R.; Parenti, A.; Orekhov, A.; Yazbi, A. E.; Pintus, G.; Eid, A. H. Oxidative Stress-Induced Endothelial Dysfunction in Cardiovascular Diseases. Front. Biosci. - Landmark 2022, 27, 105. [Google Scholar] [CrossRef]
  207. Siti, H. N.; Kamisah, Y.; Kamsiah, J. , The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vasc. Pharmacol. 2015, 71, 40–56. [Google Scholar] [CrossRef]
  208. Steven, S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Kuntic, M.; Jimenez, M. T. B.; Vujacic-Mirski, K.; Helmstädter, J.; Kröller-Schön, S.; Münzel, T.; Daiber, A. , Vascular inflammation and oxidative stress: Major triggers for cardiovascular disease. Oxid. Med. Cell. Longev. 2019, 2019, 7092151. [Google Scholar] [CrossRef]
  209. Sun, Y.; Rawish, E.; Nording, H. M.; Langer, H. F. , Inflammation in metabolic and cardiovascular disorders—role of oxidative stress. Life 2021, 11, 672. [Google Scholar] [CrossRef]
  210. Theofilis, P.; Vordoni, A.; Kalaitzidis, R. G. Oxidative Stress Management in Cardiorenal Diseases: Focus on Novel Antidiabetic Agents, Finerenone, and Melatonin. Life 2022, 12, 1663. [Google Scholar] [CrossRef] [PubMed]
  211. Wu, J.; Xia, S.; Kalionis, B.; Wan, W.; Sun, T. , The Role of Oxidative Stress and Inflammation in Cardiovascular Aging. Biomed Res. Int. 2014, 2014, 615312. [Google Scholar] [CrossRef]
  212. Xu, T.; Ding, W.; Ji, X.; Ao, X.; Liu, Y.; Yu, W.; Wang, J. , Oxidative Stress in Cell Death and Cardiovascular Diseases. Oxid. Med. Cell. Longev. 2019, 2019, 9030563. [Google Scholar] [CrossRef] [PubMed]
  213. Yan, F.; Li, K.; Xing, W.; Dong, M.; Yi, M.; Zhang, H. , Role of Iron-Related Oxidative Stress and Mitochondrial Dysfunction in Cardiovascular Diseases. Oxid. Med. Cell. Longev. 2022, 2022, 5124553. [Google Scholar] [CrossRef] [PubMed]
  214. Yi, X.; Zhu, Q. X.; Wu, X. L.; Tan, T. T.; Jiang, X. J. , Histone Methylation and Oxidative Stress in Cardiovascular Diseases. Oxid. Med. Cell. Longev. 2022, 2022, 6023710. [Google Scholar] [CrossRef] [PubMed]
  215. Yu, Y.; Yan, Y.; Niu, F.; Wang, Y.; Chen, X.; Su, G.; Liu, Y.; Zhao, X.; Qian, L.; Liu, P.; Xiong, Y. , Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 2021, 7, 193. [Google Scholar] [CrossRef] [PubMed]
  216. Zhao, M. J.; Yuan, S.; Zi, H.; Gu, J. M.; Fang, C.; Zeng, X. T. , Oxidative Stress Links Aging-Associated Cardiovascular Diseases and Prostatic Diseases. Oxid. Med. Cell. Longev. 2021, 2021, 5896136. [Google Scholar] [CrossRef]
  217. Zhao, S.; Cheng, C. K.; Zhang, C. L.; Huang, Y. , Interplay between Oxidative Stress, Cyclooxygenases, and Prostanoids in Cardiovascular Diseases. Antioxid. Redox Signal. 2021, 34, 784–799. [Google Scholar] [CrossRef]
  218. Zhou, Y.; Murugan, D. D.; Khan, H.; Huang, Y.; Cheang, W. S. , Roles and therapeutic implications of endoplasmic reticulum stress and oxidative stress in cardiovascular diseases. Antioxidants 2021, 10, 1167. [Google Scholar] [CrossRef]
  219. Bin-Jumah, M. N.; Nadeem, M. S.; Gilani, S. J.; Mubeen, B.; Ullah, I.; Alzarea, S. I.; Ghoneim, M. M.; Alshehri, S.; Al-Abbasi, F. A.; Kazmi, I. , Lycopene: A Natural Arsenal in the War against Oxidative Stress and Cardiovascular Diseases. Antioxidants 2022, 11, 232. [Google Scholar] [CrossRef]
  220. Chang, X.; Zhang, T.; Zhang, W.; Zhao, Z.; Sun, J. , Natural Drugs as a Treatment Strategy for Cardiovascular Disease through the Regulation of Oxidative Stress. Oxid. Med. Cell. Longev. 2020, 2020, 5430407. [Google Scholar] [CrossRef]
  221. Cox, F. F.; Misiou, A.; Vierkant, A.; Ale-Agha, N.; Grandoch, M.; Haendeler, J.; Altschmied, J. , Protective Effects of Curcumin in Cardiovascular Diseases—Impact on Oxidative Stress and Mitochondria. Cells 2022, 11, 342. [Google Scholar] [CrossRef] [PubMed]
  222. Daiber, A.; Chlopicki, S. , Revisiting pharmacology of oxidative stress and endothelial dysfunction in cardiovascular disease: Evidence for redox-based therapies. Free Radic. Biol. Med. 2020, 157, 15–37. [Google Scholar] [CrossRef] [PubMed]
  223. Donia, T.; Khamis, A. , Management of oxidative stress and inflammation in cardiovascular diseases: mechanisms and challenges. Environ. Sci. Pollut. Res. 2021, 28, 34121–34153. [Google Scholar] [CrossRef] [PubMed]
  224. Gherghina, M. E.; Peride, I.; Tiglis, M.; Neagu, T. P.; Niculae, A.; Checherita, I. A. , Uric Acid and Oxidative Stress—Relationship with Cardiovascular, Metabolic, and Renal Impairment. Int. J. Mol. Sci. 2022, 23, 3188. [Google Scholar] [CrossRef] [PubMed]
  225. Liu, M.; Dudley, S. C. , Magnesium, oxidative stress, inflammation, and cardiovascular disease. Antioxidants 2020, 9, 907. [Google Scholar] [CrossRef]
  226. Miller, M. R. , Oxidative stress and the cardiovascular effects of air pollution. Free Radic. Biol. Med. 2020, 151, 69–87. [Google Scholar] [CrossRef]
  227. Mozzini, C.; Setti, A.; Cicco, S.; Pagani, M. , The Most Severe Paradigm of Early Cardiovascular Disease: Hutchinson-Gilford Progeria. Focus on the Role of Oxidative Stress. Curr. Probl. Cardiol. 2022, 47, 100900. [Google Scholar] [CrossRef]
  228. Qiu, M.; Chen, J.; Li, X.; Zhuang, J. , Intersection of the Ubiquitin–Proteasome System with Oxidative Stress in Cardiovascular Disease. Int. J. Mol. Sci. 2022, 23, 12197. [Google Scholar] [CrossRef]
  229. Alu, S. N.; Los, E. A.; Ford, G. A.; Stone, W. L. , Oxidative Stress in Type 2 Diabetes: The Case for Future Pediatric Redoxomics Studies. Antioxidants 2022, 11, 1336. [Google Scholar] [CrossRef]
  230. Andreadi, A.; Bellia, A.; Di Daniele, N.; Meloni, M.; Lauro, R.; Della-Morte, D.; Lauro, D. , The molecular link between oxidative stress, insulin resistance, and type 2 diabetes: A target for new therapies against cardiovascular diseases. Curr. Opin. Pharmacol. 2022, 62, 85–96. [Google Scholar] [CrossRef]
  231. Bhatti, J. S.; Sehrawat, A.; Mishra, J.; Sidhu, I. S.; Navik, U.; Khullar, N.; Kumar, S.; Bhatti, G. K.; Reddy, P. H. , Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic. Biol. Med. 2022, 184, 114–134. [Google Scholar] [CrossRef]
  232. Darenskaya, M. A.; Kolesnikova, L. I.; Kolesnikov, S. I. , Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. Bull. Exp. Biol. Med. 2021, 171, 179–189. [Google Scholar] [CrossRef] [PubMed]
  233. David, J. A.; Rifkin, W. J.; Rabbani, P. S.; Ceradini, D. J. , The Nrf2/Keap1/ARE Pathway and Oxidative Stress as a Therapeutic Target in Type II Diabetes Mellitus. J. Diabetes Res. 2017, 2017, 4826724. [Google Scholar] [CrossRef] [PubMed]
  234. Eguchi, N.; Vaziri, N. D.; Dafoe, D. C.; Ichii, H. , The role of oxidative stress in pancreatic β cell dysfunction in diabetes. Int. J. Mol. Sci. 2021, 22, 1509. [Google Scholar] [CrossRef]
  235. Ghasemi-Dehnoo, M.; Amini-Khoei, H.; Lorigooini, Z.; Rafieian-Kopaei, M. , Oxidative stress and antioxidants in diabetes mellitus. Asian Pac. J. Trop. Med. 2020, 13, 431–438. [Google Scholar]
  236. Gorini, F.; Sabatino, L.; Gaggini, M.; Chatzianagnostou, K.; Vassalle, C. , Oxidative stress biomarkers in the relationship between type 2 diabetes and air pollution. Antioxidants 2021, 10, 1234. [Google Scholar] [CrossRef] [PubMed]
  237. Halim, M.; Halim, A. , The effects of inflammation, aging and oxidative stress on the pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
  238. Ighodaro, O. M. , Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed. Pharmacother. 2018, 108, 656–662. [Google Scholar] [CrossRef]
  239. Lee, W. C.; Mokhtar, S. S.; Munisamy, S.; Yahaya, S.; Rasool, A. H. G. , Vitamin D status and oxidative stress in diabetes mellitus. Cell. Mol. Biol. 2018, 64, 60–69. [Google Scholar] [CrossRef]
  240. Luc, K.; Schramm-Luc, A.; Guzik, T. J.; Mikolajczyk, T. P. , Oxidative stress and inflammatory markers in prediabetes and diabetes. J. Physiol. Pharmacol. 2019, 70, 809–824. [Google Scholar]
  241. Ly, L. D.; Xu, S.; Choi, S. K.; Ha, C. M.; Thoudam, T.; Cha, S. K.; Wiederkehr, A.; Wollheim, C. B.; Lee, I. K.; Park, K. S. , Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp. Mol. Med. 2017, 49, e291. [Google Scholar] [CrossRef]
  242. Qadir, M. M. F.; Klein, D.; Álvarez-Cubela, S.; Domínguez-Bendala, J.; Pastori, R. L. , The role of microRNAs in diabetes-related oxidative stress. Int. J. Mol. Sci. 2019, 20, 5423. [Google Scholar] [CrossRef] [PubMed]
  243. Ramos-Riera, K. P.; Pérez-Severiano, F.; López-Meraz, M. L. , Oxidative stress: a common imbalance in diabetes and epilepsy. Metab. Brain Dis. 2023, 38, 767–782. [Google Scholar] [CrossRef] [PubMed]
  244. Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. , Mechanistic Insight into Oxidative Stress-Triggered Signaling Pathways and Type 2 Diabetes. Molecules 2022, 27, 950. [Google Scholar] [CrossRef] [PubMed]
  245. Teodoro, J. S.; Nunes, S.; Rolo, A. P.; Reis, F.; Palmeira, C. M. , Therapeutic options targeting oxidative stress, mitochondrial dysfunction and inflammation to hinder the progression of vascular complications of diabetes. Front. Physiol. 2019, 10, 1857. [Google Scholar] [CrossRef] [PubMed]
  246. Thakur, P.; Kumar, A.; Kumar, A. , Targeting oxidative stress through antioxidants in diabetes mellitus. J. Drug Target. 2018, 26, 766–776. [Google Scholar] [CrossRef] [PubMed]
  247. Weng, L.; Zhang, F.; Wang, R.; Ma, W.; Song, Y. , A review on protective role of genistein against oxidative stress in diabetes and related complications. Chem. Biol. Interact. 2019, 310, 108665. [Google Scholar] [CrossRef] [PubMed]
  248. Wronka, M.; Krzemińska, J.; Młynarska, E.; Rysz, J.; Franczyk, B. , The Influence of Lifestyle and Treatment on Oxidative Stress and Inflammation in Diabetes. Int. J. Mol. Sci. 2022, 23, 15743. [Google Scholar] [CrossRef]
  249. Xu, Y.; Tang, G.; Zhang, C.; Wang, N.; Feng, Y. , Gallic acid and diabetes mellitus: Its association with oxidative stress. Molecules 2021, 26, 7115. [Google Scholar] [CrossRef]
  250. Zhang, P.; Li, T.; Wu, X.; Nice, E. C.; Huang, C.; Zhang, Y. , Oxidative stress and diabetes: antioxidative strategies. Front. Med. 2020, 14, 583–600. [Google Scholar] [CrossRef]
  251. Zorena, K.; Jaskulak, M.; Michalska, M.; Mrugacz, M.; Vandenbulcke, F. , Air Pollution, Oxidative Stress, and the Risk of Development of Type 1 Diabetes. Antioxidants 2022, 11, 1908. [Google Scholar] [CrossRef] [PubMed]
  252. Lim, C. C.; Thurston, G. D. , Air Pollution, Oxidative Stress, and Diabetes: a Life Course Epidemiologic Perspective. Curr. Diab. Rep. 2019, 19, 58. [Google Scholar] [CrossRef] [PubMed]
  253. Bala, A.; Mondal, C.; Haldar, P. K.; Khandelwal, B. , Oxidative stress in inflammatory cells of patient with rheumatoid arthritis: clinical efficacy of dietary antioxidants. Inflammopharmacology 2017, 25, 595–607. [Google Scholar] [CrossRef] [PubMed]
  254. Behl, T.; Upadhyay, T.; Singh, S.; Chigurupati, S.; Alsubayiel, A. M.; Mani, V.; Vargas-De-la-cruz, C.; Uivarosan, D.; Bustea, C.; Sava, C.; Stoicescu, M.; Radu, A. F.; Bungau, S. G. , Polyphenols targeting MAPK mediated oxidative stress and inflammation in rheumatoid arthritis. Molecules 2021, 26, 6570. [Google Scholar] [CrossRef]
  255. Ferreira, H. B.; Melo, T.; Paiva, A.; Domingues, M. D. R. , Insights in the role of lipids, oxidative stress and inflammation in rheumatoid arthritis unveiled by new trends in lipidomic investigations. Antioxidants 2021, 10, 45. [Google Scholar] [CrossRef]
  256. Fonseca, L. J. S. D.; Nunes-Souza, V.; Goulart, M. O. F.; Rabelo, L. A. , Oxidative Stress in Rheumatoid Arthritis: What the Future Might Hold regarding Novel Biomarkers and Add-On Therapies. Oxid. Med. Cell. Longev. 2019, 2019, 7536805. [Google Scholar] [CrossRef]
  257. Kaur, G.; Sharma, A.; Bhatnagar, A. , Role of oxidative stress in pathophysiology of rheumatoid arthritis: insights into NRF2-KEAP1 signalling. Autoimmunity 2021, 54, 385–397. [Google Scholar] [CrossRef]
  258. Kunsch, C.; Sikorski, J. A.; Sundell, C. L. Oxidative stress and the use of antioxidants for the treatment of rheumatoid arthritis. Curr. Med, Chem,: Immunol. Endocr. Metab. Agents 2005, 5, 249–258. [Google Scholar] [CrossRef]
  259. López-Armada, M. J.; Fernández-Rodríguez, J. A.; Blanco, F. J. , Mitochondrial Dysfunction and Oxidative Stress in Rheumatoid Arthritis. Antioxidants 2022, 11, 1151. [Google Scholar] [CrossRef]
  260. Phull, A. R.; Nasir, B.; Haq, I. U.; Kim, S. J. , Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis. Chem. Biol. Interact. 2018, 281, 121–136. [Google Scholar] [CrossRef] [PubMed]
  261. Quinonez-Flores, C. M.; Gonzalez-Chavez, S. A.; Del Rio Najera, D.; Pacheco-Tena, C. , Oxidative Stress Relevance in the Pathogenesis of the Rheumatoid Arthritis: A Systematic Review. Biomed Res. Int. 2016, 2016, 6097417. [Google Scholar] [CrossRef] [PubMed]
  262. Rehman, A.; John, P.; Bhatti, A. , Biogenic selenium nanoparticles: Potential solution to oxidative stress mediated inflammation in rheumatoid arthritis and associated complications. Nanomaterials 2021, 11, 2005. [Google Scholar] [CrossRef] [PubMed]
  263. Zamudio-Cuevas, Y.; Martínez-Flores, K.; Martínez-Nava, G. A.; Clavijo-Cornejo, D.; Fernández-Torres, J.; Sánchez-Sánchez, R. , Rheumatoid arthritis and oxidative stress, a review of a decade. Cell. Mol. Biol. 2022, 68, 174–184. [Google Scholar] [CrossRef]
  264. Amiri, M. , Oxidative stress and free radicals in liver and kidney diseases; an updated short-review. J. Nephropathol. 2018, 7, 127–131. [Google Scholar] [CrossRef]
  265. Andries, A.; Daenen, K.; Jouret, F.; Bammens, B.; Mekahli, D.; Van Schepdael, A. , Oxidative stress in autosomal dominant polycystic kidney disease: player and/or early predictor for disease progression? Pediatr. Nephrol. 2019, 34, 993–1008. [Google Scholar] [CrossRef]
