Submitted:
18 June 2023
Posted:
21 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Design, Participants and Data Collection
2.2. Measurements and Methods
2.3. Data Analysis
3. Results
3.1. Variations among Serum Leptin, TNF-α, Testosterone and Other Variables in Hypertensive and Overweight-related Hypertensive Men
3.2. Association of Serum Leptin with Other Variables in Hypertensive and Overweight-related Hypertensive Men
3.3. Association of Serum TNF-alpha with Other Variables in Hypertensive and Overweight-related Hypertensive Men
3.4. Association of Serum Testosterone with Other Variables in Hypertensive and Overweight-related Hypertensive Men
3.5. Association of Serum Interleukin-6 with Total Cholesterol in Hypertensive and Overweight-related Hypertensive Men
4. Discussion
5. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgement
Conflicts of Interest
Consent for Publication
List of Abbreviations
| ANOVA: | Analysis of variance |
| BMI: | Body mass index |
| BP: | Blood pressure |
| BW: | Body weight |
| CHD: | Coronary heart disease |
| CVD: | Cardiovascular disease |
| DBP: | Diastolic blood pressure |
| DM: | Diabetes mellitus |
| ELISA: | Enzyme-linked immunosorbent assay |
| hCG: | Human chorionic gonadotropin |
| HNW: | High normal weight |
| HOW: | High overweight |
| HT: | Hypertension/ hypertensive |
| IL-6: | Interleukin-6 |
| Lep: | Leptin |
| LH: | Luteinizing hormone |
| LNW: | Low normal weight |
| LOW: | Low overweight |
| MNW: | Medium normal weight |
| MOW: | Medium overweight |
| n: | Number of subjects/samples |
| NC: | Normal control/controls |
| NHT: | Non-hypertensive |
| NO: | Nitric oxide |
| NT: | Normotensive/ normotensives |
| NW: | Normal weight |
| OHT: | Overweight hypertensive/ hypertensives |
| OW: | Overweight |
| PVAT: | Perivascular adipose tissue |
| ROS: | Radical oxygen species |
| SBP: | Systolic blood pressure |
| SD: | Standard deviation |
| ST: | Serum testosterone |
| TC: | Total cholesterol |
| TNF-α: | Tumor necrosis factor-alpha |
| TPE: | Therapeutic patient education |
References
- Kearney, P.M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P.K.; He, J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005, 365, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Jaacks, L.M.; Vandevijvere, S.; Pan, A.; McGowan, C.J.; Wallace, C.; Imamura, F.; Mozaffarian, D.; Swinburn, B.; Ezzati, M. The obesity transition: stages of the global epidemic. Lancet Diabetes Endocrinol. 2019, 7, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.E.; do Carmo, J.M.; da Silva, A.A.; Wang, Z.; Hall, M.E. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015, 16, 991–1006. [Google Scholar] [CrossRef]
- Seravalle, G.; Grassi, G. Obesity and hypertension. Pharmacol Res. 2017, 122, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Fantin, F.; Giani, A.; Zoico, E.; Rossi, AP.; Mazzali, G.; Zamboni, M. Weight Loss and Hypertension in Obese Subjects. Nutrients. 2019, 11, 1667. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.W.; D’Agostino, R.B.; Sullivan, L.; Parise, H.; Kannel, W.B. Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch Intern Med. 2002, 162, 1867–1872. [Google Scholar] [CrossRef]
