Submitted:
25 June 2023
Posted:
26 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction

2. Diversity at an allelic level
2.1. Seed shattering (SH4)
2.2. Diversity at the Hd1 locus-
2.3. Diversity at the Rc locus
3. Diversity at the genome level

| Weedy rice | Region | Molecular marker used | Genetic diversity | Reference | |
|---|---|---|---|---|---|
| Oryza sativa | Arkansas | SSR | Gradient Distance (GD)=07 | [77] | |
| Oryza sativa f. spontanea | Northern China | SSR | (He) = 0.313 (I) = 0.572 | [71] | |
| Oryza sativa L. | Italy | SSR | He = 0.295 | [73] | |
| Oryza sativa L. | Northeastern Asia | SSR | He = 0.748 I = 0.434 |
[70] | |
| Red rice | Uruguay | RFP | 25.6 bands per primer pair | [74] |
4. Novel source of disease resistance

5. Conclusions and prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Estorninos, L.E.; Gealy, D.R.; Gbur, E.E.; Talbert, R.E.; Mcclelland, M.R. Rice and Red Rice Interference. II. Rice Response to Population Densities of Three Red Rice (Oryza Sativa) Ecotypes. Weedy science 2005, 53, 683–689. [Google Scholar] [CrossRef]
- Dekker, J. Weed Diversity and Weed Management. In Proceedings of the Weed Science. 1997, 45, 357–363. [Google Scholar]
- Burgos, N.R.; Norman, R.J.; Gealy, D.R.; Black, H. Competitive N Uptake between Rice and Weedy Rice. Field Crops Res 2006, 99, 96–105. [Google Scholar] [CrossRef]
- Dai, L.; Dai, W.; Song, X.; Lu, B.; Qiang, S. A Comparative Study of Competitiveness between Different Genotypes of Weedy Rice (Oryza Sativa) and Cultivated Rice. Pest Manag Sci 2014, 70, 113–122. [Google Scholar] [CrossRef]
- Dai, L.; Song, X.; He, B.; Valverde, B.E.; Qiang, S. Enhanced Photosynthesis Endows Seedling Growth Vigour Contributing to the Competitive Dominance of Weedy Rice over Cultivated Rice. Pest Manag Sci 2017, 73, 1410–1420. [Google Scholar] [CrossRef]
- Zhao, C.; Xu, W.; Song, X.; Dai, W.; Dai, L.; Zhang, Z.; Qiang, S. Early Flowering and Rapid Grain Filling Determine Early Maturity and Escape from Harvesting in Weedy Rice. Pest Manag Sci 2018, 74, 465–476. [Google Scholar] [CrossRef]
- Reagon, M.; Thurber, C.S.; Gross, B.L.; Olsen, K.M.; Jia, Y.; Caicedo, A.L. Genomic Patterns of Nucleotide Diversity in Divergent Populations of U.S. Weedy Rice. BMC Evol Biol 2010, 1, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ellstrand, N.C.; Lu, B.R. Sequence Polymorphisms in Wild, Weedy, and Cultivated Rice Suggest Seed-Shattering Locus Sh4 Played a Minor Role in Asian Rice Domestication. Ecol Evol 2012, 2, 2106–2113. [Google Scholar] [CrossRef]
- Grimm, A.; Sahi, V.P.; Amann, M.; Vidotto, F.; Fogliatto, S.; Devos, K.M.; Ferrero, A.; Nick, P. Italian Weedy Rice—A Case of de-Domestication? Ecol Evol 2020, 10, 8449–8464. [Google Scholar] [CrossRef]
- Gross, B.L.; Reagon, M.; Hsu, S.C.; Caicedo, A.L.; Jia, Y.; Olsen, K.M. Seeing Red: The Origin of Grain Pigmentation in US Weedy Rice. Mol Ecol 2010, 19, 3380–3393. [Google Scholar] [CrossRef]