  266. Aranda-Rivera, A. K.; Cruz-Gregorio, A.; Aparicio-Trejo, O. E.; Pedraza-Chaverri, J. , Mitochondrial redox signaling and oxidative stress in kidney diseases. Biomolecules 2021, 11, 1144. [Google Scholar] [CrossRef] [PubMed]
  267. Coppolino, G.; Leonardi, G.; Andreucci, M.; Bolignano, D. , Oxidative stress and kidney function: A brief update. Curr. Pharm. Des. 2018, 24, 4794–4799. [Google Scholar] [CrossRef]
  268. Daenen, K.; Andries, A.; Mekahli, D.; Van Schepdael, A.; Jouret, F.; Bammens, B. , Oxidative stress in chronic kidney disease. Pediatr. Nephrol. 2019, 34, 975–991. [Google Scholar] [CrossRef]
  269. Duni, A.; Liakopoulos, V.; Roumeliotis, S.; Peschos, D.; Dounousi, E. , Oxidative stress in the pathogenesis and evolution of chronic kidney disease: Untangling ariadne’s thread. Int. J. Mol. Sci. 2019, 20, 3711. [Google Scholar] [CrossRef]
  270. Ebert, T.; Neytchev, O.; Witasp, A.; Kublickiene, K.; Stenvinkel, P.; Shiels, P. G. , Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxid. Redox Signal. 2021, 35, 1426–1448. [Google Scholar] [CrossRef]
  271. Fontecha-Barriuso, M.; Lopez-Diaz, A. M.; Guerrero-Mauvecin, J.; Miguel, V.; Ramos, A. M.; Sanchez-Niño, M. D.; Ruiz-Ortega, M.; Ortiz, A.; Sanz, A. B. , Tubular Mitochondrial Dysfunction, Oxidative Stress, and Progression of Chronic Kidney Disease. Antioxidants 2022, 11, 1356. [Google Scholar] [CrossRef] [PubMed]
  272. Gyurászová, M.; Gurecká, R.; Bábíčková, J.; Tóthová, Ľ. , Oxidative Stress in the Pathophysiology of Kidney Disease: Implications for Noninvasive Monitoring and Identification of Biomarkers. Oxid. Med. Cell. Longev. 2020, 2020, 5478708. [Google Scholar] [CrossRef]
  273. Ho, H. J.; Shirakawa, H. , Oxidative Stress and Mitochondrial Dysfunction in Chronic Kidney Disease. Cells 2023, 12, 88. [Google Scholar] [CrossRef] [PubMed]
  274. Hosohata, K. , Role of oxidative stress in drug-induced kidney injury. Int. J. Mol. Sci. 2016, 17, 1826. [Google Scholar] [CrossRef]
  275. Hsu, C. N.; Tain, Y. L. , Developmental origins of kidney disease: Why oxidative stress matters? Antioxidants 2021, 10, 33. [Google Scholar] [CrossRef]
  276. Jha, J. C.; Banal, C.; Chow, B. S. M.; Cooper, M. E.; Jandeleit-Dahm, K. , Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxid. Redox Signal. 2016, 25, 657–684. [Google Scholar] [CrossRef]
  277. Ling, X. C.; Kuo, K. L. , Oxidative stress in chronic kidney disease. Ren. Replace. Ther. 2018, 4, 53. [Google Scholar] [CrossRef]
  278. Lv, W.; Booz, G. W.; Fan, F.; Wang, Y.; Roman, R. J. , Oxidative stress and renal fibrosis: Recent insights for the development of novel therapeutic strategies. Front. Physiol. 2018, 9, 105. [Google Scholar] [CrossRef] [PubMed]
  279. Nakanishi, T.; Kuragano, T.; Nanami, M.; Nagasawa, Y.; Hasuike, Y. , Misdistribution of iron and oxidative stress in chronic kidney disease. Free Radic. Biol. Med. 2019, 133, 248–253. [Google Scholar] [CrossRef]
  280. Ogura, Y.; Kitada, M.; Koya, D. , Sirtuins and renal oxidative stress. Antioxidants 2021, 10, 1198. [Google Scholar] [CrossRef]
  281. Ow, C. P. C.; Trask-Marino, A.; Betrie, A. H.; Evans, R. G.; May, C. N.; Lankadeva, Y. R. , Targeting oxidative stress in septic acute kidney injury: From theory to practice. J. Clin. Med. 2021, 10, 3798. [Google Scholar] [CrossRef] [PubMed]
  282. Pavlakou, P.; Liakopoulos, V.; Eleftheriadis, T.; Mitsis, M.; Dounousi, E. , Oxidative Stress and Acute Kidney Injury in Critical Illness: Pathophysiologic Mechanisms - Biomarkers - Interventions, and Future Perspectives. Oxid. Med. Cell. Longev. 2017, 2017, 6193694. [Google Scholar] [CrossRef] [PubMed]
  283. Rapa, S. F.; Di Iorio, B. R.; Campiglia, P.; Heidland, A.; Marzocco, S. , Inflammation and oxidative stress in chronic kidney disease—potential therapeutic role of minerals, vitamins and plant-derived metabolites. Int. J. Mol. Sci. 2020, 21, 263. [Google Scholar] [CrossRef]
  284. Sakashita, M.; Tanaka, T.; Inagi, R. , Metabolic changes and oxidative stress in diabetic kidney disease. Antioxidants 2021, 10, 1143. [Google Scholar] [CrossRef] [PubMed]
  285. Tamay-Cach, F.; Quintana-Pérez, J. C.; Trujillo-Ferrara, J. G.; Cuevas-Hernández, R. I.; Del Valle-Mondragón, L.; García-Trejo, E. M.; Arellano-Mendoza, M. G. , A review of the impact of oxidative stress and some antioxidant therapies on renal damage. Ren. Fail. 2016, 38, 171–175. [Google Scholar] [CrossRef] [PubMed]
  286. Tejchman, K.; Kotfis, K.; Sieńko, J. , Biomarkers and mechanisms of oxidative stress—last 20 years of research with an emphasis on kidney damage and renal transplantation. Int. J. Mol. Sci. 2021, 22, 8010. [Google Scholar] [CrossRef]
  287. Tirichen, H.; Yaigoub, H.; Xu, W.; Wu, C.; Li, R.; Li, Y. , Mitochondrial Reactive Oxygen Species and Their Contribution in Chronic Kidney Disease Progression Through Oxidative Stress. Front. Physiol. 2021, 12, 627837. [Google Scholar] [CrossRef]
  288. Tucker, P. S.; Dalbo, V. J.; Han, T.; Kingsley, M. I. , Clinical and research markers of oxidative stress in chronic kidney disease. Biomarkers 2013, 18, 103–115. [Google Scholar] [CrossRef]
  289. Uddin, M. J.; Kim, E. H.; Hannan, M. A.; Ha, H. , Pharmacotherapy against oxidative stress in chronic kidney disease: Promising small molecule natural products targeting nrf2-ho-1 signaling. Antioxidants 2021, 10, 258. [Google Scholar] [CrossRef]
  290. Verma, S.; Singh, P.; Khurana, S.; Ganguly, N. K.; Kukreti, R.; Saso, L.; Rana, D. S.; Taneja, V.; Bhargava, V. , Implications of oxidative stress in chronic kidney disease: A review on current concepts and therapies. Kidney Res. Clin. Pract. 2021, 40, 183–193. [Google Scholar] [CrossRef]
  291. Zhang, H.; Xu, R.; Wang, Z. , Contribution of Oxidative Stress to HIF-1-Mediated Profibrotic Changes during the Kidney Damage. Oxid. Med. Cell. Longev. 2021, 2021, 6114132. [Google Scholar] [CrossRef]
  292. Alsawaf, S.; Alnuaimi, F.; Afzal, S.; Thomas, R. M.; Chelakkot, A. L.; Ramadan, W. S.; Hodeify, R.; Matar, R.; Merheb, M.; Siddiqui, S. S.; Vazhappilly, C. G. , Plant Flavonoids on Oxidative Stress-Mediated Kidney Inflammation. Biology 2022, 11, 1717. [Google Scholar] [CrossRef]
  293. Donate-Correa, J.; Martín-Carro, B.; Cannata-Andía, J. B.; Mora-Fernández, C.; Navarro-González, J. F. , Klotho, Oxidative Stress, and Mitochondrial Damage in Kidney Disease. Antioxidants 2023, 12, 239. [Google Scholar] [CrossRef] [PubMed]
  294. Hojs, N. V.; Bevc, S.; Ekart, R.; Hojs, R. , Oxidative stress markers in chronic kidney disease with emphasis on diabetic nephropathy. Antioxidants 2020, 9, 925. [Google Scholar] [CrossRef] [PubMed]
  295. Tain, Y. L.; Hsu, C. N. , Perinatal Oxidative Stress and Kidney Health: Bridging the Gap between Animal Models and Clinical Reality. Antioxidants 2023, 12, 13. [Google Scholar] [CrossRef] [PubMed]
  296. Antunes, M. A.; Lopes-Pacheco, M.; Rocco, P. R. M. , Oxidative Stress-Derived Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: A Concise Review. Oxid. Med. Cell. Longev. 2021, 2021, 6644002. [Google Scholar] [CrossRef]
  297. Bargagli, E.; Olivieri, C.; Bennett, D.; Prasse, A.; Muller-Quernheim, J.; Rottoli, P. , Oxidative stress in the pathogenesis of diffuse lung diseases: A review. Respir. Med. 2009, 103, 1245–1256. [Google Scholar] [CrossRef]
  298. Barnes, P. J. , Oxidative Stress in Chronic Obstructive Pulmonary Disease. Antioxidants 2022, 11, 965. [Google Scholar] [CrossRef]
  299. Bast, A.; Weseler, A. R.; Haenen, G. R. M. M.; Den Hartog, G. J. M. , Oxidative stress and antioxidants in interstitial lung disease. Curr. Opin. Pulm. Med. 2010, 16, 516–520. [Google Scholar] [CrossRef]
  300. Cheresh, P.; Kim, S. J.; Tulasiram, S.; Kamp, D. W. Oxidative stress and pulmonary fibrosis. Biochim. Biophys. Acta - Mol. Basis Dis. 2013, 1832, 1028–1040. [Google Scholar] [CrossRef]
  301. Dailah, H. G. , Therapeutic Potential of Small Molecules Targeting Oxidative Stress in the Treatment of Chronic Obstructive Pulmonary Disease (COPD): A Comprehensive Review. Molecules 2022, 27, 5542. [Google Scholar] [CrossRef] [PubMed]
  302. Di Stefano, A.; Maniscalco, M.; Balbi, B.; Ricciardolo, F. L. M. , Oxidative and nitrosative stress in the pathogenesis of obstructive lung diseases of increasing severity. Curr. Med. Chem. 2020, 27, 7149–7158. [Google Scholar] [CrossRef] [PubMed]
  303. Estornut, C.; Milara, J.; Bayarri, M. A.; Belhadj, N.; Cortijo, J. , Targeting Oxidative Stress as a Therapeutic Approach for Idiopathic Pulmonary Fibrosis. Front. Pharmacol. 2022, 12, 794997. [Google Scholar] [CrossRef] [PubMed]
  304. Ferrante, G.; Carota, G.; Li Volti, G.; Giuffrè, M. , Biomarkers of Oxidative Stress for Neonatal Lung Disease. Front Pediatr. 2021, 9, 618867. [Google Scholar] [CrossRef] [PubMed]
  305. Ferrari, R. S.; Andrade, C. F. , Oxidative Stress and Lung Ischemia-Reperfusion Injury. Oxid. Med. Cell. Longev. 2015, 2015, 590987. [Google Scholar] [CrossRef] [PubMed]
  306. Hecker, L. , Mechanisms and consequences of oxidative stress in lung disease: Therapeutic implications for an aging populace. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018, 314, L642–L653. [Google Scholar] [CrossRef] [PubMed]
  307. Hosseinzadeh, A.; Javad-Moosavi, S. A.; Reiter, R. J.; Yarahmadi, R.; Ghaznavi, H.; Mehrzadi, S. , Oxidative/nitrosative stress, autophagy and apoptosis as therapeutic targets of melatonin in idiopathic pulmonary fibrosis. Expert Opin. Ther. Targets 2018, 22, 1049–1061. [Google Scholar] [CrossRef]
  308. Kliment, C. R.; Oury, T. D. , Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis. Free Radic. Biol. Med. 2010, 49, 707–717. [Google Scholar] [CrossRef]
  309. Malaviya, R.; Laskin, J. D.; Laskin, D. L. , Oxidative stress-induced autophagy: Role in pulmonary toxicity. Toxicol. Appl. Pharmacol. 2014, 275, 145–151. [Google Scholar] [CrossRef]
  310. Ornatowski, W.; Lu, Q.; Yegambaram, M.; Garcia, A. E.; Zemskov, E. A.; Maltepe, E.; Fineman, J. R.; Wang, T.; Black, S. M. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol. 2020, 36, 101679. [Google Scholar] [CrossRef]
  311. Ortiz-Quintero, B.; Martínez-Espinosa, I.; Pérez-Padilla, R. , Mechanisms of Lung Damage and Development of COPD Due to Household Biomass-Smoke Exposure: Inflammation, Oxidative Stress, MicroRNAs, and Gene Polymorphisms. Cells 2023, 12, 67. [Google Scholar] [CrossRef]
  312. Paliogiannis, P.; Fois, A. G.; Collu, C.; Bandinu, A.; Zinellu, E.; Carru, C.; Pirina, P.; Mangoni, A. A.; Zinellu, A. , Oxidative stress-linked biomarkers in idiopathic pulmonary fibrosis: A systematic review and meta-analysis. Biomark. Med. 2018, 12, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
  313. van der Vliet, A.; Janssen-Heininger, Y. M. W.; Anathy, V. , Oxidative stress in chronic lung disease: From mitochondrial dysfunction to dysregulated redox signaling. Mol. Aspects Med. 2018, 63, 59–69. [Google Scholar] [CrossRef]
  314. Zemskov, E. A.; Lu, Q.; Ornatowski, W.; Klinger, C. N.; Desai, A. A.; Maltepe, E.; Yuan, J. X. J.; Wang, T.; Fineman, J. R.; Black, S. M. , Biomechanical Forces and Oxidative Stress: Implications for Pulmonary Vascular Disease. Antioxid. Redox Signal. 2019, 31, 819–842. [Google Scholar] [CrossRef] [PubMed]
  315. Zhao, X.; Zhang, Q.; Zheng, R. , The interplay between oxidative stress and autophagy in chronic obstructive pulmonary disease. Front. Physiol. 2022, 13, 1004275. [Google Scholar] [CrossRef]
  316. Zinellu, E.; Zinellu, A.; Fois, A. G.; Pau, M. C.; Scano, V.; Piras, B.; Carru, C.; Pirina, P. , Oxidative stress biomarkers in chronic obstructive pulmonary disease exacerbations: A systematic review. Antioxidants 2021, 10, 710. [Google Scholar] [CrossRef] [PubMed]
  317. Finicelli, M.; Digilio, F. A.; Galderisi, U.; Peluso, G. , The Emerging Role of Macrophages in Chronic Obstructive Pulmonary Disease: The Potential Impact of Oxidative Stress and Extracellular Vesicle on Macrophage Polarization and Function. Antioxidants 2022, 11, 464. [Google Scholar] [CrossRef] [PubMed]
  318. Liu, X.; Chen, Z. , The pathophysiological role of mitochondrial oxidative stress in lung diseases. J. Transl. Med. 2017, 15, 207. [Google Scholar] [CrossRef]
  319. Xu, D.; Hu, Y. H.; Gou, X.; Li, F. Y.; Yang, X. Y. C.; Li, Y. M.; Chen, F. , Oxidative Stress and Antioxidative Therapy in Pulmonary Arterial Hypertension. Molecules 2022, 27, 3724. [Google Scholar] [CrossRef]
  320. Cejka, C.; Kubinova, S.; Cejkova, J. , The preventive and therapeutic effects of molecular hydrogen in ocular diseases and injuries where oxidative stress is involved. Free Radic. Res. 2019, 53, 237–247. [Google Scholar] [CrossRef]
  321. Dammak, A.; Huete-Toral, F.; Carpena-Torres, C.; Martin, A.; Pastrana, C.; Carracedo, G. , From oxidative stress to inflammation in the posterior ocular diseases: Diagnosis and treatment. Pharmaceutics 2021, 13, 1376. [Google Scholar] [CrossRef]
  322. Ivanov, I. V.; Mappes, T.; Schaupp, P.; Lappe, C.; Wahl, S. , Ultraviolet radiation oxidative stress affects eye health. J. Biophotonics 2018, 11, e201700377. [Google Scholar] [CrossRef]
  323. Lemos, C. N.; Silva, L. E. C. M. D.; Faustino, J. F.; Fantucci, M. Z.; Murashima, A. D. A. B.; Adriano, L.; Alves, M.; Rocha, E. M. , Oxidative Stress in the Protection and Injury of the Lacrimal Gland and the Ocular Surface: are There Perspectives for Therapeutics? Front. Cell Dev. Biol. 2022, 10, 824726. [Google Scholar] [CrossRef]