- Feng, R.N.; Zhao, C.; Wang, C.; Niu, Y.C.; Li, K.; Guo, F.C.; Li, S.T.; Sun, C.H; Li, Y. BMI is strongly associated with hypertension, and waist circumference is strongly associated with type 2 diabetes and dyslipidemia, in northern Chinese adults. J Epidemiol. 2012, 22, 317–323. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Z.; Dong, B.; Song, Y.; Hu, P.; Zhang, B. Quantifying the relationships of blood pressure with weight, height and body mass index in Chinese children and adolescents. J Paediatr Child Health. 2012, 48, 413–418. [Google Scholar] [CrossRef]
- Linhart, C.; Tukana, I.; Lin, S.; Taylor, R.; Morrell, S.; Vatucawaqa, P.; Magliano, D.; Zimmet, P. Continued increases in hypertension over three decades in Fiji, and the influence of obesity. J Hypertens. 2016, 34, 402–409. [Google Scholar] [CrossRef]
- Kannel, W.B. Blood pressure as a cardiovascular risk factor: prevention and treatment. JAMA. 1996, 275, 1571–1576. [Google Scholar] [CrossRef]
- Hubert, H.B.; Feinleib, M.; McNamara, P.M.; Castelli, W.P. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983, 67, 968–977. [Google Scholar] [CrossRef] [PubMed]
- Tsujimoto, T.; Sairenchi, T.; Iso, H.; Irie, F.; Yamagishi, K.; Tanaka, K.; Muto, T.; Ota, H. Impact of obesity on incident hypertension independent of weight gain among nonhypertensive Japanese: the Ibaraki Prefectural Health Study (IPHS). J Hypertens. 2012, 30, 1122–1128. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Fang, Z.; Jin, Y.; Chang, W.; Huang, M.; Chen, Y.; Yao, Y. Circulating ERBB3 levels are inversely associated with the risk of overweight-related hypertension: a cross-sectional study. BMC Endocr Disord. 2021, 21, 130. [Google Scholar] [CrossRef] [PubMed]
- Cutler, J.A.; Sorlie, P.D.; Wolz, M.; Thom, T.; Fields, L.E.; Roccella, E.J. Trends in hypertension prevalence, awareness, treatment, and control rates in United States adults between 1988–1994 and 1999–2004. Hypertension. 2008, 52, 818–827. [Google Scholar] [CrossRef]
- Bramlage, P.; Pittrow, D.; Wittchen, H.U.; Kirch, W.; Boehler, S.; Lehnert, H.; Hoefler, M.; Unger, T.; Sharma, A.M. Hypertension in overweight and obese primary care patients is highly prevalent and poorly controlled. Am J Hypertens. 2004, 17, :904–910. [Google Scholar] [CrossRef] [PubMed]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet. 2017, 389, 37–55. [Google Scholar] [CrossRef]
- Shihab, H.M.; Meoni, L.A.; Chu, A.Y.; Wang, N.Y.; Ford, D.E.; Liang, K.Y.; Gallo, J.J.; Klag, M.J. Body mass index and risk of incident hypertension over the life course: the Johns Hopkins Precursors Study. Circulation. 2012, 126, 2983–2989. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Higashino, R.; Miyaki, A.; Kumagai, H.; Choi, Y.; Akazawa, N.; Ra, S.G.; Tanabe, Y.; Eto, M.; So, R.; Tanaka, K.; et al. Effects of lifestyle modification on central blood pressure in overweight and obese men. Blood Press Monit. 2013, 18, 311–315. [Google Scholar] [CrossRef]
- Ho, A.K.; Bartels, C.M.; Thorpe, C.T.; Pandhi, N.; Smith, M.A.; Johnson, H.M. Achieving Weight Loss and Hypertension Control Among Obese Adults: A US Multidisciplinary Group Practice Observational Study. Am J Hypertens. 2016, 29, 984–991. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, WS.; Casey, D.E. Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018, 71, e127–e248. [Google Scholar] [PubMed]
- Sohail, S.; Hussain, Z.; Quratul-ain; Ashraf, S. J. Blood cholesterol and leptin levels in male smoking and non-smoking patients with diabetes mellitus. Int J Biol Res. 2013, 1, 15–18. [Google Scholar]