- Gu, X.-Y.; Kianian, S.F.; Foley, M.E. Multiple Loci and Epistases Control Genetic Variation for Seed Dormancy in Weedy Rice (Oryza Sativa). Genetics 2004, 166, 1503–1503. [Google Scholar] [CrossRef] [PubMed]
- Fujino, K.; Wu, J.; Sekiguchi, H.; Ito, T.; Izawa, T.; Matsumoto, T. Multiple Introgression Events Surrounding the Hd1 Flowering-Time Gene in Cultivated Rice, Oryza Sativa L. Molecular Genetics and Genomics 2010, 284, 137–146. [Google Scholar] [CrossRef]
- Subudhi, P.K.; De Leon, T.B.; Tapia, R.; Chai, C.; Karan, R.; Ontoy, J.; Singh, P.K. Genetic Interaction Involving Photoperiod-Responsive Hd1 Promotes Early Flowering under Long-Day Conditions in Rice. Sci Rep 2018, 8. [Google Scholar] [CrossRef]
- Takahashi, Y.; Teshima, K.M.; Yokoi, S.; Innan, H.; Shimamoto, K. Variations in Hd1 Proteins, Hd3a Promoters, and Ehd1 Expression Levels Contribute to Diversity of Flowering Time in Cultivated Rice; PNAS 2009, 106, 4555-4560, doi10. 1073pnas.081209 2009, 2106. [Google Scholar]
- Yano, M.; Katayose, Y.; Ashikari, M.; Yamanouchi, U.; Monna, L.; Fuse, T.; Baba, T.; Yamamoto, K.; Umehara, Y.; Nagamura, Y.; et al. Hd1 , a Major Photoperiod Sensitivity Quantitative Trait Locus in Rice, Is Closely Related to the Arabidopsis Flowering Time Gene CONSTANS. The Plant Cell 2000, 2, 2473–2483. [Google Scholar] [CrossRef]
- Delouche, J.C. Diversity of Weedy Rice Populations Weedy Rices-Origin, Biology, Ecology and Control,. In; Food and Agriculture Organization of the United Nations: Rome, 2007; pp. 17–44. [Google Scholar]
- Eleftherohorinos, I.G.; Dhima, K. V.; Vasilakoglou, I.B. Interference of Red Rice in Rice Grown in Greece. Weed Sci 2002, 50, 167–172. [Google Scholar] [CrossRef]
- Ziska, L.H.; Gealy, D.R.; Burgos, N.; Caicedo, A.L.; Gressel, J.; Lawton-Rauh, A.L.; Avila, L.A.; Theisen, G.; Norsworthy, J.; Ferrero, A.; et al. Weedy (Red) Rice. An Emerging Constraint to Global Rice Production. Advances in Agronomy 2015, 129, 181–228. [Google Scholar] [CrossRef]
- Olofsdotter, M.; Valverde, B.E.; Madsen, K.H. Herbicide Resistant Rice (Oryza Sativa L.): Global Implications for Weedy Rice and Weed Management. Annals of Applied Biology 2000, 137, 279–795. [Google Scholar] [CrossRef]
- Arif, I.A.; Bakir, M.A.; Khan, H.A.; Al Farhan, A.H.; Al Homaidan, A.A.; Bahkali, A.H.; Al Sadoon, M.; Shobrak, M. A Brief Review of Molecular Techniques to Assess Plant Diversity. Int J Mol Sci 2010, 11, 2079–2096. [Google Scholar] [CrossRef]
- O’Hanlon, P.C.; Peakall, R.; Briese, D.T. A Review of New PCR-Based Genetic Markers and Their Utility to Weed Ecology. Weed Res 2000, 40, 239–254. [Google Scholar] [CrossRef]
- Noda, A.; Nomura, N.; Mitsui, Y.; Setoguchi, H. Isolation and Characterisation of Microsatellite Loci in Calystegia Soldanella (Convolvulaceae), an Endangered Coastal Plant Isolated in Lake Biwa, Japan. Conservation Genetics 2009, 10, 1077–1079. [Google Scholar] [CrossRef]