  324. Nita, M.; Grzybowski, A. , The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid. Med. Cell. Longev. 2016, 2016, 3164734. [Google Scholar] [CrossRef]
  325. Perez-Garmendia, R.; Lopez De Eguileta Rodriguez, A.; Ramos-Martinez, I.; Zuñiga, N. M.; Gonzalez-Salinas, R.; Quiroz-Mercado, H.; Zenteno, E.; Hernández, E. R.; Hernández-Zimbrón, L. F. , Interplay between Oxidative Stress, Inflammation, and Amyloidosis in the Anterior Segment of the Eye; Its Pathological Implications. Oxid. Med. Cell. Longev. 2020, 2020, 6286105. [Google Scholar] [CrossRef] [PubMed]
  326. Saccà, S. C.; Izzotti, A. Oxidative stress and glaucoma: injury in the anterior segment of the eye. Prog. Brain Res. 2008, 173, 385–407. [Google Scholar] [PubMed]
  327. Seen, S.; Tong, L. , Dry eye disease and oxidative stress. Acta Ophthalmol. (Copenh.) 2018, 96, e412–e420. [Google Scholar] [CrossRef] [PubMed]
  328. Subramaniam, M. D.; Iyer, M.; Nair, A. P.; Venkatesan, D.; Mathavan, S.; Eruppakotte, N.; Kizhakkillach, S.; Chandran, M. K.; Roy, A.; Gopalakrishnan, A. V.; Vellingiri, B. , Oxidative stress and mitochondrial transfer: A new dimension towards ocular diseases. Genes Dis. 2022, 9, 610–637. [Google Scholar] [CrossRef]
  329. Tangvarasittichai, O.; Tangvarasittichai, S. , Oxidative stress, ocular disease and diabetes retinopathy. Curr. Pharm. Des. 2018, 24, 4726–4741. [Google Scholar] [CrossRef] [PubMed]
  330. Tanito, M. , Oxidative stress and eye diseases. Jpn. J. Clin. Ophthalmol. 2011, 65, 1383–1393. [Google Scholar]
  331. Ung, L.; Pattamatta, U.; Carnt, N.; Wilkinson-Berka, J. L.; Liew, G.; White, A. J. R. , Oxidative stress and reactive oxygen species: A review of their role in ocular disease. Clin. Sci. 2017, 131, 2865–2883. [Google Scholar] [CrossRef] [PubMed]
  332. Dammak, A.; Pastrana, C.; Martin-Gil, A.; Carpena-Torres, C.; Peral Cerda, A.; Simovart, M.; Alarma, P.; Huete-Toral, F.; Carracedo, G. , Oxidative Stress in the Anterior Ocular Diseases: Diagnostic and Treatment. Biomedicines 2023, 11, 292. [Google Scholar] [CrossRef]
  333. Ni, Y.; Zhang, H.; Chu, L.; Zhao, Y. , m6A Modification—Association with Oxidative Stress and Implications on Eye Diseases. Antioxidants 2023, 12, 510. [Google Scholar] [CrossRef] [PubMed]
  334. Shu, D. Y.; Chaudhary, S.; Cho, K. S.; Lennikov, A.; Miller, W. P.; Thorn, D. C.; Yang, M.; McKay, T. B. , Role of Oxidative Stress in Ocular Diseases: A Balancing Act. Metabolites 2023, 13, 187. [Google Scholar] [CrossRef] [PubMed]
  335. Aouache, R.; Biquard, L.; Vaiman, D.; Miralles, F. , Oxidative stress in preeclampsia and placental diseases. Int. J. Mol. Sci. 2018, 19, 1496. [Google Scholar] [CrossRef]
  336. Bhatia, S.; Drake, D. M.; Miller, L.; Wells, P. G. , Oxidative stress and DNA damage in the mechanism of fetal alcohol spectrum disorders. Birth Defects Res. 2019, 111, 714–748. [Google Scholar] [CrossRef]
  337. Chiarello, D. I.; Abad, C.; Rojas, D.; Toledo, F.; Vázquez, C. M.; Mate, A.; Sobrevia, L.; Marín, R. Oxidative stress: Normal pregnancy versus preeclampsia. Biochim. Biophys. Acta - Mol. Basis Dis. 2020, 1866, 165354. [Google Scholar] [CrossRef]
  338. Freire, V. A. F.; Melo, A. D. D.; Santos, H. D. L.; Barros-Pinheiro, M. , Evaluation of oxidative stress markers in subtypes of preeclampsia: A systematic review and meta-analysis. Placenta 2023, 132, 55–67. [Google Scholar] [CrossRef]
  339. Giussani, D. A.; Niu, Y.; Herrera, E. A.; Richter, H. G.; Camm, E. J.; Thakor, A. S.; Kane, A. D.; Hansell, J. A.; Brain, K. L.; Skeffington, K. L.; Itani, N.; Wooding, F. B. P.; Cross, C. M.; Allison, B. J. Heart disease link to fetal hypoxia and oxidative stress. Adv. Exp. Med. Biol. 2014, 814, 77–87. [Google Scholar]
  340. Godhamgaonkar, A. A.; Sundrani, D. P.; Joshi, S. R. , Role of maternal nutrition and oxidative stress in placental telomere attrition in women with preeclampsia. Hypertens. Pregnancy 2021, 40, 63–74. [Google Scholar] [CrossRef]
  341. Guerby, P.; Tasta, O.; Swiader, A.; Pont, F.; Bujold, E.; Parant, O.; Vayssiere, C.; Salvayre, R.; Negre-Salvayre, A. , Role of oxidative stress in the dysfunction of the placental endothelial nitric oxide synthase in preeclampsia. Redox Biol. 2021, 40, 101861. [Google Scholar] [CrossRef]
  342. Gupta, S.; Agarwal, A.; Sharma, R. K. , The role of placental oxidative stress and lipid peroxidation in preeclampsia. Obstet. Gynecol. Surv. 2005, 60, 807–816. [Google Scholar] [CrossRef] [PubMed]
  343. Guvendag Guven, E. S.; Karcaaltincaba, D.; Kandemir, O.; Kiykac, S.; Mentese, A. Cord blood oxidative stress markers correlate with umbilical artery pulsatility in fetal growth restriction. J. Matern.-Fetal Neonatal Med. 2013, 26, 576–580. [Google Scholar] [CrossRef] [PubMed]
  344. Hung, T. H.; Burton, G. J. , Hypoxia and reoxygenation: A possible mechanism for placental oxidative stress in preeclampsia. Taiwan J. Obstet. Gynecol. 2006, 45, 189–200. [Google Scholar] [CrossRef] [PubMed]
  345. Joo, E. H.; Kim, Y. R.; Kim, N.; Jung, J. E.; Han, S. H.; Cho, H. Y. , Effect of endogenic and exogenic oxidative stress triggers on adverse pregnancy outcomes: Preeclampsia, fetal growth restriction, gestational diabetes mellitus and preterm birth. Int. J. Mol. Sci. 2021, 22, 10122. [Google Scholar] [CrossRef]
  346. Marín, R.; Chiarello, D. I.; Abad, C.; Rojas, D.; Toledo, F.; Sobrevia, L. Oxidative stress and mitochondrial dysfunction in early-onset and late-onset preeclampsia. Biochim. Biophys. Acta - Mol. Basis Dis. 2020, 1866, 165961. [Google Scholar] [CrossRef]
  347. Negre-Salvayre, A.; Swiader, A.; Salvayre, R.; Guerby, P. , Oxidative stress, lipid peroxidation and premature placental senescence in preeclampsia. Arch. Biochem. Biophys. 2022, 730, 109416. [Google Scholar] [CrossRef]
  348. Perrone, S.; Tataranno, M. L.; Santacroce, A.; Bracciali, C.; Riccitelli, M.; Alagna, M. G.; Longini, M.; Belvisi, E.; Bazzini, F.; Buonocore, G. , Fetal Programming, Maternal Nutrition, and Oxidative Stress Hypothesis. J. Pediatr. Biochem. 2016, 6, 96–102. [Google Scholar]
  349. Perrone, S.; Tataranno, M. L.; Stazzoni, G.; Buonocore, G. Biomarkers of oxidative stress in fetal and neonatal diseases. J. Matern.-Fetal Neonatal Med. 2012, 25, 2575–2578. [Google Scholar] [CrossRef]
  350. Phoswa, W. N.; Khaliq, O. P. , The Role of Oxidative Stress in Hypertensive Disorders of Pregnancy (Preeclampsia, Gestational Hypertension) and Metabolic Disorder of Pregnancy (Gestational Diabetes Mellitus). Oxid. Med. Cell. Longev. 2021, 2021, 5581570. [Google Scholar] [CrossRef]
  351. San Juan-Reyes, S.; Gómez-Oliván, L. M.; Islas-Flores, H.; Dublán-García, O. , Oxidative stress in pregnancy complicated by preeclampsia. Arch. Biochem. Biophys. 2020, 681, 108255. [Google Scholar] [CrossRef]
  352. Siddiqui, I. A.; Jaleel, A.; Tamimi, W.; Al Kadri, H. M. F. , Role of oxidative stress in the pathogenesis of preeclampsia. Arch. Gynecol. Obstet. 2010, 282, 469–474. [Google Scholar] [CrossRef] [PubMed]
  353. Taravati, A.; Tohidi, F. , Comprehensive analysis of oxidative stress markers and antioxidants status in preeclampsia. Taiwan J. Obstet. Gynecol. 2018, 57, 779–790. [Google Scholar] [CrossRef]
  354. Taysi, S.; Tascan, A. S.; Ugur, M. G.; Demir, M. Radicals, oxidative/nitrosative stress and preeclampsia. Mini-Rev. Med. Chem. 2019, 19, 178–193. [Google Scholar] [CrossRef] [PubMed]
  355. Tenório, M. B.; Ferreira, R. C.; Moura, F. A.; Bueno, N. B.; De Oliveira, A. C. M.; Goulart, M. O. F. , Cross-Talk between Oxidative Stress and Inflammation in Preeclampsia. Oxid. Med. Cell. Longev. 2019, 2019, 8238727. [Google Scholar] [CrossRef] [PubMed]
  356. Teramo, K.; Piñeiro-Ramos, J. D. , Fetal chronic hypoxia and oxidative stress in diabetic pregnancy. Could fetal erythropoietin improve offspring outcomes? Free Radic. Biol. Med. 2019, 142, 32–37. [Google Scholar] [CrossRef]
  357. Thompson, L. P.; Al-Hasan, Y. , Impact of oxidative stress in fetal programming. J. Pregnancy 2012, 2012, 582748. [Google Scholar] [CrossRef]
  358. Tsai, S. Y. A.; Bendriem, R. M.; Lee, C. T. D. , The cellular basis of fetal endoplasmic reticulum stress and oxidative stress in drug-induced neurodevelopmental deficits. Neurobiol. Stress 2019, 10, 100145. [Google Scholar] [CrossRef]
  359. Jones, M. L.; Mark, P. J.; Mori, T. A.; Keelan, J. A.; Waddell, B. J. , Maternal dietary omega-3 fatty acid supplementation reduces placental oxidative stress and increases fetal and placental growth in the rat. Biol. Reprod. 2013, 88, 37. [Google Scholar] [CrossRef]
  360. Karowicz-Bilinska, A.; Kȩdziora-Kornatowska, K.; Bartosz, G. , Indices of oxidative stress in pregnancy with fetal growth restriction. Free Radic. Res. 2007, 41, 870–873. [Google Scholar] [CrossRef]
  361. Mundal, S. B.; Rakner, J. J.; Silva, G. B.; Gierman, L. M.; Austdal, M.; Basnet, P.; Elschot, M.; Bakke, S. S.; Ostrop, J.; Thomsen, L. C. V.; Moses, E. K.; Acharya, G.; Bjørge, L.; Iversen, A. C. , Divergent Regulation of Decidual Oxidative-Stress Response by NRF2 and KEAP1 in Preeclampsia with and without Fetal Growth Restriction. Int. J. Mol. Sci. 2022, 23, 1966. [Google Scholar] [CrossRef] [PubMed]
  362. Parraguez, V. H.; Sales, F.; Peralta, O.; Reyes, M. D.; Gonzalez-Bulnes, A. , Oxidative Stress and Fetal Growth Restriction Set Up Earlier in Undernourished Sheep Twin Pregnancies: Prevention with Antioxidant and Nutritional Supplementation. Antioxidants 2022, 11, 1287. [Google Scholar] [CrossRef] [PubMed]
  363. Sales, F.; Peralta, O. A.; Narbona, E.; McCoard, S.; De los Reyes, M.; González-Bulnes, A.; Parraguez, V. H. , Hypoxia and oxidative stress are associated with reduced fetal growth in twin and undernourished sheep pregnancies. Animals 2018, 8, 217. [Google Scholar] [CrossRef] [PubMed]
  364. Schoots, M. H.; Bourgonje, M. F.; Bourgonje, A. R.; Prins, J. R.; van Hoorn, E. G. M.; Abdulle, A. E.; Muller Kobold, A. C.; van der Heide, M.; Hillebrands, J. L.; van Goor, H.; Gordijn, S. J. , Oxidative stress biomarkers in fetal growth restriction with and without preeclampsia. Placenta 2021, 115, 87–96. [Google Scholar] [CrossRef]
  365. Takagi, Y.; Nikaido, T.; Toki, T.; Kita, N.; Kanai, M.; Ashida, T.; Ohira, S.; Konishi, I. , Levels of oxidative stress and redox-related molecules in the placenta in preeclampsia and fetal growth restriction. Virchows Arch. 2004, 444, 49–55. [Google Scholar] [CrossRef]
  366. Barron, A.; McCarthy, C. M.; O’Keeffe, G. W. , Preeclampsia and Neurodevelopmental Outcomes: Potential Pathogenic Roles for Inflammation and Oxidative Stress? Mol. Neurobiol. 2021, 58, 2734–2756. [Google Scholar] [CrossRef]
  367. Han, C.; Huang, P.; Lyu, M.; Dong, J. , Oxidative stress and preeclampsia-associated prothrombotic state. Antioxidants 2020, 9, 1139. [Google Scholar] [CrossRef]
  368. Haram, K.; Mortensen, J. H.; Myking, O.; Magann, E. F.; Morrison, J. C. , The role of oxidative stress, adhesion molecules and antioxidants in preeclampsia. Curr. Hypertens. Rev. 2019, 15, 105–112. [Google Scholar] [CrossRef]
  369. Liang, N.; Kitts, D. D. , Antioxidant property of coffee components: Assessment of methods that define mechanism of action. Molecules 2014, 19, 19180–19208. [Google Scholar] [CrossRef]
  370. Yashin, A.; Yashin, Y.; Wang, J. Y.; Nemzer, B. , Antioxidant and antiradical activity of coffee. Antioxidants 2013, 2, 230–245. [Google Scholar] [CrossRef]
  371. Aguiar, J.; Estevinho, B. N.; Santos, L. , Microencapsulation of natural antioxidants for food application – The specific case of coffee antioxidants – A review. Trends Food Sci. Technol. 2016, 58, 21–39. [Google Scholar] [CrossRef]
  372. Bothiraj, K. V.; Murugan, *!!! REPLACE !!!*; Vanitha, V. Green coffee bean seed and their role in antioxidant–a review. Int. J. Res. Pharm. Sci. 2020, 11, 233–240. [Google Scholar] [CrossRef]
  373. Hasballah, K.; Lestari, W.; Listiawan, M. Y.; Sofia, S. , Coffee by-products as the source of antioxidants: A systematic review. F1000Research 2022, 11, 220. [Google Scholar] [CrossRef]
  374. Iriondo-DeHond, A.; Ramírez, B.; Escobar, F. V.; del Castillo, M. D. , Antioxidant properties of high molecular weight compounds from coffee roasting and brewing byproducts. Bioact. Comp. Health Dis. 2019, 2, 48–63. [Google Scholar] [CrossRef]
  375. Agunbiade, H. O.; Fagbemi, T. N.; Aderinola, T. A. , Antioxidant properties of beverages from graded mixture of green/roasted coffee and hibiscus sabdariffa calyx flours. Appl. Food Res. 2022, 2, 100163. [Google Scholar] [CrossRef]
  376. Ahmed Ali, A. M.; Yagi, S.; Qahtan, A. A.; Alatar, A. A.; Angeloni, S.; Maggi, F.; Caprioli, G.; Abdel-Salam, E. M.; Sinan, K. I.; Zengin, G. , Evaluation of the chemical constituents, antioxidant and enzyme inhibitory activities of six Yemeni green coffee beans varieties. Food Biosci. 2022, 46, 101552. [Google Scholar] [CrossRef]
  377. AlAmri, O. D.; Albeltagy, R. S.; M. A. Akabawy, A.; Mahgoub, S.; Abdel-Mohsen, D. M.; Abdel Moneim, A. E.; Amin, H. K. Investigation of antioxidant and anti-inflammatory activities as well as the renal protective potential of green coffee extract in high fat-diet/streptozotocin-induced diabetes in male albino rats. J. Funct. Foods 2020, 71, 103996. [Google Scholar] [CrossRef]
  378. Alnsour, L.; Issa, R.; Awwad, S.; Albals, D.; Al-Momani, I. , Quantification of Total Phenols and Antioxidants in Coffee Samples of Different Origins and Evaluation of the Effect of Degree of Roasting on Their Levels. Molecules 2022, 27, 1591. [Google Scholar] [CrossRef] [PubMed]