- Sohail, S.; Hussain, Z. Pathophysiology of ischemic disorders - Ischemia, adipocytokines and diabetes mellitus. Int J Biol Biotech. 2013, 10, 155–166. [Google Scholar]
- Serafi, A.S.; Bafail, M.A.; Hussain, Z. Role of leptin in hypertension: A short review. Int J Biol Biotech. 2016, 13, 453–458. [Google Scholar]
- Lechi, A. The obesity paradox: is it really a paradox? Hypertension. Eat Weight Disord. 2017, 22, 43–48. [Google Scholar] [CrossRef]
- Pouvreau, C.; Dayre. A.; Butkowski, E.G.; de Jong, B.; Jelinek, H.F. Inflammation and oxidative stress markers in diabetes and hypertension. J Inflamm Res. 2018, 11, 61–68. [Google Scholar] [CrossRef]
- Aminuddin, A.; Salamt, N.; Ahmad Fuad, A.F.; Chin, K.Y.; Ugusman, A.; Soelaiman, I.N.; Wan Ngah, W.Z. Vascular Dysfunction among Malaysian Men with Increased BMI: An Indication of Synergistic Effect of Free Testosterone and Inflammation. Medicina (Kaunas). 2019, 55, 575. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, D.; Shen, H.B.; Qian, S.B.; Qi, J.; Sheng, X.J. The association between body mass index and testosterone deficiency in aging Chinese men with benign prostatic hyperplasia: results from a cross-sectional study. Aging Male. 2019. [Google Scholar] [CrossRef]
- Daiber, A.; Steven, S.; Weber, A.; Shuvaev, V.V.; Muzykantov, V.R.; Laher, I.; Li, H.; Lamas, S.; Münzel, T. Targeting vascular (endothelial) dysfunction. Br J Pharmacol. 2017, 174, 1591–1619. [Google Scholar] [CrossRef]
- Grossmann, M. Hypogonadism and male obesity: focus on unresolved questions. Clin Endocrinol. (Oxf) 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Gonçalves, C.V.; Ribeiro, I.S.; Galantini, M.P.L.; Muniz, I.P.R.; Lima, P.H.B.; Santos, G.S.; da Silva, R.A.A. Inflammaging and body composition: New insights in diabetic and hypertensive elderly men. Exp Gerontol. 2022, 170, 112005. [Google Scholar] [CrossRef]
- Perticone, M.; Maio, R.; Gigliotti, S.; Arturi, F.; Succurro, E.; Sciacqua, A.; Andreozzi, F.; Sesti, G.; Perticone, F. Immuno-Mediated Inflammation in Hypertensive Patients with 1-h Post-Load Hyperglycemia. Int J Mol Sci. 2022, 23, 10891. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.Y.; Byrne, N.M.; O'Moore-Sullivan, T.; Hills, A.P.; Prins, J.B.; Marwick, T.H. Effect of weight loss due to lifestyle intervention on subclinical cardiovascular dysfunction in obesity (body mass index >30 kg/m2). Am J Cardiol. 2006, 98, 1593–1598. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.L.; Yee, B.J.; Trenell, M.I.; Magnussen, J.S.; Wang, D.; Banerjee, D.; Berend, N.; Grunstein, R.R. Changes in regional adiposity and cardio-metabolic function following a weight loss program with sibutramine in obese men with obstructive sleep apnea. J Clin Sleep Med. 2009, 5, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Alaamri, S.; Serafi, A.S.; Hussain, Z.; Alrooqi, M.M.; Bafail, M.A.; Sohail, S. Blood Pressure Correlates with Serum Leptin and Body Mass Index in Overweight Male Saudi Students. J Pers Med. 2023, 13, 828. [Google Scholar] [CrossRef]
- Keys, A.; Fidanza, F.; Karvonen, M.J.; Kimura, N.; Taylor, H.L. Indices of relative weight and obesity. J. Chronic Dis. 1972, 25, 329–343. [Google Scholar] [CrossRef]
- Shah, N.R.; Braverman, E.R. Measuring adiposity in patients: the utility of body mass index (BMI), percent body fat, and leptin. PLoS One 2012, 7, e33308. [Google Scholar] [CrossRef]