- Setoguchi, H.; Mitsui, Y.; Ikeda, H.; Nomura, N.; Tamura, A. Development and Characterization of Microsatellite Loci in the Endangered Tricyrtis Ishiiana (Convallariaceae), a Local Endemic Plant in Japan. Conservation Genetics 2009, 10, 705–707. [Google Scholar] [CrossRef]
- Shen, J.; Pinyopusarerk, K.; Bush, D.; Chen, X. AFLP-Based Molecular Characterization of 63 Populations of Jatropha Curcas L. Grown in Provenance Trials in China and Vietnam. Biomass Bioenergy 2012, 37, 265–274. [Google Scholar] [CrossRef]
- Elameen, A.; Klemsdal, S.S.; Dragland, S.; Fjellheim, S.; Rognli, O.A. Genetic Diversity in a Germplasm Collection of Roseroot (Rhodiola Rosea) in Norway Studied by AFLP. Biochem Syst Ecol 2008, 36, 706–715. [Google Scholar] [CrossRef]
- Song, Z.P.; Xu, X.; Wang, B.; Chen, J.K.; Lu, B.R. Genetic Diversity in the Northernmost Oryza Rufipogon Populations Estimated by SSR Markers. Theoretical and Applied Genetics 2003, 107, 1492–1499. [Google Scholar] [CrossRef]
- Yu, G.Q.; Bao, Y.; Shi, C.H.; Dong, C.Q.; Ge, S. Genetic Diversity and Population Differentiation of Liaoning Weedy Rice Detected by RAPD and SSR Markers. Biochem Genet 2005, 43, 261–270. [Google Scholar] [CrossRef]
- Yao, N.; Wang, L.; Yan, H.; Liu, Y.; Lu, B.R. Mapping Quantitative Trait Loci (QTL) Determining Seed-Shattering in Weedy Rice: Evolution of Seed Shattering in Weedy Rice through de-Domestication. Euphytica 2015, 204, 513–522. [Google Scholar] [CrossRef]
- Qiu, J.; Zhu, J.; Fu, F.; Ye, C.Y.; Wang, W.; Mao, L.; Lin, Z.; Chen, L.; Zhang, H.; Guo, L.; et al. Genome Re-Sequencing Suggested a Weedy Rice Origin from Domesticated Indica-Japonica Hybridization: A Case Study from Southern China. Planta 2014, 240, 1353–1363. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, Y.Z. Seed Shattering: From Models to Crops. Front Plant Sci 2015, 6, 1–13. [Google Scholar] [CrossRef]
- Zhang, G.; Mergoum, M. Molecular Mapping of Kernel Shattering and Its Association with Fusarium Head Blight Resistance in a Sumai3 Derived Population. Theoretical and Applied Genetics 2007, 115, 757–766. [Google Scholar] [CrossRef]
- Roberts, J.A.; Whitelaw, C.A.; Gonzalez-Carranza, Z.H.; McManus, M.T. Cell Separation Processes in Plants - Models, Mechanisms and Manipulation. Ann Bot 2000, 86, 223–235. [Google Scholar] [CrossRef]
- Gu, X.Y.; Kianian, S.F.; Foley, M.E. Seed Dormancy Imposed by Covering Tissues Interrelates to Shattering and Seed Morphological Characteristics in Weedy Rice. Crop Sci 2005, 45, 948–955. [Google Scholar] [CrossRef]
- Gu, X.Y.; Kianian, S.F.; Hareland, G.A.; Hoffer, B.L.; Foley, M.E. Genetic Analysis of Adaptive Syndromes Interrelated with Seed Dormancy in Weedy Rice (Oryza Sativa). Theoretical and Applied Genetics 2005, 110, 1108–1118. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, D.; Li, C.; Luo, J.; Zhu, B.F.; Zhu, J.; Shangguan, Y.; Wang, Z.; Sang, T.; Zhou, B.; et al. Genetic Control of Seed Shattering in Rice by the APETALA2 Transcription Factor Shattering Abortion1. Plant Cell 2012, 24, 1034–1048. [Google Scholar] [CrossRef]