  379. Andrade, C.; Perestrelo, R.; Câmara, J. S. , Bioactive Compounds and Antioxidant Activity from Spent Coffee Grounds as a Powerful Approach for Its Valorization. Molecules 2022, 27, 7504. [Google Scholar] [CrossRef]
  380. Angeloni, S.; Freschi, M.; Marrazzo, P.; Hrelia, S.; Beghelli, D.; Juan-García, A.; Juan, C.; Caprioli, G.; Sagratini, G.; Angeloni, C. , Antioxidant and Anti-Inflammatory Profiles of Spent Coffee Ground Extracts for the Treatment of Neurodegeneration. Oxid. Med. Cell. Longev. 2021, 2021, 6620913. [Google Scholar] [CrossRef]
  381. Anh-Dao, L. T.; Nhon-Duc, L.; Cong-Hau, N.; Thanh-Nho, N. , Variability of total polyphenol contents in ground coffee products and their antioxidant capacities through different reaction mechanisms. Biointerface Res. Appl. Chem. 2022, 12, 4857–4870. [Google Scholar]
  382. Aroufai, İ. A.; Sabuncu, M.; Dülger Altiner, D.; Sahan, Y. , Antioxidant properties and bioaccessibility of coffee beans and their coffee silverskin grown in different countries. J. Food Meas. Charact. 2022, 16, 1873–1888. [Google Scholar] [CrossRef]
  383. Bae, H. M.; Haile, M.; Kang, W. H. , Evaluation of antioxidant, organic acid, and volatile compounds in coffee pulp wine fermented with native yeasts isolated from coffee cherries. Food Sci. Technol. Int. 2022, 28, 716–727. [Google Scholar] [CrossRef] [PubMed]
  384. Botto, L.; Bulbarelli, A.; Lonati, E.; Cazzaniga, E.; Tassotti, M.; Mena, P.; Del Rio, D.; Palestini, P. , Study of the antioxidant effects of coffee phenolic metabolites on c6 glioma cells exposed to diesel exhaust particles. Antioxidants 2021, 10, 1169. [Google Scholar] [CrossRef]
  385. Castaldo, L.; Toriello, M.; Sessa, R.; Izzo, L.; Lombardi, S.; Narváez, A.; Ritieni, A.; Grosso, M. , Antioxidant and anti-inflammatory activity of coffee brew evaluated after simulated gastrointestinal digestion. Nutrients 2021, 13, 4368. [Google Scholar] [CrossRef] [PubMed]
  386. Contreras-Oliva, A.; Uscanga-Sosa, D. P.; González-Rios, O.; Morales-Ramos, V. The use of coffee (Coffea arabica L.) pulp in the preparation of a beverage with antioxidant properties. Int. Food Res. J. 2022, 29, 274–282. [Google Scholar] [CrossRef]
  387. de Abreu Pinheiro, F.; Ferreira Elias, L.; de Jesus Filho, M.; Uliana Modolo, M.; Gomes Rocha, J. D. C.; Fumiere Lemos, M.; Scherer, R.; Soares Cardoso, W. , Arabica and Conilon coffee flowers: Bioactive compounds and antioxidant capacity under different processes. Food. Chem. 2021, 336, 127701. [Google Scholar] [CrossRef]
  388. Fu, X. P.; Shen, X. J.; Yin, X.; Zhang, Y. H.; Wang, X. F.; Han, Z. H.; Lin, Q.; Fan, J. P. , Antioxidant and pro-apoptosis activities of coffee husk (Coffea arabica) anthocyanins. Int. Food Res. J. 2021, 28, 1187–1195. [Google Scholar] [CrossRef]
  389. Garcia-Solis, S. E.; Perez-Perez, V.; Tapia-Maruri, D.; Villalobos-Castillejos, F.; Arenas-Ocampo, M. L.; Camacho-Diaz, B. H.; Alamilla-Beltran, L. , Microencapsulation of the green coffee waste extract with high antioxidant activity by spray-drying. J. Food Process. Preserv. 2022, 46, e16864. [Google Scholar] [CrossRef]
  390. Górecki, M.; Hallmann, E. , The antioxidant content of coffee and its in vitro activity as an effect of its production method and roasting and brewing time. Antioxidants 2020, 9, 308. [Google Scholar] [CrossRef]
  391. Lemos, M. F.; de Andrade Salustriano, N.; de Souza Costa, M. M.; Lirio, K.; da Fonseca, A. F. A.; Pacheco, H. P.; Endringer, D. C.; Fronza, M.; Scherer, R. , Chlorogenic acid and caffeine contents and anti-inflammatory and antioxidant activities of green beans of conilon and arabica coffees harvested with different degrees of maturation. J. Saudi Chem. Soc. 2022, 26, 101467. [Google Scholar] [CrossRef]
  392. Lonati, E.; Carrozzini, T.; Bruni, I.; Mena, P.; Botto, L.; Cazzaniga, E.; Del Rio, D.; Labra, M.; Palestini, P.; Bulbarelli, A. , Coffee-Derived Phenolic Compounds Activate Nrf2 Antioxidant Pathway in I/R Injury In Vitro Model: A Nutritional Approach Preventing Age Related-Damages. Molecules 2022, 27, 1049. [Google Scholar] [CrossRef] [PubMed]
  393. Masek, A.; Latos-Brozio, M.; Kałuzna-Czaplińska, J.; Rosiak, A.; Chrzescijanska, E. , Antioxidant properties of green coffee extract. Forests 2020, 11, 557. [Google Scholar] [CrossRef]
  394. Montenegro, J.; dos Santos, L. S.; de Souza, R. G. G.; Lima, L. G. B.; Mattos, D. S.; Viana, B. P. P. B.; da Fonseca Bastos, A. C. S.; Muzzi, L.; Conte-Júnior, C. A.; Gimba, E. R. P.; Freitas-Silva, O.; Teodoro, A. J. , Bioactive compounds, antioxidant activity and antiproliferative effects in prostate cancer cells of green and roasted coffee extracts obtained by microwave-assisted extraction (MAE). Food Res. Int. 2021, 140, 110014. [Google Scholar] [CrossRef] [PubMed]
  395. Nascimento-Souza, M. A.; Paiva, P. G. D.; Silva, A. D.; Duarte, M. S. L.; Ribeiro, A. Q. , Coffee and Tea Group Contribute the Most to the Dietary Total Antioxidant Capacity of Older Adults: A Population Study in a Medium-Sized Brazilian City. J. Am. Coll. Nutr. 2021, 40, 713–723. [Google Scholar] [CrossRef] [PubMed]
  396. Nemzer, B.; Kalita, D.; Abshiru, N. , Quantification of major bioactive constituents, antioxidant activity, and enzyme inhibitory effects of whole coffee cherries (Coffea arabica) and their extracts. Molecules 2021, 26, 4306. [Google Scholar] [CrossRef]
  397. Nosal, B. M.; Sakaki, J. R.; Kim, D. O.; Chun, O. K. , Impact of coffee preparation on total phenolic content in brewed coffee extracts and their contribution to the body’s antioxidant status. Food Sci. Biotechnol. 2022, 31, 1081–1088. [Google Scholar] [CrossRef]
  398. Nzekoue, F. K.; Angeloni, S.; Navarini, L.; Angeloni, C.; Freschi, M.; Hrelia, S.; Vitali, L. A.; Sagratini, G.; Vittori, S.; Caprioli, G. , Coffee silverskin extracts: Quantification of 30 bioactive compounds by a new HPLC-MS/MS method and evaluation of their antioxidant and antibacterial activities. Food Res. Int. 2020, 133, 109128. [Google Scholar] [CrossRef]
  399. Olechno, E.; Puścion-jakubik, A.; Socha, K.; Zujko, M. E. , Coffee infusions: Can they be a source of microelements with antioxidant properties? Antioxidants 2021, 10, 1709. [Google Scholar] [CrossRef]
  400. Pergolizzi, S.; D’Angelo, V.; Aragona, M.; Dugo, P.; Cacciola, F.; Capillo, G.; Dugo, G.; Lauriano, E. R. , Evaluation of antioxidant and anti-inflammatory activity of green coffee beans methanolic extract in rat skin. Nat. Prod. Res. 2020, 34, 1535–1541. [Google Scholar] [CrossRef]
  401. Šeremet, D.; Fabečić, P.; Cebin, A. V.; Jarić, A. M.; Pudić, R.; Komes, D. , Antioxidant and Sensory Assessment of Innovative Coffee Blends of Reduced Caffeine Content. Molecules 2022, 27, 448. [Google Scholar] [CrossRef] [PubMed]
  402. Shen, X.; Nie, F.; Fang, H.; Liu, K.; Li, Z.; Li, X.; Chen, Y.; Chen, R.; Zheng, T.; Fan, J. , Comparison of chemical compositions, antioxidant activities, and acetylcholinesterase inhibitory activities between coffee flowers and leaves as potential novel foods. Food Sci. Nutr. 2022, 11, 917–929. [Google Scholar] [CrossRef] [PubMed]
  403. Sunoqrot, S.; Al-Shalabi, E.; Al-Bakri, A. G.; Zalloum, H.; Abu-Irmaileh, B.; Ibrahim, L. H.; Zeno, H. , Coffee Bean Polyphenols Can Form Biocompatible Template-free Antioxidant Nanoparticles with Various Sizes and Distinct Colors. ACS Omega 2021, 6, 2767–2776. [Google Scholar] [CrossRef] [PubMed]
  404. Tomac, I.; Šeruga, M.; Labuda, J. , Evaluation of antioxidant activity of chlorogenic acids and coffee extracts by an electrochemical DNA-based biosensor. Food Chem. 2020, 325, 126787. [Google Scholar] [CrossRef] [PubMed]
  405. Yin, X.; He, X.; Wu, L.; Yan, D.; Yan, S. , Chlorogenic Acid, the Main Antioxidant in Coffee, Reduces Radiation-Induced Apoptosis and DNA Damage via NF-E2-Related Factor 2 (Nrf2) Activation in Hepatocellular Carcinoma. Oxid. Med. Cell. Longev. 2022, 2022, 4566949. [Google Scholar] [CrossRef]
  406. Natella, F.; Nardini, M.; Giannetti, I.; Dattilo, C.; Scaccini, C. , Coffee drinking influences plasma antioxidant capacity in humans. J. Agric. Food Chem. 2002, 50, 6211–6216. [Google Scholar] [CrossRef]
  407. Hoelzl, C.; Knasmüller, S.; Wagner, K.; Elbling, L.; Huber, W.; Kager, N.; Ferk, F.; Ehrlich, V.; Nersesyan, A.; Neubauer, O.; Desmarchelier, A.; Marin-Kuan, M.; Delatour, T.; Verguet, C.; Bezençon, C.; Besson, A.; Grathwohl, D.; Simic, T.; Kundi, M.; Schilter, B.; Cavin, C. , Instant coffee with high chlorogenic acid levels protects humans against oxidative damage of macromolecules. Molecular Nutrition and Food Res. 2010, 54, 1722–1733. [Google Scholar] [CrossRef]
  408. Hori, A.; Kasai, H.; Kawai, K.; Nanri, A.; Sato, M.; Ohta, M.; Mizoue, T. , Coffee intake is associated with lower levels of oxidative DNA damage and decreasing body iron storage in healthy women. Nutr. Cancer 2014, 66, 964–969. [Google Scholar] [CrossRef]
  409. Ahmad, S. S.; Khalid, M.; Kamal, M. A.; Younis, K. , Study of Nutraceuticals and Phytochemicals for the Management of Alzheimer's Disease: A Review. Curr. Neuropharmacol. 2021, 19, 1884–1895. [Google Scholar] [CrossRef]
  410. Bachheti, R. K.; Worku, L. A.; Gonfa, Y. H.; Zebeaman, M.; Deepti, *!!! REPLACE !!!*; Pandey, D. P.; Bachheti, A. Prevention and Treatment of Cardiovascular Diseases with Plant Phytochemicals: A Review. Evid. Based Complement. Alternat. Med. 2022, 2022, 5741198. [Google Scholar] [CrossRef]
  411. Bai, X.; Bian, Z.; Zhang, M. , Targeting the Nrf2 signaling pathway using phytochemical ingredients: A novel therapeutic road map to combat neurodegenerative diseases. Phytomedicine 2023, 109, 154582. [Google Scholar] [CrossRef] [PubMed]
  412. Bakrim, S.; Aboulaghras, S.; El Menyiy, N.; El Omari, N.; Assaggaf, H.; Lee, L. H.; Montesano, D.; Gallo, M.; Zengin, G.; AlDhaheri, Y.; Bouyahya, A. , Phytochemical Compounds and Nanoparticles as Phytochemical Delivery Systems for Alzheimer’s Disease Management. Molecules 2022, 27, 9043. [Google Scholar] [CrossRef] [PubMed]
  413. Balakrishnan, R.; Azam, S.; Cho, D. Y.; Su-Kim, I.; Choi, D. K. , Natural Phytochemicals as Novel Therapeutic Strategies to Prevent and Treat Parkinson's Disease: Current Knowledge and Future Perspectives. Oxid. Med. Cell. Longev. 2021, 2021, 6680935. [Google Scholar] [CrossRef] [PubMed]
  414. Behl, T.; Rana, T.; Sehgal, A.; Makeen, H. A.; Albratty, M.; Alhazmi, H. A.; Meraya, A. M.; Bhatia, S.; Sachdeva, M. Phytochemicals targeting nitric oxide signaling in neurodegenerative diseases. Nitric Oxide - Biol. Chem. 2023, 130, 1–11. [Google Scholar] [CrossRef] [PubMed]
  415. Bungau, S.; Vesa, C. M.; Abid, A.; Behl, T.; Tit, D. M.; Purza, A. L.; Pasca, B.; Todan, L. M.; Endres, L. , Withaferin a—a promising phytochemical compound with multiple results in dermatological diseases. Molecules 2021, 26, 2407. [Google Scholar] [CrossRef]
  416. Cheng, X.; Chen, Q.; Sun, P. , Natural phytochemicals that affect autophagy in the treatment of oral diseases and infections: A review. Front. Pharmacol. 2022, 13, 970596. [Google Scholar] [CrossRef]
  417. Dsouza, V. L.; Shivakumar, A. B.; Kulal, N.; Gangadharan, G.; Kumar, D.; Kabekkodu, S. P. , Phytochemical based Modulation of Endoplasmic Reticulum Stress in Alzheimer's Disease. Curr. Top. Med. Chem. 2022, 22, 1880–1896. [Google Scholar] [CrossRef]
  418. Eilam, Y.; Pintel, N.; Khattib, H.; Shagug, N.; Taha, R.; Avni, D. , Regulation of Cholesterol Metabolism by Phytochemicals Derived from Algae and Edible Mushrooms in Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2022, 23, 13667. [Google Scholar] [CrossRef]
  419. Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D'Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S.; Tabolacci, C.; Jadeja, R. N. , Beneficial role of phytochemicals on oxidative stress and age-related diseases. Biomed Res. Int. 2019, 2019, 8748253. [Google Scholar] [CrossRef]
  420. Ganesan, K.; Quiles, J. L.; Daglia, M.; Xiao, J.; Xu, B. , Dietary phytochemicals modulate intestinal epithelial barrier dysfunction and autoimmune diseases. Food Front. 2021, 2, 357–382. [Google Scholar] [CrossRef]
  421. He, W. J.; Lv, C. H.; Chen, Z.; Shi, M.; Zeng, C. X.; Hou, D. X.; Qin, S. , The Regulatory Effect of Phytochemicals on Chronic Diseases by Targeting Nrf2-ARE Signaling Pathway. Antioxidants 2023, 12, 236. [Google Scholar] [CrossRef] [PubMed]
  422. Hossen, I.; Hua, W.; Ting, L.; Mehmood, A.; Jingyi, S.; Duoxia, X.; Yanping, C.; Hongqing, W.; Zhipeng, G.; Kaiqi, Z.; Fang, Y.; Junsong, X. , Phytochemicals and inflammatory bowel disease: a review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1321–1345. [Google Scholar] [CrossRef] [PubMed]
  423. Islam, S. U.; Ahmed, M. B.; Ahsan, H.; Lee, Y. S. , Recent molecular mechanisms and beneficial effects of phytochemicals and plant-based whole foods in reducing ldl-c and preventing cardiovascular disease. Antioxidants 2021, 10, 784. [Google Scholar] [CrossRef]
  424. Jaiswal, V.; Lee, H. J. , Pharmacological Activities of Mogrol: Potential Phytochemical against Different Diseases. Life 2023, 13, 555. [Google Scholar] [CrossRef] [PubMed]
  425. Laurindo, L. F.; de Maio, M. C.; Minniti, G.; de Góes Corrêa, N.; Barbalho, S. M.; Quesada, K.; Guiguer, E. L.; Sloan, K. P.; Detregiachi, C. R. P.; Araújo, A. C.; de Alvares Goulart, R. , Effects of Medicinal Plants and Phytochemicals in Nrf2 Pathways during Inflammatory Bowel Diseases and Related Colorectal Cancer: A Comprehensive Review. Metabolites 2023, 13, 243. [Google Scholar] [CrossRef]
  426. Liu, Y.; Chen, Z.; Li, A.; Liu, R.; Yang, H.; Xia, X. , The Phytochemical Potential for Brain Disease Therapy and the Possible Nanodelivery Solutions for Brain Access. Front. Oncol. 2022, 12, 936054. [Google Scholar] [CrossRef]
  427. Naoi, M.; Maruyama, W.; Shamoto-Nagai, M. , Disease-modifying treatment of Parkinson’s disease by phytochemicals: targeting multiple pathogenic factors. J. Neural Transm. 2022, 129, 737–753. [Google Scholar] [CrossRef]
  428. Nistor, M.; Pop, R.; Daescu, A.; Pintea, A.; Socaciu, C.; Rugina, D. , Anthocyanins as Key Phytochemicals Acting for the Prevention of Metabolic Diseases: An Overview. Molecules 2022, 27, 4254. [Google Scholar] [CrossRef] [PubMed]
  429. Rahman, M. A.; Rahman, M. H.; Biswas, P.; Hossain, M. S.; Islam, R.; Hannan, M. A.; Uddin, M. J.; Rhim, H. , Potential therapeutic role of phytochemicals to mitigate mitochondrial dysfunctions in Alzheimer’s disease. Antioxidants 2021, 10, 23. [Google Scholar] [CrossRef] [PubMed]
  430. Sharma, S.; Naura, A. S. , Potential of phytochemicals as immune-regulatory compounds in atopic diseases: A review. Biochem. Pharmacol. 2020, 173, 113790. [Google Scholar] [CrossRef]
  431. Shirsath, N. R.; Goswami, A. K. , Natural phytochemicals and their therapeutic role in management of several diseases: A review. Curr. Tradit. Med. 2020, 6, 43–53. [Google Scholar] [CrossRef]
  432. Subedi, L.; Lee, S. E.; Madiha, S.; Gaire, B. P.; Jin, M.; Yumnam, S.; Kim, S. Y. , Phytochemicals against TNFα-mediated neuroinflammatory diseases. Int. J. Mol. Sci. 2020, 21, 764. [Google Scholar] [CrossRef] [PubMed]
  433. Wang, Y.; Wu, S.; Li, Q.; Lang, W.; Li, W.; Jiang, X.; Wan, Z.; Chen, J.; Wang, H. , Epigallocatechin-3-gallate: A phytochemical as a promising drug candidate for the treatment of Parkinson’s disease. Front. Pharmacol. 2022, 13, 977521. [Google Scholar] [CrossRef] [PubMed]
  434. Xu, T.; Lu, B. , The effects of phytochemicals on circadian rhythm and related diseases. Crit. Rev. Food Sci. Nutr. 2019, 59, 882–892. [Google Scholar] [CrossRef]
  435. Yang, S. H.; Tao, G.; Yang, L.; Wu, X.; Liu, J. W.; Dagher, F.; Ou, S. Y.; Song, Y.; Huang, J. Q. , Dietary phytochemical and metabolic disease prevention: Focus on plant proteins. Front. Nutr. 2023, 10, 1089487. [Google Scholar] [CrossRef]
  436. Zahedipour, F.; Hosseini, S.; Henney, N.; Barreto, G.; Sahebkar, A. , Phytochemicals as inhibitors of tumor necrosis factor alpha and neuroinflammatory responses in neurodegenerative diseases. Neural Regen. Res. 2022, 17, 1675–1684. [Google Scholar]
  437. Bahadori, M. B.; Kirkan, B.; Sarikurkcu, C. Phenolic ingredients and therapeutic potential of Stachys cretica subsp. smyrnaea for the management of oxidative stress, Alzheimer's disease, hyperglycemia, and melasma. Ind. Crops Prod. 2019, 127, 82–87. [Google Scholar] [CrossRef]
  438. Barakat, A. Z.; Bassuiny, R. I.; Abdel-Aty, A. M.; Mohamed, S. A. , Diabetic complications and oxidative stress: The role of phenolic-rich extracts of saw palmetto and date palm seeds. J. Food Biochem. 2020, 44, e13416. [Google Scholar] [CrossRef]
  439. Callcott, E. T.; Blanchard, C. L.; Oli, P.; Santhakumar, A. B. , Pigmented Rice-Derived Phenolic Compounds Reduce Biomarkers of Oxidative Stress and Inflammation in Human Umbilical Vein Endothelial Cells. Mol. Nutr. Food Res. 2018, 62, 1800840. [Google Scholar] [CrossRef]
  440. Carballeda Sangiao, N.; Chamorro, S.; de Pascual-Teresa, S.; Goya, L. , Aqueous extract of cocoa phenolic compounds protects differentiated neuroblastoma sh-sy5y cells from oxidative stress. Biomolecules 2021, 11, 1266. [Google Scholar] [CrossRef]
  441. Castaneda-Arriaga, R.; Pérez-González, A.; Reina, M.; Alvarez-Idaboy, J. R.; Galano, A. , Comprehensive Investigation of the Antioxidant and Pro-oxidant Effects of Phenolic Compounds: A Double-Edged Sword in the Context of Oxidative Stress? J. Phys. Chem. B 2018, 122, 6198–6214. [Google Scholar] [CrossRef] [PubMed]
  442. Gabbia, D.; Carpi, S.; Sarcognato, S.; Zanotto, I.; Sayaf, K.; Colognesi, M.; Polini, B.; Digiacomo, M.; Macchia, M.; Nieri, P.; Carrara, M.; Cazzagon, N.; Russo, F. P.; Guido, M.; De Martin, S. , The phenolic compounds tyrosol and hydroxytyrosol counteract liver fibrogenesis via the transcriptional modulation of NADPH oxidases and oxidative stress-related miRNAs. Biomed. Pharmacother. 2023, 157, 114014. [Google Scholar] [CrossRef] [PubMed]
  443. Hanafy, D. M.; Burrows, G. E.; Prenzler, P. D.; Hill, R. A. , Potential role of phenolic extracts of mentha in managing oxidative stress and alzheimer’s disease. Antioxidants 2020, 9, 631. [Google Scholar] [CrossRef] [PubMed]
  444. Hu, J.; Tong, C.; Zhou, J.; Gao, C.; Olatunji, O. J. , Protective Effects of Shorea roxburghii Phenolic Extract on Nephrotoxicity Induced by Cyclophosphamide: Impact on Oxidative Stress, Biochemical and Histopathological Alterations. Chem. Biodivers. 2022, 19, e202200053. [Google Scholar] [CrossRef] [PubMed]
  445. Katsinas, N.; Rodríguez-Rojo, S.; Enríquez-De-salamanca, A. , Olive pomace phenolic compounds and extracts can inhibit inflammatory-and oxidative-related diseases of human ocular surface epithelium. Antioxidants 2021, 10, 1150. [Google Scholar] [CrossRef] [PubMed]
  446. Kruk, J.; Aboul-Enein, B. H.; Duchnik, E.; Marchlewicz, M. , Antioxidative properties of phenolic compounds and their effect on oxidative stress induced by severe physical exercise. J. Physiol. Sci. 2022, 72, 19. [Google Scholar] [CrossRef]
  447. Lion, Q.; Pichette, A.; Mihoub, M.; Mshvildadze, V.; Legault, J. , Phenolic extract from aralia nudicaulis L. rhizomes inhibits cellular oxidative stresses. Molecules 2021, 26, 4458. [Google Scholar] [CrossRef]
  448. Liu, C.; Guo, H.; DaSilva, N. A.; Li, D.; Zhang, K.; Wan, Y.; Gao, X. H.; Chen, H. D.; Seeram, N. P.; Ma, H. , Pomegranate (Punica granatum) phenolics ameliorate hydrogen peroxide-induced oxidative stress and cytotoxicity in human keratinocytes. J. Funct. Foods 2019, 54, 559–567. [Google Scholar] [CrossRef]
  449. Oršolić, N.; Kunštić, M.; Kukolj, M.; Odeh, D.; Ančić, D. , Natural phenolic acid, product of the honey bee, for the control of oxidative stress, peritoneal angiogenesis, and tumor growth in mice. Molecules 2020, 25, 5583. [Google Scholar] [CrossRef]
  450. Ramli, I.; Posadino, A. M.; Zerizer, S.; Spissu, Y.; Barberis, A.; Djeghim, H.; Azara, E.; Bensouici, C.; Kabouche, Z.; Rebbas, K.; D'Hallewin, G.; Sechi, L. A.; Pintus, G. Low concentrations of Ambrosia maritima L. phenolic extract protect endothelial cells from oxidative cell death induced by H2O2 and sera from Crohn's disease patients. J. Ethnopharmacol. 2023, 300, 115722. [Google Scholar] [CrossRef]
  451. Ren, Y.; Sun-Waterhouse, D.; Ouyang, F.; Tan, X.; Li, D.; Xu, L.; Li, B.; Wang, Y.; Li, F. , Apple phenolic extracts ameliorate lead-induced cognitive impairment and depression- and anxiety-like behavior in mice by abating oxidative stress, inflammation and apoptosis via the miR-22-3p/SIRT1 axis. Food Funct. 2022, 13, 2647–2661. [Google Scholar] [CrossRef] [PubMed]
  452. Sahu, R.; Dua, T. K.; Das, S.; De Feo, V.; Dewanjee, S. , Wheat phenolics suppress doxorubicin-induced cardiotoxicity via inhibition of oxidative stress, MAP kinase activation, NF-κB pathway, PI3K/Akt/mTOR impairment, and cardiac apoptosis. Food Chem. Toxicol. 2019, 125, 503–519. [Google Scholar] [CrossRef] [PubMed]
  453. Sánchez-Medina, A.; Redondo-Puente, M.; Dupak, R.; Bravo-Clemente, L.; Goya, L.; Sarriá, B. , Colonic Coffee Phenols Metabolites, Dihydrocaffeic, Dihydroferulic, and Hydroxyhippuric Acids Protect Hepatic Cells from TNF-α-Induced Inflammation and Oxidative Stress. Int. J. Mol. Sci. 2023, 24, 1440. [Google Scholar] [CrossRef] [PubMed]
  454. Winarsi, H.; Septiana, A. T. , Improving oxidative stress and inflammation status of obese women with metabolic syndrome using phenolic-rich red kidney bean sprout milk yogurt. Int. Food Res. J. 2022, 29, 142–148. [Google Scholar] [CrossRef]
  455. Yener, I.; Kocakaya, S. O.; Ertas, A.; Erhan, B.; Kaplaner, E.; Oral, E. V.; Yilmaz-Ozden, T.; Yilmaz, M. A.; Ozturk, M.; Kolak, U. , Selective in vitro and in silico enzymes inhibitory activities of phenolic acids and flavonoids of food plants: Relations with oxidative stress. Food Chem. 2020, 327, 127045. [Google Scholar] [CrossRef]
  456. Nicoli, M. C.; Anese, M.; Manzocco, L.; Lerici, C. R. , Antioxidant properties of coffee brews in relation to the roasting degree. LWT 1997, 30, 292–297. [Google Scholar] [CrossRef]
  457. León-Carmona, J. R.; Alvarez-Idaboy, J. R.; Galano, A. , On the peroxyl scavenging activity of hydroxycinnamic acid derivatives: Mechanisms, kinetics, and importance of the acid-base equilibrium. Phys. Chem. Chem. Phys. 2012, 14, 12534–12543. [Google Scholar] [CrossRef]
  458. Baggio, J.; Lima, A.; Mancini Filho, J.; Fett, R. Identification of phenolic acids in coffee (Coffea Arabica L.) dust and its antioxidant activity. Ital. J. Food Sci. 2007, 19, 191–201. [Google Scholar]
  459. Beder-Belkhiri, W.; Zeghichi-Hamri, S.; Kadri, N.; Boulekbache-Makhlouf, L.; Cardoso, S.; Oukhmanou-Bensidhoum, S.; Madani, K. , Hydroxycinnamic acids profiling, in vitro evaluation of total phenolic compounds, caffeine and antioxidant properties of coffee imported, roasted and consumed in Algeria. Mediterr. J. Nutr. Metab. 2018, 11, 51–63. [Google Scholar] [CrossRef]
  460. Górnaś, P.; Dwiecki, K.; Siger, A.; Tomaszewska-Gras, J.; Michalak, M.; Polewski, K. , Contribution of phenolic acids isolated from green and roasted boiled-type coffee brews to total coffee antioxidant capacity. Eur. Food Res. Technol. 2016, 242, 641–653. [Google Scholar] [CrossRef]
  461. Saeed Alkaltham, M.; Musa Özcan, M.; Uslu, N.; Salamatullah, A. M.; Hayat, K. , Effect of microwave and oven roasting methods on total phenol, antioxidant activity, phenolic compounds, and fatty acid compositions of coffee beans. J. Food Process. Preserv. 2020, 44, e14874. [Google Scholar] [CrossRef]
  462. Delgado-Andrade, C.; Morales, F. J. , Unraveling the contribution of melanoidins to the antioxidant activity of coffee brews. J. Agric. Food Chem. 2005, 53, 1403–1407. [Google Scholar] [CrossRef] [PubMed]
  463. Pérez-Hernández, L. M.; Chávez-Quiroz, K.; Medina-Juárez, L. Á.; Gámez Meza, N. , Phenolic characterization, melanoidins, and antioxidant activity of some commercial coffees from Coffea arabica and Coffea canephora. J. Mex. Chem. Soc. 2012, 56, 430–435. [Google Scholar]
  464. Perrone, D.; Farah, A.; Donangelo, C. M. , Influence of coffee roasting on the incorporation of phenolic compounds into melanoidins and their relationship with antioxidant activity of the brew. J. Agric. Food Chem. 2012, 60, 4265–4275. [Google Scholar] [CrossRef]
  465. Vignoli, J. A.; Bassoli, D. G.; Benassi, M. T. , Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: The influence of processing conditions and raw material. Food. Chem. 2011, 124, 863–868. [Google Scholar] [CrossRef]
  466. Fuster, M. D.; Mitchell, A. E.; Ochi, H.; Shibamoto, T. , Antioxidative activities of heterocyclic compounds formed in brewed coffee. J. Agric. Food Chem. 2000, 48, 5600–5603. [Google Scholar] [CrossRef] [PubMed]
  467. Yanagimoto, K.; Lee, K. G.; Ochi, H.; Shibamoto, T. , Antioxidative activity of heterocyclic compounds found in coffee volatiles produced by Maillard reaction. J. Agric. Food Chem. 2002, 50, 5480–5484. [Google Scholar] [CrossRef]
  468. Liu, Y.; Kitts, D. D. , Confirmation that the Maillard reaction is the principle contributor to the antioxidant capacity of coffee brews. Food Res. Int. 2011, 44, 2418–2424. [Google Scholar] [CrossRef]
  469. Nebesny, E.; Budryn, G. , Antioxidative activity of green and roasted coffee beans as influenced by convection and microwave roasting methods and content of certain compounds. Eur. Food Res. Technol. 2003, 217, 157–163. [Google Scholar] [CrossRef]
  470. Cheong, M. W.; Tong, K. H.; Ong, J. J. M.; Liu, S. Q.; Curran, P.; Yu, B. , Volatile composition and antioxidant capacity of Arabica coffee. Food Res. Int. 2013, 51, 388–396. [Google Scholar] [CrossRef]
  471. Haile, M.; Bae, H. M.; Kang, W. H. , Comparison of the antioxidant activities and volatile compounds of coffee beans obtained using digestive bio-processing (elephant dung coffee) and commonly known processing methods. Antioxidants 2020, 9, 408. [Google Scholar] [CrossRef]
  472. Kang, D. E.; Lee, H. U.; Davaatseren, M.; Chung, M. S. , Comparison of acrylamide and furan concentrations, antioxidant activities, and volatile profiles in cold or hot brew coffees. Food Sci. Biotechnol. 2020, 29, 141–148. [Google Scholar] [CrossRef] [PubMed]
  473. Kulapichitr, F.; Borompichaichartkul, C.; Pratontep, S.; Lopetcharat, K.; Boonbumrung, S.; Suppavorasatit, I. , Differences in volatile compounds and antioxidant activity of ripe and unripe green coffee beans (Coffea arabica L. ‘Catimor’). Acta Hortic. 2017, 1179, 261–268. [Google Scholar] [CrossRef]
  474. Ludwig, I. A.; Sánchez, L.; De Peña, M. P.; Cid, C. , Contribution of volatile compounds to the antioxidant capacity of coffee. Food Res. Int. 2014, 61, 67–74. [Google Scholar] [CrossRef]
  475. Lin, S. Y.; Wang, L. H.; Lin, Y. H.; Han, Y. H.; Wang, Y. S.; Yeh, C. S. , Antioxidative Activity and Caffeine Content of Coffee from Different Preparation Methods. Taiwan. J. Agric. Chem. Food Sci. 2009, 47, 268–275. [Google Scholar]
  476. Stadler, R. H.; Fay, L. B. , Antioxidative Reactions of Caffeine: Formation of 8-Oxocaffeine (1,3,7-Trimethyluric Acid) in Coffee Subjected to Oxidative Stress. J. Agric. Food Chem. 1995, 43, 1332–1338. [Google Scholar] [CrossRef]