- Lee, G.H.; Kang, I.K.; Kim, K.M. Mapping of Novel QTL Regulating Grain Shattering Using Doubled Haploid Population in Rice (Oryza Sativa L.). Int J Genomics 2016, 2016. [Google Scholar] [CrossRef]
- Zhang, L. Bin; Zhu, Q.; Wu, Z.Q.; Ross-Ibarra, J.; Gaut, B.S.; Ge, S.; Sang, T. Selection on Grain Shattering Genes and Rates of Rice Domestication. New Phytologist 2009, 184, 708–720. [Google Scholar] [CrossRef]
- Htun, T.M.; Inoue, C.; Chhourn, O.; Ishii, T.; Ishikawa, R. Effect of Quantitative Trait Loci for Seed Shattering on Abscission Layer Formation in Asian Wild Rice Oryza Rufipogon. Breed Sci 2014, 64, 199–205. [Google Scholar] [CrossRef]
- Xiong, L.Z.; Liu, ·K.D; Dai, X K.; Xu, C.G.; Zhang, Q.; Xu, C.G.; Zhang, Q. Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon, Theoretical and Applied Genetics 1999, 2, 243. [Google Scholar] [CrossRef]
- Tsujimura, Y.; Sugiyama, S.; Otsuka, K.; Htun, T.M.; Numaguchi, K.; Castillo, C.; Akagi, T.; Ishii, T.; Ishikawa, R. Detection of a Novel Locus Involved in Non-Seed-Shattering Behaviour of Japonica Rice Cultivar, Oryza Sativa ‘Nipponbare. ’ Theoretical and Applied Genetics 2019, 132, 2615–2623. [Google Scholar] [CrossRef]
- Subudhi, P.K.; Singh, P.K.; Deleon, T.; Parco, A.; Karan, R.; Biradar, H.; Cohn, M.A.; Sasaki, T. Mapping of Seed Shattering Loci Provides Insights into Origin of Weedy Rice and Rice Domestication. In Proceedings of the Journal of Heredity 2014 2014, 105, 276–287. [Google Scholar] [CrossRef]
- Konishi, S.; Izawa, T,; Lin, S Y,; Ebana, K,; Fukuta, Y,; Sasaki, T,; Yano M. An SNP Caused Loss of Seed Shattering During Rice Domestication. Science 2006, 312, 1392–1396. [Google Scholar] [CrossRef]
- Ji, H.; Kim, S.R.; Kim, Y.H.; Kim, H.; Eun, M.Y.; Jin, I.D.; Cha, Y.S.; Yun, D.W.; Ahn, B.O.; Lee, M.C.; et al. Inactivation of the CTD Phosphatase-like Gene OsCPL1 Enhances the Development of the Abscission Layer and Seed Shattering in Rice. Plant Journal 2010, 61, 96–106. [Google Scholar] [CrossRef]
- Li, C,; Zhou, A,; Sang, T. Rice Domestication by Reducing Shattering. Science 2006, 311, 1936–1939. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Griffith, M.E.; Li, X.; Zhu, Z.; Tan, L.; Fu, Y.; Zhang, W.; Wang, X.; Xie, D.; Sun, C. Origin of Seed Shattering in Rice (Oryza Sativa L. ). Planta 2007, 226, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Xia, Q.Y.; Jiang, X.Q.; Hu, W.; Ye, X.X.; Huang, Q.X.; Yu, S. Bin; Guo, A.P.; Lu, B.R. Reducing Seed Shattering in Weedy Rice by Editing SH4 and QSH1 Genes: Implications in Environmental Biosafety and Weed Control through Transgene Mitigation. Biology (Basel) 2022, 11, 1823. [Google Scholar] [CrossRef] [PubMed]
- Vigueira, C.C.; Li, W.; Olsen, K.M. The Role of Bh4 in Parallel Evolution of Hull Colour in Domesticated and Weedy Rice. J Evol Biol 2013, 26, 1738–1749. [Google Scholar] [CrossRef] [PubMed]
- Vigueira, C.C.; Qi, X.; Song, B.K.; Li, L.F.; Caicedo, A.L.; Jia, Y.; Olsen, K.M. Call of the Wild Rice: Oryza Rufipogon Shapes Weedy Rice Evolution in Southeast Asia. Evol Appl 2019, 12, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Thurber, C.S.; Reagon, M.; Gross, B.L.; Olsen, K.M.; Jia, Y.; Caicedo, A.L. Molecular Evolution of Shattering Loci in U.S. Weedy Rice. Mol Ecol 2010, 19, 3271–3284. [Google Scholar] [CrossRef]
- Song, B.K.; Chuah, T.S.; Tam, S.M.; Olsen, K.M. Malaysian Weedy Rice Shows Its True Stripes: Wild Oryza and Elite Rice Cultivars Shape Agricultural Weed Evolution in Southeast Asia. Mol Ecol 2014, 23, 5003–5017. [Google Scholar] [CrossRef]
- Huang, Z.; Kelly, S.; Matsuo, R.; Li, L.F.; Li, Y.; Olsen, K.M.; Jia, Y.; Caicedo, A.L. The Role of Standing Variation in the Evolution of Weedines Traits in South Asian Weedy Rice (Oryza Spp.). G3: Genes, Genomes, Genetics 2018, 8, 3679–3690. [Google Scholar] [CrossRef]
- Wedger, M.J.; Pusadee, T.; Wongtamee, A.; Olsen, K.M. Discordant Patterns of Introgression Suggest Historical Gene Flow into Thai Weedy Rice from Domesticated and Wild Relatives. Journal of Heredity 2019, 110, 601–609. [Google Scholar] [CrossRef]
- Thurber, C.S.; Reagon, M.; Olsen, K.M.; Jia, Y.; Caicedo, A.L. The Evolution of Flowering Strategies in Us Weedy Rice. Am J Bot 2014, 101, 1737–1747. [Google Scholar] [CrossRef]
- Shivrain, V.K.; Burgos, N.R.; Scott, R.C.; Gbur, E.E.; Estorninos, L.E.; McClelland, M.R. Diversity of Weedy Red Rice (Oryza Sativa L.) in Arkansas, U.S.A. in Relation to Weed Management. Crop Protection 2010, 29, 721–730. [Google Scholar] [CrossRef]
- Reagon, M.; Thurber, C.S.; Olsen, K.M.; Jia, Y.; Caicedo, A.L. The Long and the Short of It: SD1 Polymorphism and the Evolution of Growth Trait Divergence in U.S. Weedy Rice. Mol Ecol 2011, 20, 3743–3756. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Young, J.C.; Rabalski, I. Anthocyanin Composition in Black, Blue, Pink, Purple, and Red Cereal Grains. J Agric Food Chem 2006, 54, 4696–4704. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.Y.; Foley, M.E.; Horvath, D.P.; Anderson, J. V.; Feng, J.; Zhang, L.; Mowry, C.R.; Ye, H.; Suttle, J.C.; Kadowaki, K.I.; et al. Association between Seed Dormancy and Pericarp Color Is Controlled by a Pleiotropic Gene That Regulates Abscisic Acid and Flavonoid Synthesis in Weedy Red Rice. Genetics 2011, 189, 1515–1524. [Google Scholar] [CrossRef] [PubMed]
- Nagao, S.; Takahashi, M.-E.; Miyamoto, T. GENETICAL STUDIES ON RICE PLANT, XXI. BIOCHEMICAL STUDIES ON RED RICE PIGMENTATION. The Japanese Journal of Genetics 1957, 32, 124–128. [Google Scholar] [CrossRef]
- Sweeney, M.T.; Thomson, M.J.; Pfeil, B.E.; McCouch, S. Caught Red-Handed: Rc Encodes a Basic Helix-Loop-Helix Protein Conditioning Red Pericarp in Rice. Plant Cell 2006, 18, 283–294. [Google Scholar] [CrossRef]