  477. Miłek, M.; Młodecki, Ł.; Dżugan, M. , Caffeine Content and Antioxidant Activity of Various Brews of Specialty Grade Coffee. Acta Sci. Pol. Technol. Aliment. 2021, 20, 179–188. [Google Scholar]
  478. León-Carmona, J. R.; Galano, A. , Is caffeine a good scavenger of oxygenated free radicals? J. Phys. Chem. B 2011, 115, 4538–4546. [Google Scholar] [CrossRef]
  479. Prior, R. L.; Wu, X.; Schaich, K. , Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
  480. Frankel, E. N.; Meyer, A. S. , The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agric. 2000, 80, 1925–1941. [Google Scholar] [CrossRef]
  481. Galano, A.; Alvarez-Idaboy, J. R. , A computational methodology for accurate predictions of rate constants in solution: Application to the assessment of primary antioxidant activity. J. Comput. Chem. 2013, 34, 2430–2445. [Google Scholar] [CrossRef] [PubMed]
  482. Febrianto, N. A.; Zhu, F. , Coffee bean processing: Emerging methods and their effects on chemical, biological and sensory properties. Food. Chem. 2023, 412, 135489. [Google Scholar] [CrossRef] [PubMed]
  483. Saud, S.; Salamatullah, A. M. , Relationship between the chemical composition and the biological functions of coffee. Molecules 2021, 26, 7634. [Google Scholar] [CrossRef] [PubMed]
  484. Hall, R. D.; Trevisan, F.; de Vos, R. C. H. , Coffee berry and green bean chemistry – Opportunities for improving cup quality and crop circularity. Food Res. Int. 2022, 151, 110825. [Google Scholar] [CrossRef] [PubMed]
  485. Carneiro, S. M.; Oliveira, M. B. P. P.; Alves, R. C. , Neuroprotective properties of coffee: An update. Trends Food Sci. Technol. 2021, 113, 167–179. [Google Scholar] [CrossRef]
  486. Kusumah, J.; Gonzalez de Mejia, E. , Coffee constituents with antiadipogenic and antidiabetic potentials: A narrative review. Food Chem. Toxicol. 2022, 161, 112821. [Google Scholar] [CrossRef]
  487. Munyendo, L. M.; Njoroge, D. M.; Owaga, E. E.; Mugendi, B. , Coffee phytochemicals and post-harvest handling—A complex and delicate balance. J. Food Compos. Anal. 2021, 102, 103995. [Google Scholar] [CrossRef]
  488. Pua, A.; Goh, R. M. V.; Huang, Y.; Tang, V. C. Y.; Ee, K. H.; Cornuz, M.; Liu, S. Q.; Lassabliere, B.; Yu, B. , Recent advances in analytical strategies for coffee volatile studies: Opportunities and challenges. Food. Chem. 2022, 388, 132971. [Google Scholar] [CrossRef]
  489. Van Dijk, A. E.; Olthof, M. R.; Meeuse, J. C.; Seebus, E.; Heine, R. J.; Van Dam, R. M. , Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care 2009, 32, 1023–1025. [Google Scholar] [CrossRef]
  490. Chen, X. , A review on coffee leaves: Phytochemicals, bioactivities and applications. Crit. Rev. Food Sci. Nutr. 2019, 59, 1008–1025. [Google Scholar] [CrossRef]
  491. Prakash, I.; R, S. S.; P, S. H.; Kumar, P.; Om, H.; Basavaraj, K.; Murthy, P. S. , Metabolomics and volatile fingerprint of yeast fermented robusta coffee: A value added coffee. LWT 2022, 154, 112717. [Google Scholar] [CrossRef]
  492. Sualeh, A.; Tolessa, K.; Mohammed, A. , Biochemical composition of green and roasted coffee beans and their association with coffee quality from different districts of southwest Ethiopia. Heliyon 2020, 6, e05812. [Google Scholar] [CrossRef]
  493. Campa, C.; Ballester, J. F.; Doulbeau, S.; Dussert, S.; Hamon, S.; Noirot, M. , Trigonelline and sucrose diversity in wild Coffea species. Food. Chem. 2004, 88, 39–43. [Google Scholar] [CrossRef]
  494. Campa, C.; Doulbeau, S.; Dussert, S.; Hamon, S.; Noirot, M. , Qualitative relationship between caffeine and chlorogenic acid contents among wild Coffea species. Food. Chem. 2005, 93, 135–139. [Google Scholar] [CrossRef]
  495. Dias, E. C.; Borém, F. M.; Pereira, R. G. F. A.; Guerreiro, M. C. , Amino acid profiles in unripe Arabica coffee fruits processed using wet and dry methods. Eur. Food Res. Technol. 2012, 234, 25–32. [Google Scholar] [CrossRef]
  496. Dong, W.; Tan, L.; Zhao, J.; Hu, R.; Lu, M. , Characterization of fatty acid, amino acid and volatile compound compositions and bioactive components of seven coffee (Coffea robusta) cultivars grown in Hainan Province, China. Molecules 2015, 20, 16687–16708. [Google Scholar] [CrossRef]
  497. Fitri; Laga, A. ; Dwyana, Z.; Tawali, A. B., Composition of amino acids and fatty acids on luwak coffee processing. Food Res. 2021, 5, 60–64. [Google Scholar] [CrossRef]
  498. Macheiner, L.; Schmidt, A.; Mayer, H. K. , Green coffee derived supplements and infusions as a source of polyamines and free amino acids. Eur. Food Res. Technol. 2021, 247, 85–99. [Google Scholar] [CrossRef]
  499. Esquivel, P.; Viñas, M.; Steingass, C. B.; Gruschwitz, M.; Guevara, E.; Carle, R.; Schweiggert, R. M.; Jiménez, V. M. Coffee (Coffea arabica L.) by-Products as a Source of Carotenoids and Phenolic Compounds—Evaluation of Varieties With Different Peel Color. Front. Sustain. Food Syst. 2020, 4, 590597. [Google Scholar] [CrossRef]
  500. Simkin, A. J.; Kuntz, M.; Moreau, H.; McCarthy, J. , Carotenoid profiling and the expression of carotenoid biosynthetic genes in developing coffee grain. Plant Physiol. Biochem. 2010, 48, 434–442. [Google Scholar] [CrossRef]
  501. Koshima, Y.; Kitamura, Y.; Islam, M. Z.; Kokawa, M. , Quantitative and qualitative evaluation of fatty acids in coffee oil and coffee residue. Food Sci. Technol. Res. 2020, 26, 545–552. [Google Scholar] [CrossRef]
  502. Wang, X.; Meng, Q.; Peng, X.; Hu, G.; Qiu, M. , Identification of new diterpene esters from green Arabica coffee beans, and their platelet aggregation accelerating activities. Food. Chem. 2018, 263, 251–257. [Google Scholar] [CrossRef] [PubMed]
  503. Shu, Y.; Liu, J. Q.; Peng, X. R.; Wan, L. S.; Zhou, L.; Zhang, T.; Qiu, M. H. , Characterization of diterpenoid glucosides in roasted puer coffee beans. J. Agric. Food Chem. 2014, 62, 2631–2637. [Google Scholar] [CrossRef] [PubMed]
  504. Dong, W.; Hu, R.; Chu, Z.; Zhao, J.; Tan, L. , Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans. Food. Chem. 2017, 234, 121–130. [Google Scholar] [CrossRef] [PubMed]
  505. Peñuela-Martínez, A. E.; Zapata-Zapata, A. E.; Durango-Restrepo, D. L. Performance of different fermentation methods and the effect on coffee quality (coffea arabica l.). Coffee Sci. 2018, 13, 465–476. [Google Scholar] [CrossRef]
  506. Yeager, S. E.; Batali, M. E.; Guinard, J. X.; Ristenpart, W. D. , Acids in coffee: A review of sensory measurements and meta-analysis of chemical composition. Crit. Rev. Food Sci. Nutr. 2021, 63, 1010–1036. [Google Scholar] [CrossRef] [PubMed]
  507. Badmos, S.; Lee, S. H.; Kuhnert, N. , Comparison and quantification of chlorogenic acids for differentiation of green Robusta and Arabica coffee beans. Food Res. Int. 2019, 126, 108544. [Google Scholar] [CrossRef]
  508. Köseoglu Yilmaz, P.; Kolak, U. , SPE-HPLC Determination of Chlorogenic and Phenolic Acids in Coffee. J. Chromatogr. Sci. 2017, 55, 712–718. [Google Scholar] [CrossRef]
  509. Marmet, C.; Actis-Goretta, L.; Renouf, M.; Giuffrida, F. , Quantification of phenolic acids and their methylates, glucuronides, sulfates and lactones metabolites in human plasma by LC-MS/MS after oral ingestion of soluble coffee. J. Pharm. Biomed. Anal. 2014, 88, 617–625. [Google Scholar] [CrossRef]
  510. Risso, E. M.; Péres, R. G.; Amaya-Farfan, J. Determination of phenolic acids in coffee by micellar electrokinetic chromatography. Food. Chem. 2007, 105, 1578–1582. [Google Scholar] [CrossRef]
  511. Dos Santos, R. A.; Prado, M. A.; Pertierra, R. E.; Palacios, H. A. , Analysis of sugars and chlorogenic acid in coffee harvested at different ripening stages and after processing. Braz. J. Food Technol. 2018, 21, e2017163. [Google Scholar] [CrossRef]
  512. Pereira, P. V.; Bravim, D. G.; Grillo, R. P.; Bertoli, L. D.; Osório, V. M.; da Silva Oliveira, D.; da Cruz Pedrozo Miguel, M. G.; Schwan, R. F.; de Assis Silva, S.; Coelho, J. M.; Bernardes, P. C. , Microbial diversity and chemical characteristics of Coffea canephora grown in different environments and processed by dry method. World J. Microbiol. Biotechnol. 2021, 37, 51. [Google Scholar] [CrossRef] [PubMed]
  513. Chindapan, N.; Soydok, S.; Devahastin, S. , Roasting Kinetics and Chemical Composition Changes of Robusta Coffee Beans During Hot Air and Superheated Steam Roasting. J. Food Sci. 2019, 84, 292–302. [Google Scholar] [CrossRef] [PubMed]
  514. Somporn, C.; Kamtuo, A.; Theerakulpisut, P.; Siriamornpun, S. Effect of shading on yield, sugar content, phenolic acids and antioxidant property of coffee beans (Coffea Arabica L. cv. Catimor) harvested from north-eastern Thailand. J. Sci. Food Agric. 2012, 92, 1956–1963. [Google Scholar] [CrossRef]
  515. Wang, X.; Peng, X.; Lu, J.; Hu, G.; Qiu, M. , Ent-kaurane diterpenoids from the cherries of Coffea arabica. Fitoterapia 2019, 132, 7–11. [Google Scholar] [CrossRef] [PubMed]
  516. Chu, R.; Wan, L. S.; Peng, X. R.; Yu, M. Y.; Zhang, Z. R.; Zhou, L.; Li, Z. R.; Qiu, M. H. , Characterization of New Ent-kaurane Diterpenoids of Yunnan Arabica Coffee Beans. Nat. Prod. Bioprospect. 2016, 6, 217–223. [Google Scholar] [CrossRef]
  517. Wang, X.; Peng, X. R.; Lu, J.; Hu, G. L.; Qiu, M. H. , New Dammarane Triterpenoids, Caffruones A–D, from the Cherries of Coffea arabica. Nat. Prod. Bioprospect. 2018, 8, 413–418. [Google Scholar] [CrossRef]
  518. Lang, R.; Fromme, T.; Beusch, A.; Lang, T.; Klingenspor, M.; Hofmann, T. , Raw coffee based dietary supplements contain carboxyatractyligenin derivatives inhibiting mitochondrial adenine-nucleotide-translocase. Food Chem. Toxicol. 2014, 70, 198–204. [Google Scholar] [CrossRef] [PubMed]
  519. Barbosa, M. D. S. G.; Scholz, M. B. D. S.; Kitzberger, C. S. G.; Benassi, M. D. T. , Correlation between the composition of green Arabica coffee beans and the sensory quality of coffee brews. Food. Chem. 2019, 292, 275–280. [Google Scholar] [CrossRef] [PubMed]
  520. Caporaso, N.; Whitworth, M. B.; Cui, C.; Fisk, I. D. , Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GC-MS. Food Res. Int. 2018, 108, 628–640. [Google Scholar] [CrossRef]
  521. Piccino, S.; Boulanger, R.; Descroix, F.; Sing, A. S. C. , Aromatic composition and potent odorants of the "specialty coffee" brew "Bourbon Pointu" correlated to its three trade classifications. Food Res. Int. 2014, 61, 264–271. [Google Scholar] [CrossRef]
  522. Angeloni, S.; Mustafa, A. M.; Abouelenein, D.; Alessandroni, L.; Acquaticci, L.; Nzekoue, F. K.; Petrelli, R.; Sagratini, G.; Vittori, S.; Torregiani, E.; Caprioli, G. , Characterization of the aroma profile and main key odorants of espresso coffee. Molecules 2021, 26, 3856. [Google Scholar] [CrossRef] [PubMed]
  523. Hafsah, H.; Iriawati, I.; Syamsudin, T. S. , Dataset of volatile compounds from flowers and secondary metabolites from the skin pulp, green beans, and peaberry green beans of robusta coffee. Data Brief 2020, 29, 105219. [Google Scholar] [CrossRef]
  524. Kim, H. J.; Hong, D. L.; Yu, J. W.; Lee, S. M.; Lee, Y. B. , Identification of headspace volatile compounds of blended coffee and application to principal component analysis. Prev. Nutr. Food Sci. 2019, 24, 217–223. [Google Scholar] [CrossRef] [PubMed]
  525. Lee, K. G.; Shibamoto, T. Analysis of volatile components isolated from Hawaiian green coffee beans (Coffea arabica L.). Flavour Fragr. J. 2002, 17, 349–351. [Google Scholar] [CrossRef]
  526. Sarghini, F.; Fasano, E.; De Vivo, A.; Tricarico, M. C. , Influence of roasting process in six coffee Arabica cultivars: Analysis of volatile components profiles. Chem. Eng. Trans. 2019, 75, 295–300. [Google Scholar]
  527. Butt, M. S.; Sultan, M. T. , Coffee and its consumption: Benefits and risks. Crit. Rev. Food Sci. Nutr. 2011, 51, 363–373. [Google Scholar] [CrossRef]
  528. Colombo, R.; Papetti, A. , Decaffeinated coffee and its benefits on health: focus on systemic disorders. Crit. Rev. Food Sci. Nutr. 2021, 61, 2506–2522. [Google Scholar] [CrossRef]
  529. Dirks-Naylor, A. J. , The benefits of coffee on skeletal muscle. Life Sci. 2015, 143, 182–186. [Google Scholar] [CrossRef]
  530. Pourshahidi, L. K.; Navarini, L.; Petracco, M.; Strain, J. J. , A Comprehensive Overview of the Risks and Benefits of Coffee Consumption. Compr. Rev. Food Sci. Food Saf. 2016, 15, 671–684. [Google Scholar] [CrossRef]
  531. dos Santos, H. D.; Boffo, E. F. , Coffee beyond the cup: analytical techniques used in chemical composition research—a review. Eur. Food Res. Technol. 2021, 247, 749–775. [Google Scholar] [CrossRef]
  532. Barrea, L.; Pugliese, G.; Frias-Toral, E.; El Ghoch, M.; Castellucci, B.; Chapela, S. P.; Carignano, M. D. L. A.; Laudisio, D.; Savastano, S.; Colao, A.; Muscogiuri, G. , Coffee consumption, health benefits and side effects: a narrative review and update for dietitians and nutritionists. Crit. Rev. Food Sci. Nutr. 2023, 63, 1238–1261. [Google Scholar] [CrossRef]
  533. Jeong, J. M.; Lee, K. I.; Kim, S. M. , Simultaneous determination of benzoic Acid, Caffeic acid and Chlorogenic acid in seeds of Eriobotrya japonica and their antibacterial Effect. J. Appl. Biol. Chem. 2014, 57, 89–93. [Google Scholar]
  534. Park, M. Y.; Kang, D. H. , Antibacterial Activity of Caffeic Acid Combined with UV-A Light against Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium, and Listeria monocytogenes. Appl. Environ. Microbiol. 2021, 87, e00631–21. [Google Scholar] [CrossRef] [PubMed]
  535. Pinho, E.; Soares, G.; Henriques, M. , Evaluation of antibacterial activity of caffeic acid encapsulated by β-cyclodextrins. J. Microencapsul. 2015, 32, 804–8. [Google Scholar] [CrossRef]
  536. Kishimoto, N.; Kakino, Y.; Iwai, K.; Mochida, K.; Fujita, T. , In vitro antibacterial, antimutagenic and anti-influenza virus activity of caffeic acid phenethyl esters. Biocontrol Sci. 2005, 10, 155–161. [Google Scholar] [CrossRef]
  537. Niu, Y.; Wang, K.; Zheng, S.; Wang, Y.; Ren, Q.; Li, H.; Ding, L.; Li, W.; Zhang, L. , Antibacterial effect of caffeic acid phenethyl ester on cariogenic bacteria and streptococcus mutans biofilms. Antimicrob. Agents Chemother. 2020, 64, e00251–20. [Google Scholar] [CrossRef]
  538. Rojas-González, A.; Figueroa-Hernández, C. Y.; González-Rios, O.; Suárez-Quiroz, M. L.; González-Amaro, R. M.; Hernández-Estrada, Z. J.; Rayas-Duarte, P. , Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022, 27, 3400. [Google Scholar] [CrossRef] [PubMed]
  539. Elbestawy, M. K. M.; El-Sherbiny, G. M.; Moghannem, S. A. , Antibacterial, Antibiofilm and Anti-Inflammatory Activities of Eugenol Clove Essential Oil against Resistant Helicobacter pylori. Molecules 2023, 28, 2448. [Google Scholar] [CrossRef]
  540. Ashrafudoulla, M.; Mizan, M. F. R.; Ha, A. J. W.; Park, S. H.; Ha, S. D. , Antibacterial and antibiofilm mechanism of eugenol against antibiotic resistance Vibrio parahaemolyticus. Food Microbiol. 2020, 91, 103500. [Google Scholar] [CrossRef]
  541. Bai, X.; Li, X.; Liu, X.; Xing, Z.; Su, R.; Wang, Y.; Xia, X.; Shi, C. , Antibacterial Effect of Eugenol on Shigella flexneri and Its Mechanism. Foods 2022, 11, 2565. [Google Scholar] [CrossRef]
  542. Bezerra, S. R.; Bezerra, A. H.; de Sousa Silveira, Z.; Macedo, N. S.; dos Santos Barbosa, C. R.; Muniz, D. F.; Sampaio dos Santos, J. F.; Melo Coutinho, H. D.; Bezerra da Cunha, F. A. , Antibacterial activity of eugenol on the IS-58 strain of Staphylococcus aureus resistant to tetracycline and toxicity in Drosophila melanogaster. Microb. Pathog. 2022, 164, 105456. [Google Scholar] [CrossRef] [PubMed]
  543. Devi, K. P.; Nisha, S. A.; Sakthivel, R.; Pandian, S. K. , Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 2010, 130, 107–115. [Google Scholar] [CrossRef] [PubMed]
  544. Pavesi, C.; Banks, L. A.; Hudaib, T. , Antifungal and antibacterial activities of eugenol and non-polar extract of Syzygium aromaticum L. J. Pharm. Sci. Res. 2018, 10, 337–339. [Google Scholar]
  545. Silva, J. C.; Silva Pereira, R. L.; Sampaio de Freitas, T.; Rocha, J. E.; Macedo, N. S.; de Fatima Alves Nonato, C.; Linhares, M. L.; Arruda Tavares, D. S.; Bezerra da Cunha, F. A.; Melo Coutinho, H. D.; Gonçalo de Lima, S.; Pereira-Junior, F. N.; Araújo Maia, F. P.; Pita Neto, I. C.; Galvão Rodrigues, F. F.; Garcia Santos, G. J. , Evaluation of antibacterial and toxicological activities of essential oil of Ocimum gratissimum L. and its major constituent eugenol. Food Biosci. 2022, 50, 102128. [Google Scholar] [CrossRef]
  546. Su, R.; Bai, X.; Liu, X.; Song, L.; Liu, X.; Zhan, X.; Guo, D.; Wang, Y.; Chang, Y.; Shi, C. , Antibacterial Mechanism of Eugenol Against Shigella sonnei and Its Antibacterial Application in Lettuce Juice. Foodborne Pathog. Dis. 2022, 19, 779–786. [Google Scholar] [CrossRef]
  547. Zhang, L. L.; Zhang, L. F.; Xu, J. G.; Hu, Q. P. , Comparison study on antioxidant, DNA damage protective and antibacterial activities of eugenol and isoeugenol against several foodborne pathogens. Food Nutr. Res. 2017, 61, 1353356. [Google Scholar] [CrossRef]
  548. Amani, F.; Rezaei, A.; Kharazmi, M. S.; Jafari, S. M. , Loading ferulic acid into β-cyclodextrin nanosponges; antibacterial activity, controlled release and application in pomegranate juice as a copigment agent. Colloids Surf. Physicochem. Eng. Aspects 2022, 649, 129454. [Google Scholar] [CrossRef]
  549. Borges, A.; Ferreira, C.; Saavedra, M. J.; Simões, M. , Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef]
  550. Ordoñez, R.; Atarés, L.; Chiralt, A. , Antibacterial properties of cinnamic and ferulic acids incorporated to starch and PLA monolayer and multilayer films. Food Control 2022, 136, 108878. [Google Scholar] [CrossRef]
  551. Tu, Q. B.; Shi, H. C.; Li, P.; Sheng, S.; Wu, F. A. , Antibacterial Activity of Ferulic Acid Ester against Ralstonia solanacearum and Its Synergy with Essential Oils. Sustainability 2022, 14, 16348. [Google Scholar] [CrossRef]
  552. Sung, W. S.; Jung, H. J.; Lee, I. S.; Kim, H. S.; Lee, D. G. , Antimicrobial effect of furaneol against human pathogenic bacteria and fungi. J. Microbiol. Biotechnol. 2006, 16, 349–354. [Google Scholar]
  553. Aulestia-Viera, P. V.; Gontijo, S. M. L.; Gomes, A. D. M.; Sinisterra, R. D.; Rocha, R. G.; Cortés, M. E.; dos Santos, M. F.; Borsatti, M. A. , Guaiacol/β-cyclodextrin for rapid healing of dry socket: antibacterial activity, cytotoxicity, and bone repair—an animal study. Oral Maxillofac. Surg. 2019, 23, 53–61. [Google Scholar] [CrossRef]
  554. Cooper, R. A. , Inhibition of biofilms by glucose oxidase, lactoperoxidase and guaiacol: The active antibacterial component in an enzyme alginogel. Int. Wound J. 2013, 10, 630–637. [Google Scholar] [CrossRef] [PubMed]
  555. Mangal, S.; Chhibber, S.; Singh, V.; Harjai, K. , Guaiacol augments quorum quenching potential of ciprofloxacin against Pseudomonas aeruginosa. J. Appl. Microbiol. 2022, 133, 2235–2254. [Google Scholar] [CrossRef] [PubMed]
  556. Galvão, J. L. F. M.; Rosa, L. L. S.; Neto, H. D.; Silva, D. F.; Nóbrega, J. R.; Cordeiro, L. V.; de Figueiredo, P. T. R.; Andrade Júnior, F. P.; Filho, A. A. O.; Lima, E. O. , Antibacterial effect of isoeugenol against Pseudomonas aeruginosa. Braz. J. Pharm. Sci. 2022, 58, e20075. [Google Scholar] [CrossRef]
  557. Krogsgård Nielsen, C.; Kjems, J.; Mygind, T.; Snabe, T.; Schwarz, K.; Serfert, Y.; Meyer, R. L. , Antimicrobial effect of emulsion-encapsulated isoeugenol against biofilms of food pathogens and spoilage bacteria. Int. J. Food Microbiol. 2017, 242, 7–12. [Google Scholar] [CrossRef]
  558. Nielsen, C. K.; Subbiahdoss, G.; Zeng, G.; Salmi, Z.; Kjems, J.; Mygind, T.; Snabe, T.; Meyer, R. L. , Antibacterial isoeugenol coating on stainless steel and polyethylene surfaces prevents biofilm growth. J. Appl. Microbiol. 2018, 124, 179–187. [Google Scholar] [CrossRef]
  559. Siva, S.; Li, C.; Cui, H.; Lin, L. , Encompassment of isoeugenol in 2-hydroxypropyl-β-cyclodextrin using ultrasonication: Characterization, antioxidant and antibacterial activities. J. Mol. Liq. 2019, 296, 111777. [Google Scholar] [CrossRef]
  560. Ajiboye, T. O.; Habibu, R. S.; Saidu, K.; Haliru, F. Z.; Ajiboye, H. O.; Aliyu, N. O.; Ibitoye, O. B.; Uwazie, J. N.; Muritala, H. F.; Bello, S. A.; Yusuf, I. I.; Mohammed, A. O. , Involvement of oxidative stress in protocatechuic acid-mediated bacterial lethality. Microbiol. Open 2017, 6, e00472. [Google Scholar] [CrossRef]
  561. Bernal-Mercado, A. T.; Vazquez-Armenta, F. J.; Tapia-Rodriguez, M. R.; Islas-Osuna, M. A.; Mata-Haro, V.; Gonzalez-Aguilar, G. A.; Lopez-Zavala, A. A.; Ayala-Zavala, J. F. , Comparison of single and combined use of catechin, protocatechuic, and vanillic acids as antioxidant and antibacterial agents against uropathogenic Escherichia coli at planktonic and biofilm levels. Molecules 2018, 23, 2813. [Google Scholar] [CrossRef] [PubMed]
  562. Chao, C. Y.; Yin, M. C. , Antibacterial effects of roselle calyx extracts and protocatechuic acid in ground beef and apple juice. Foodborne Pathog. Dis. 2009, 6, 201–206. [Google Scholar] [CrossRef] [PubMed]
  563. Liu, K. S.; Tsao, S. M.; Yin, M. C. , In vitro antibacterial activity of roselle calyx and protocatechuic acid. Phytother. Res. 2005, 19, 942–945. [Google Scholar] [CrossRef] [PubMed]
  564. Stojković, D. S.; Živković, J.; Soković, M.; Glamočlija, J.; Ferreira, I. C. F. R.; Janković, T.; Maksimović, Z. , Antibacterial activity of Veronica montana L. extract and of protocatechuic acid incorporated in a food system. Food Chem. Toxicol. 2013, 55, 209–213. [Google Scholar] [CrossRef]
  565. Wu, M.; Tian, L.; Fu, J.; Liao, S.; Li, H.; Gai, Z.; Gong, G. , Antibacterial mechanism of Protocatechuic acid against Yersinia enterocolitica and its application in pork. Food Control 2022, 133, 108573. [Google Scholar] [CrossRef]
  566. Buathong, R.; Chamchumroon, V.; Schinnerl, J.; Bacher, M.; Santimaleeworagun, W.; Kraichak, E.; Vajrodaya, S. , Chemovariation and antibacterial activity of extracts and isolated compounds from species of Ixora and Greenea (Ixoroideae, Rubiaceae). PeerJ 2019, 2019, e6893. [Google Scholar] [CrossRef]
  567. Napiroon, T.; Bacher, M.; Balslev, H.; Tawaitakham, K.; Santimaleeworagun, W.; Vajrodaya, S. , Scopoletin from Lasianthus lucidus Blume (Rubiaceae): A potential antimicrobial against multidrug-resistant Pseudomonas aeruginosa. J. Appl. Pharm. Sci. 2018, 8, 1–6. [Google Scholar]
  568. De La Cruz-Sánchez, N. G.; Gómez-Rivera, A.; Alvarez-Fitz, P.; Ventura-Zapata, E.; Pérez-García, M. D.; Avilés-Flores, M.; Gutiérrez-Román, A. S.; González-Cortazar, M. , Antibacterial activity of Morinda citrifolia Linneo seeds against Methicillin-Resistant Staphylococcus spp. Microb. Pathog. 2019, 128, 347–353. [Google Scholar] [CrossRef]
  569. Firmansyah, A.; Winingsih, W.; Manobi, J. D. Y. , Review of scopoletin: Isolation, analysis process, and pharmacological activity. Biointerface Res. Appl. Chem. 2021, 11, 12006–12019. [Google Scholar]
  570. Mfonku, N. A.; Tadjong, A. T.; Kamsu, G. T.; Kodjio, N.; Ren, J.; Mbah, J. A.; Gatsing, D.; Zhan, J. Isolation and characterization of antisalmonellal anthraquinones and coumarins from Morinda lucida Benth. (Rubiaceae). Chem. Pap. 2021, 75, 2067–2073. [Google Scholar] [CrossRef]
  571. Naz, F.; Kumar, M.; Koley, T.; Sharma, P.; Haque, M. A.; Kapil, A.; Kumar, M.; Kaur, P.; Ethayathulla, A. S. , Screening of plant-based natural compounds as an inhibitor of FtsZ from Salmonella Typhi using the computational, biochemical and in vitro cell-based studies. Int. J. Biol. Macromol. 2022, 219, 428–437. [Google Scholar] [CrossRef]
  572. Qian, W.; Fu, Y.; Liu, M.; Wang, T.; Zhang, J.; Yang, M.; Sun, Z.; Li, X.; Li, Y. , In vitro antibacterial activity and mechanism of vanillic acid against carbapenem-resistant Enterobacter cloacae. Antibiotics 2019, 8, 220. [Google Scholar] [CrossRef]
  573. Qian, W.; Yang, M.; Wang, T.; Sun, Z.; Liu, M.; Zhang, J.; Zeng, Q.; Cai, C.; Li, Y. , Antibacterial Mechanism of Vanillic Acid on Physiological, Morphological, and Biofilm Properties of Carbapenem-Resistant Enterobacter hormaechei. J. Food Prot. 2020, 83, 576–583. [Google Scholar] [CrossRef] [PubMed]
  574. Luo, Y.; Wang, C. Z.; Sawadogo, R.; Yuan, J.; Zeng, J.; Xu, M.; Tan, T.; Yuan, C. S. , 4-Vinylguaiacol, an Active Metabolite of Ferulic Acid by Enteric Microbiota and Probiotics, Possesses Significant Activities against Drug-Resistant Human Colorectal Cancer Cells. ACS Omega 2021, 6, 4551–4561. [Google Scholar] [CrossRef] [PubMed]
  575. Sudhagar, S.; Sathya, S.; Anuradha, R.; Gokulapriya, G.; Geetharani, Y.; Lakshmi, B. S. , Inhibition of epidermal growth factor receptor by ferulic acid and 4-vinylguaiacol in human breast cancer cells. Biotechnol. Lett. 2018, 40, 257–262. [Google Scholar] [CrossRef]
  576. Cavin, C.; Holzhaeuser, D.; Scharf, G.; Constable, A.; Huber, W. W.; Schilter, B. , Cafestol and kahweol, two coffee specific diterpenes with anticarcinogenic activity. Food Chem. Toxicol. 2002, 40, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
  577. Ren, Y.; Wang, C.; Xu, J.; Wang, S. , Cafestol and kahweol: A review on their bioactivities and pharmacological properties. Int. J. Mol. Sci. 2019, 20, 4238. [Google Scholar] [CrossRef] [PubMed]
  578. Iwamoto, H.; Izumi, K.; Natsagdorj, A.; Naito, R.; Marino, T.; Kadomoto, S.; Hiratsuka, K.; Shigehara, K.; Radono, Y.; Mizorami, A.; Narimoto, R.; Saito, Y.; Naragawa-Goto, R. , Coffee diterpenes, kahweol acetate and cafestol, synergistically induce apoptosis and inhibit the epithelial-mesenchymal transition of prostate cancer cells. Nishinihon J. Urol. 2019, 81, 364–371. [Google Scholar]
  579. Lee, K. A.; Chae, J. I.; Shim, J. H. , Natural diterpenes from coffee, cafestol and kahweol induce apoptosis through regulation of specificity protein 1 expression in human malignant pleural mesothelioma. J. Biomed. Sci. 2012, 19, 60. [Google Scholar] [CrossRef]
  580. Bovilla, V.; Anantharaju, P.; Dornadula, S.; Veeresh, P.; Kuruburu, M.; Bettada, V.; Ramkumar, K.; Madhunapantula, S. , Caffeic acid and protocatechuic acid modulate Nrf2 and inhibit Ehrlich ascites carcinomas in mice. Asian Pac. J. Trop. Biomed. 2021, 11, 244–253. [Google Scholar]
  581. Brautigan, D. L.; Gielata, M.; Heo, J.; Kubicka, E.; Wilkins, L. R. , Selective toxicity of caffeic acid in hepatocellular carcinoma cells. Biochem. Biophys. Res. Commun. 2018, 505, 612–617. [Google Scholar] [CrossRef]
  582. Celińska-Janowicz, K.; Zarȩba, I.; Lazarek, U.; Teul, J.; Tomczyk, M.; Pałka, J.; Miltyk, W. , Constituents of propolis: Chrysin, caffeic acid, p-coumaric acid, and ferulic acid induce PRODH/POX-dependent apoptosis in human tongue squamous cell carcinoma cell (CAL-27). Front. Pharmacol. 2018, 9, 336. [Google Scholar] [CrossRef]
  583. Matejczyk, M.; Świsłocka, R.; Golonko, A.; Lewandowski, W.; Hawrylik, E. , Cytotoxic, genotoxic and antimicrobial activity of caffeic and rosmarinic acids and their lithium, sodium and potassium salts as potential anticancer compounds. Adv. Med. Sci. 2018, 63, 14–21. [Google Scholar] [CrossRef] [PubMed]