- Furukawa, T.; Maekawa, M.; Oki, T.; Suda, I.; Iida, S.; Shimada, H.; Takamure, I.; Kadowaki, K.I. The Rc and Rd Genes Are Involved in Proanthocyanidin Synthesis in Rice Pericarp. Plant Journal 2007, 49, 91–102. [Google Scholar] [CrossRef]
- Lee, D.; Lupotto, E.; Powell, W. G-String Slippage Turns White Rice Red. Genome 2009, 52, 490–493. [Google Scholar] [CrossRef]
- Brooks, S.A.; Yan, W.; Jackson, A.K.; Deren, C.W. A Natural Mutation in Rc Reverts White-Rice-Pericarp to Red and Results in a New, Dominant, Wild-Type Allele: Rc-g. Theoretical and Applied Genetics 2008, 117, 575–580. [Google Scholar] [CrossRef]
- Cui, Y.; Song, B.K.; Li, L.F.; Li, Y.L.; Huang, Z.; Caicedo, A.L.; Jia, Y.; Olsen, K.M. Little White Lies: Pericarp Color Provides Insights into the Origins and Evolution of Southeast Asian Weedy Rice. G3: Genes, Genomes, Genetics 2016, 6, 4105–4114. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Imran, M.; Abu-Izneid, T. ; Iahtisham-Ul-Haq; Patel, S., Pan, X., Naz, S., Sanches Silva, A., Saeed, F., Eds.; Rasul Suleria, H.A. Proanthocyanidins: A Comprehensive Review. Biomedicine and Pharmacotherapy 2019, 116 108999, doi.org/10.1016/j.biopha.2019. [Google Scholar]
- Grassi, D.; Necozione, S.; Lippi, C.; Croce, G.; Valeri, L.; Pasqualetti, P.; Desideri, G.; Blumberg, J.B.; Ferri, C. Cocoa Reduces Blood Pressure and Insulin Resistance and Improves Endothelium-Dependent Vasodilation in Hypertensives. Hypertension 2005, 46, 398–405. [Google Scholar] [CrossRef]
- Heiss, C.; Kleinbongard, P.; Dejam, A.; Perré, S.; Schroeter, H.; Sies, H.; Kelm, M. Acute Consumption of Flavanol-Rich Cocoa and the Reversal of Endothelial Dysfunction in Smokers. J Am Coll Cardiol 2005, 46, 1276–1283. [Google Scholar] [CrossRef]
- Taubert, D.; Roesen, R.; Lehmann, C.; Jung, N.; Schö, E. Effects of Low Habitual Cocoa Intake on Blood Pressure and Bioactive Nitric Oxide A Randomized Controlled Trial. Jama 2007, 1, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.Y.; Sun, J.; Chang, H.L.; Zheng, H.L.; Wang, J.G.; Liu, H.L.; Yang, L.M.; Zhao, H.W.; Zou, D.T. QTL Mapping for Anthocyanin and Proanthocyanidin Content in Red Rice. Euphytica 2017, 213. [Google Scholar] [CrossRef]
- Lu, B.R.; Li, J.; Lee, D.; Xu, H.; Zhang, L.; Dongchen, W.; Xiong, H.; Zhu, Q.; Zhang, X.; Chen, L. Genetic Differentiation of Asian Weedy Rice Revealed with InDel Markers. Crop Sci 2014, 54, 2499–2508. [Google Scholar] [CrossRef]
- Mao-Bai, L.; Hui, W.; Li-Ming, C. Evaluation of Population Structure, Genetic Diversity and Origin of Northeast Asia Weedy Rice Based on Simple Sequence Repeat Markers. Rice Sci 2015, 22, 180–188. [Google Scholar] [CrossRef]
- Cao, Q.; Lu, B.R.; Xia, H.; Rong, J.; Sala, F.; Spada, A.; Grassi, F. Genetic Diversity and Origin of Weedy Rice (Oryza Sativa f. Spontanea) Populations Found in North-Eastern China Revealed by Simple Sequence Repeat (SSR) Markers. Ann Bot 2006, 98, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Londo, J.P.; Schaal, B.A. Origins and Population Genetics of Weedy Red Rice in the USA. Mol Ecol 2007, 16, 4523–4535. [Google Scholar] [CrossRef]