  584. Tyszka-Czochara, M.; Bukowska-Strakova, K.; Kocemba-Pilarczyk, K. A.; Majka, M. , Caffeic acid targets AMPK signaling and regulates tricarboxylic acid cycle anaplerosis while metformin downregulates HIF-1α-induced glycolytic enzymes in human cervical squamous cell carcinoma lines. Nutrients 2018, 10, 841. [Google Scholar] [CrossRef] [PubMed]
  585. Tyszka-Czochara, M.; Konieczny, P.; Majka, M. , Caffeic acid expands anti-tumor effect of metformin in human metastatic cervical carcinoma HTB-34 cells: Implications of AMPK activation and impairment of fatty acids de novo biosynthesis. Int. J. Mol. Sci. 2017, 18, 462. [Google Scholar] [CrossRef] [PubMed]
  586. Chang, K. S.; Tsui, K. H.; Hsu, S. Y.; Sung, H. C.; Lin, Y. H.; Hou, C. P.; Yang, P. S.; Chen, C. L.; Feng, T. H.; Juang, H. H. , The Antitumor Effect of Caffeic Acid Phenethyl Ester by Downregulating Mucosa-Associated Lymphoid Tissue 1 via AR/p53/NF-κB Signaling in Prostate Carcinoma Cells. Cancers (Basel) 2022, 14, 274. [Google Scholar] [CrossRef]
  587. Hou, C. P.; Tsui, K. H.; Chang, K. S.; Sung, H. C.; Hsu, S. Y.; Lin, Y. H.; Yang, P. S.; Chen, C. L.; Feng, T. H.; Juang, H. H. , Caffeic acid phenethyl ester inhibits the growth of bladder carcinoma cells by upregulating growth differentiation factor 15. Biomed. J. 2022, 45, 763–775. [Google Scholar] [CrossRef]
  588. Kapare, H.; Nagaraj, S.; Wakalkar, S.; Rathi, K. , Caffeic Acid Phenethyl Ester: A Potential Anticancer Bioactive Constituent of Propolis. Curr. Cancer Ther. Rev. 2022, 18, 181–192. [Google Scholar] [CrossRef]
  589. Liang, Y.; Feng, G.; Wu, L.; Zhong, S.; Gao, X.; Tong, Y.; Cui, W.; Qin, Y.; Xu, W.; Xiao, X.; Zhang, Z.; Huang, G.; Zhou, X. , Caffeic acid phenethyl ester suppressed growth and metastasis of nasopharyngeal carcinoma cells by inactivating the NF-κB pathway. Drug Des. Devel. Ther. 2019, 13, 1335–1345. [Google Scholar] [CrossRef]
  590. Sung, H. C.; Chang, K. S.; Chen, S. T.; Hsu, S. Y.; Lin, Y. H.; Hou, C. P.; Feng, T. H.; Tsui, K. H.; Juang, H. H. , Metallothionein 2A with Antioxidant and Antitumor Activity Is Upregulated by Caffeic Acid Phenethyl Ester in Human Bladder Carcinoma Cells. Antioxidants 2022, 11, 1509. [Google Scholar] [CrossRef]
  591. Lu, H.; Tian, Z.; Cui, Y.; Liu, Z.; Ma, X. , Chlorogenic acid: A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3130–3158. [Google Scholar] [CrossRef] [PubMed]
  592. Abdullah, M. L.; Al-Shabanah, O.; Hassan, Z. K.; Hafez, M. M. , Eugenol-induced autophagy and apoptosis in breast cancer cells via pi3k/akt/foxo3a pathway inhibition. Int. J. Mol. Sci. 2021, 22, 9243. [Google Scholar] [CrossRef] [PubMed]
  593. Abdullah, M. L.; Hafez, M. M.; Al-Hoshani, A.; Al-Shabanah, O. , Anti-metastatic and anti-proliferative activity of eugenol against triple negative and HER2 positive breast cancer cells. BMC Complement. Altern. Med. 2018, 18, 321. [Google Scholar] [CrossRef] [PubMed]
  594. Al-Kharashi, L. A.; Bakheet, T.; AlHarbi, W. A.; Al-Moghrabi, N.; Aboussekhra, A. , Eugenol modulates genomic methylation and inactivates breast cancer-associated fibroblasts through E2F1-dependent downregulation of DNMT1/DNMT3A. Mol. Carcinog. 2021, 60, 784–795. [Google Scholar] [CrossRef] [PubMed]
  595. Bezerra, D. P.; Militão, G. C. G.; De Morais, M. C.; De Sousa, D. P. , The dual antioxidant/prooxidant effect of eugenol and its action in cancer development and treatment. Nutrients 2017, 9, 1367. [Google Scholar] [CrossRef]
  596. Choudhury, P.; Barua, A.; Roy, A.; Pattanayak, R.; Bhattacharyya, M.; Saha, P. , Eugenol restricts Cancer Stem Cell population by degradation of β-catenin via N-terminal Ser37 phosphorylation-an in vivo and in vitro experimental evaluation. Chem. Biol. Interact. 2020, 316, 108938. [Google Scholar] [CrossRef]
  597. Choudhury, P.; Barua, A.; Roy, A.; Pattanayak, R.; Bhattacharyya, M.; Saha, P. , Eugenol emerges as an elixir by targeting β-catenin, the central cancer stem cell regulator in lung carcinogenesis: An: In vivo and in vitro rationale. Food Funct. 2021, 12, 1063–1078. [Google Scholar] [CrossRef]
  598. Cui, Z.; Liu, Z.; Zeng, J.; Chen, L.; Wu, Q.; Mo, J.; Zhang, G.; Song, L.; Xu, W.; Zhang, S.; Guo, X. , Eugenol inhibits non-small cell lung cancer by repressing expression of NF-κB-regulated TRIM59. Phytother. Res. 2019, 33, 1562–1569. [Google Scholar] [CrossRef]
  599. Das, A.; Harshadha, K.; Dhinesh Kannan, S. K.; Hari Raj, K.; Jayaprakash, B. , Evaluation of therapeutic potential of Eugenol-A natural derivative of Syzygium aromaticum on cervical cancer. Asian Pac. J. Cancer Prev. 2018, 19, 1977–1985. [Google Scholar]
  600. Fangjun, L.; Zhijia, Y. , Tumor suppressive roles of eugenol in human lung cancer cells. Thorac. Cancer 2018, 9, 25–29. [Google Scholar] [CrossRef]
  601. Fouad, M. A.; Sayed-Ahmed, M. M.; Huwait, E. A.; Hafez, H. F.; Osman, A. M. M. , Epigenetic immunomodulatory effect of eugenol and astaxanthin on doxorubicin cytotoxicity in hormonal positive breast Cancer cells. BMC Pharmacol. Toxicol. 2021, 22, 8. [Google Scholar] [CrossRef] [PubMed]
  602. Ghodousi-Dehnavi, E.; Hosseini, R. H.; Arjmand, M.; Nasri, S.; Zamani, Z. , A Metabolomic Investigation of Eugenol on Colorectal Cancer Cell Line HT-29 by Modifying the Expression of APC, p53, and KRAS Genes. Evid. Based Complement. Alternat. Med. 2021, 2021, 1448206. [Google Scholar] [CrossRef] [PubMed]
  603. Morsy, H. M.; Ahmed, O. M.; Zoheir, K. M. A.; Abdel-Moneim, A. , The anticarcinogenic effect of eugenol on lung cancer induced by diethylnitrosamine/2-acetylaminofluorene in Wistar rats: insight on the mechanisms of action. Apoptosis 2023. [Google Scholar] [CrossRef] [PubMed]
  604. Padhy, I.; Paul, P.; Sharma, T.; Banerjee, S.; Mondal, A. , Molecular Mechanisms of Action of Eugenol in Cancer: Recent Trends and Advancement. Life 2022, 12, 1795. [Google Scholar] [CrossRef] [PubMed]
  605. Permatasari, H. K.; Effendi, A. B.; Qhabibi, F. R.; Fawwaz, F.; Dominique, A. , Eugenol isolated from Syzygium aromaticum inhibits HeLa cancer cell migration by altering epithelial-mesenchymal transition protein regulators. J. Appl. Pharm. Sci. 2021, 11, 49–53. [Google Scholar]
  606. Ranjitkar, S.; Zhang, D.; Sun, F.; Salman, S.; He, W.; Venkitanarayanan, K.; Tulman, E. R.; Tian, X. , Cytotoxic effects on cancerous and non-cancerous cells of trans-cinnamaldehyde, carvacrol, and eugenol. Sci. Rep. 2021, 11, 16281. [Google Scholar] [CrossRef]
  607. Shi, X.; Zhang, W.; Bao, X.; Liu, X.; Yang, M.; Yin, C. , Eugenol modulates the NOD1-NF-κB signaling pathway via targeting NF-κB protein in triple-negative breast cancer cells. Front. Endocrinol. (Lausanne) 2023, 14, 1136067. [Google Scholar] [CrossRef]
  608. Shirazi, P. T.; Farjadian, S.; Dabbaghmanesh, M. H.; Jonaidi, H.; Alavianmehr, A.; Kalani, M.; Emadi, L. , Eugenol: A New Option in Combination Therapy with Sorafenib for the Treatment of Undifferentiated Thyroid Cancer. Iran J. Allergy Asthma Immunol. 2022, 21, 313–321. [Google Scholar]
  609. Kumar, N.; Kumar, S.; Abbat, S.; Nikhil, K.; Sondhi, S. M.; Bharatam, P. V.; Roy, P.; Pruthi, V. , Ferulic acid amide derivatives as anticancer and antioxidant agents: synthesis, thermal, biological and computational studies. Med. Chem. Res. 2016, 25, 1175–1192. [Google Scholar] [CrossRef]
  610. Ani, G.; Tanya, T. Y.; Reneta, T. Antitumor and apoptogenic effects of ferulic acid on cervical carcinoma cells. Res. J. Biotechnol. 2021, 16, 6–11. [Google Scholar]
  611. Bakholdina, L. A.; Markova, A. A.; Khlebnikov, A. I.; Sevodin, V. P. , Cytotoxicity of New Ferulic-Acid Derivatives on Human Colon Carcinoma (HCT116) Cells. Pharm. Chem. J. 2019, 53, 516–520. [Google Scholar] [CrossRef]
  612. Cao, Y.; Zhang, H.; Tang, J.; Wang, R. , Ferulic Acid Mitigates Growth and Invasion of Esophageal Squamous Cell Carcinoma through Inducing Ferroptotic Cell Death. Dis. Markers 2022, 2022, 4607966. [Google Scholar] [CrossRef] [PubMed]
  613. Cui, K.; Wu, H.; Fan, J.; Zhang, L.; Li, H.; Guo, H.; Yang, R.; Li, Z. , The Mixture of Ferulic Acid and P-Coumaric Acid Suppresses Colorectal Cancer through lncRNA 495810/PKM2 Mediated Aerobic Glycolysis. Int. J. Mol. Sci. 2022, 23, 12106. [Google Scholar] [CrossRef] [PubMed]
  614. Damasceno, S. S.; Dantas, B. B.; Ribeiro-Filho, J.; Araújo, D. A. M.; Da Costa, J. G. M. , Chemical properties of caffeic and ferulic acids in biological system: Implications in cancer therapy. A review. Curr. Pharm. Des. 2017, 23, 3015–3023. [Google Scholar] [CrossRef] [PubMed]
  615. Dodurga, Y.; Eroğlu, C.; Seçme, M.; Elmas, L.; Avcı, Ç. B.; Şatıroğlu-Tufan, N. L. , Anti-proliferative and anti-invasive effects of ferulic acid in TT medullary thyroid cancer cells interacting with URG4/URGCP. Tumor Biol. 2016, 37, 1933–1940. [Google Scholar] [CrossRef] [PubMed]
  616. El-Gogary, R. I.; Nasr, M.; Rahsed, L. A.; Hamzawy, M. A. , Ferulic acid nanocapsules as a promising treatment modality for colorectal cancer: Preparation and in vitro/in vivo appraisal. Life Sci. 2022, 298, 120500. [Google Scholar] [CrossRef]
  617. ElKhazendar, M.; Chalak, J.; El-Huneidi, W.; Vinod, A.; Abdel-Rahman, W. M.; Abu-Gharbieh, E. , Antiproliferative and proapoptotic activities of ferulic acid in breast and liver cancer cell lines. Trop. J. Pharm. Res. 2019, 18, 2571–2576. [Google Scholar]
  618. Eroğlu, C.; Seçme, M.; Bağcı, G.; Dodurga, Y. , Assessment of the anticancer mechanism of ferulic acid via cell cycle and apoptotic pathways in human prostate cancer cell lines. Tumor Biol. 2015, 36, 9437–9446. [Google Scholar] [CrossRef]
  619. Fahrioğlu, U.; Dodurga, Y.; Elmas, L.; Seçme, M. , Ferulic acid decreases cell viability and colony formation while inhibiting migration of MIA PaCa-2 human pancreatic cancer cells in vitro. Gene 2016, 576, 476–482. [Google Scholar] [CrossRef]
  620. Gao, J.; Yu, H.; Guo, W.; Kong, Y.; Gu; Li, Q. ; Yang, S.; Zhang, Y.; Wang, Y., The anticancer effects of ferulic acid is associated with induction of cell cycle arrest and autophagy in cervical cancer cells. Cancer Cell Int. 2018, 18, 102. [Google Scholar] [CrossRef]
  621. Gupta, A.; Singh, A. K.; Loka, M.; Pandey, A. K.; Bishayee, A. , Ferulic acid-mediated modulation of apoptotic signaling pathways in cancer. Adv. Protein Chem. Struct. Biol. 2021, 125, 215–257. [Google Scholar] [PubMed]
  622. Luo, L.; Zhu, S.; Tong, Y.; Peng, S. , Ferulic acid induces apoptosis of HeLa and caski cervical carcinoma cells by down-regulating the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Med. Sci. Monit. 2020, 26, e920095–1. [Google Scholar] [CrossRef]
  623. Zhang, X.; Lin, D.; Jiang, R.; Li, H.; Wan, J.; Li, H. , Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition. Oncol. Rep. 2016, 36, 271–278. [Google Scholar] [CrossRef] [PubMed]
  624. Dajas, F. , Life or death: Neuroprotective and anticancer effects of quercetin. J. Ethnopharmacol. 2012, 143, 383–396. [Google Scholar] [CrossRef]
  625. Davoodvandi, A.; Shabani Varkani, M.; Clark, C. C. T.; Jafarnejad, S. , Quercetin as an anticancer agent: Focus on esophageal cancer. J. Food Biochem. 2020, 44, e13374. [Google Scholar] [CrossRef] [PubMed]
  626. Khan, F.; Niaz, K.; Maqbool, F.; Hassan, F. I.; Abdollahi, M.; Nagulapalli Venkata, K. C.; Nabavi, S. M.; Bishayee, A. , Molecular targets underlying the anticancer effects of quercetin: An update. Nutrients 2016, 8. [Google Scholar] [CrossRef] [PubMed]
  627. Kubina, R.; Iriti, M.; Kabała-Dzik, A. , Anticancer potential of selected flavonols: Fisetin, kaempferol, and quercetin on head and neck cancers. Nutrients 2021, 13, 845. [Google Scholar] [CrossRef]
  628. Rauf, A.; Imran, M.; Khan, I. A.; ur-Rehman, M.; Gilani, S. A.; Mehmood, Z.; Mubarak, M. S. , Anticancer potential of quercetin: A comprehensive review. Phytother. Res. 2018, 32, 2109–2130. [Google Scholar] [CrossRef]
  629. Mei, S.; Ma, H.; Chen, X. , Anticancer and anti-inflammatory properties of mangiferin: A review of its molecular mechanisms. Food Chem. Toxicol. 2021, 149, 111997. [Google Scholar] [CrossRef]
  630. Acquaviva, R.; Tomasello, B.; Di Giacomo, C.; Santangelo, R.; Mantia, A. L.; Naletova, I.; Sarpietro, M. G.; Castelli, F.; Malfa, G. A. , Protocatechuic acid, a simple plant secondary metabolite, induced apoptosis by promoting oxidative stress through ho-1 downregulation and p21 upregulation in colon cancer cells. Biomolecules 2021, 11, 1485. [Google Scholar] [CrossRef]
  631. Lin, H. H.; Chen, J. H.; Chou, F. P.; Wang, C. J. , Protocatechuic acid inhibits cancer cell metastasis involving the down-regulation of Ras/Akt/NF-κB pathway and MMP-2 production by targeting RhoB activation. Br. J. Pharmacol. 2011, 162, 237–254. [Google Scholar] [CrossRef] [PubMed]
  632. Peiffer, D. S.; Zimmerman, N. P.; Wang, L. S.; Ransom, B. W. S.; Carmella, S. G.; Kuo, C. T.; Siddiqui, J.; Chen, J. H.; Oshima, K.; Huang, Y. W.; Hecht, S. S.; Stoner, G. D. , Chemoprevention of esophageal cancer with black raspberries, their component anthocyanins, and a major anthocyanin metabolite, protocatechuic acid. Cancer Prev. Res. 2014, 7, 574–584. [Google Scholar] [CrossRef] [PubMed]
  633. Tanaka, T.; Tanaka, T.; Tanaka, M. , Potential Cancer Chemopreventive Activity of Protocatechuic Acid. J. Exp. Clin. Med. 2011, 3, 27–33. [Google Scholar] [CrossRef]
  634. Tsao, S. M.; Hsia, T. C.; Yin, M. C. , Protocatechuic acid inhibits lung cancer cells by modulating FAK, MAPK, and NF- B pathways. Nutr. Cancer 2014, 66, 1331–1341. [