- Grimm, A.; Fogliatto, S.; Nick, P.; Ferrero, A.; Vidotto, F. Microsatellite Markers Reveal Multiple Origins for Italian Weedy Rice. Ecol Evol 2013, 3, 4786–4798. [Google Scholar] [CrossRef]
- Teresa Federici, M.; Vaughan, D.; Tomooka, N.; Kaga, A.; Wang Wang, X.; Doi, K.; Francis, M.; Zorrilla, G. Analysis of Uruguayan Weedy Rice Genetic Diversity Using AFLP Molecular Markers. Electronic Journal of Biotechnology 2001, 4, 5–6. [Google Scholar] [CrossRef]
- Li, L.F.; Li, Y.L.; Jia, Y.; Caicedo, A.L.; Olsen, K.M. Signatures of Adaptation in the Weedy Rice Genome. Nat Genet 2017, 49, 811–814. [Google Scholar] [CrossRef]
- He, Q.; Kim, K.W.; Park, Y.J. Population Genomics Identifies the Origin and Signatures of Selection of Korean Weedy Rice. Plant Biotechnol J 2017, 15, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Shivrain, V.K.; Burgos, N.R.; Agrama, H.A.; Lawton-Rauh, A.; Lu, B.; Sales, M.A.; Boyett, V.; Gealy, D.R.; Moldenhauer, K.A.K. Genetic Diversity of Weedy Red Rice (Oryza Sativa) in Arkansas, USA. Weed Res 2010, 50, 289–302. [Google Scholar] [CrossRef]
- Jia, Y,; Jia, M.H. Physiological, Ecological and Genetic Interactions of Rice with Harmful Microbes. In Cereal Grains IntechOpen 2021, 2.
- Zhao, H.; Wang, X.; Jia, Y.; Minkenberg, B.; Wheatley, M.; Fan, J.; Jia, M.H.; Famoso, A.; Edwards, J.D.; Wamishe, Y.; et al. The Rice Blast Resistance Gene Ptr Encodes an Atypical Protein Required for Broad-Spectrum Disease Resistance. Nat Commun 2018, 9. [Google Scholar] [CrossRef]
- Liu, Y.; Qi, X.; Gealy, D.R.; Olsen, K.M.; Caicedo, A.L.; Jia, Y. QTL Analysis for Resistance to Blast Disease in U.S. Weedy Rice. Molecular Plant-Microbe Interactions 2015, 28, 834–844. [Google Scholar] [CrossRef] [PubMed]
- Goad, D.M.; Jia, Y.; Gibbons, A.; Liu, Y.; Gealy, D.; Caicedo, A.L.; Olsen, K.M. Identification of Novel QTL Conferring Sheath Blight Resistance in Two Weedy Rice Mapping Populations. Rice 2020, 13, 1–10. [Google Scholar] [CrossRef]
- Lee, S.; Jia, Y.; Jia, M.; Gealy, D.R.; Olsen, K.M.; Caicedo, A.L. Molecular Evolution of the Rice Blast Resistance Gene Pi-Ta in Invasive Weedy Rice in the USA. PLoS One 2011, 6. [Google Scholar] [CrossRef]
- Bryan, G.T.; Wu, K.-S.; Farrall, L.; Jia, Y.; Hershey, H.P.; Mcadams, S.A.; Faulk, K.N.; Donaldson, G.K.; Tarchini, R.; Valent, B. A Single Amino Acid Difference Distinguishes Resistant and Susceptible Alleles of the Rice Blast Resistance Gene Pi-Ta. The plant cell 2000, 12, 2033–2045. [Google Scholar] [CrossRef]
- Jia,Y,; McAdams, S. A,; Bryan, G.T,; Hershey, H.P,; Valent, B. Direct Interaction of Resistance Gene and Avirulence Gene Products Confers Rice Blast Resistance. EMBO J 2000, 19, 4004–4014. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