- Harakeh, S.; Kalamegam, G.; Pushparaj, P.N.; Al-Hejin, A.; Alfadul, S.M.; Al Amri, T.; Barnawi, S.; Al Sadoun, H.; Mirza, A.A.; Azhar, E. Chemokines and their association with body mass index among healthy Saudis. Saudi J Biol Sci. 2020, 7, 6–11. [Google Scholar] [CrossRef]
- Oh, S.Y.; Ryue, J.; Hsieh, C.H.; Bell, D.E. Eggs enriched in omega--3 fatty acids and alterations in lipid concentrations in plasma and lipoproteins and in blood pressure. Am J Clin Nutr. 1991, 54, 689–695. [Google Scholar] [CrossRef]
- Basile, J.N. Rationale for fixed-dose combination therapy to reach lower blood pressure goals. South Med J. 2008, 101, 918–924. [Google Scholar] [CrossRef]
- de Faria, A.P.; Modolo, R.; Fontana, V.; Moreno, H. Adipokines: novel players in resistant hypertension. J Clin Hypertens. (Greenwich) 2014, 16, 754–59. [Google Scholar] [CrossRef] [PubMed]
- Zahir, H.; Javaid, A.; Rehman, R.; Hussain, Z. Statistical concepts in biology and health sciences. J. Ayub Med Coll Abbottabad. 2014, 26, 95–97. [Google Scholar] [PubMed]
- Jołda-Mydłowska, B.; Przewłocka-Kosmala, M.; Zyśko, D.; Gajek, J.; Mazurek, W. The leptin concentration in patients with primary arterial hypertension. Pol Arch Med Wewn. 2006, 115, 18–22. [Google Scholar] [PubMed]
- Seven, E.; Husemoen, L.L.; Wachtell, K.; Ibsen, H.; Linneberg, A.; Jeppesen, J.L. Overweight, adipocytokines and hypertension: a prospective population-based study. J Hypertens. 2014, 32, 1488–1494. [Google Scholar] [CrossRef]
- Seven, E. Overweight, hypertension and cardiovascular disease: focus on adipocytokines, insulin, weight changes and natriuretic peptides. Dan Med J. 2015, 62, B5163. [Google Scholar] [PubMed]
- Kofler, S.; Nickel, T.; Weis, M. Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation. Clin Sci (Lond). 2005, 108, 205–213. [Google Scholar] [CrossRef]
- Zachariah, J.P.; Hwang, S.; Hamburg, N.M.; Benjamin, E.J.; Larson, M.G.; Levy, D.; Vita, J.A.; Sullivan, L.M.; Mitchell, G.F.; Vasan, R.S. Circulating Adipokines and Vascular Function: Cross-Sectional Associations in a Community-Based Cohort. Hypertension. 2016, 67, 294–300. [Google Scholar] [CrossRef]
- Zanoli, L.; Di Pino, A.; Terranova, V.; Di Marca, S.; Pisano, M.; Di Quattro, R.; Ferrara, V.; Scicali, R.; Rabuazzo, A.M.; Fatuzzo, P.; et al. Inflammation and ventricular-vascular coupling in hypertensive patients with metabolic syndrome. Nutr Metab Cardiovasc Dis. 2018, 28, 1222–1229. [Google Scholar] [CrossRef]
- Szasz, T.; Webb, R.C. Perivascular adipose tissue: more than just structural support. Clin Sci (Lond). 2012, 122, 1–12. [Google Scholar] [CrossRef]
- Fernández-Alfonso, M.S.; Gil-Ortega, M.; García-Prieto, C.F.; Aranguez, I.; Ruiz-Gayo, M.; Somoza, B. Mechanisms of perivascular adipose tissue dysfunction in obesity. Int J Endocrinol. 2013, 2013, 402053. [Google Scholar] [CrossRef]
- Szasz, T.; Bomfim, G.F.; Webb, R.C. The influence of perivascular adipose tissue on vascular homeostasis. Vasc Health Risk Manag. 2013, 9, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Almabrouk, T.A.; Ewart, M.A.; Salt, I.P.; Kennedy, S. Perivascular fat, AMP-activated protein kinase and vascular diseases. Br J Pharmacol. 2014, 171, 595–617. [Google Scholar] [CrossRef]
- Xia, N.; Li, H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction. Br J Pharmacol. 2017, 174, 3425–3442. [Google Scholar] [CrossRef] [PubMed]
- van Dam, A.D.; Boon, M.R.; Berbée, J.F.P.; Rensen, P.C.N.; van Harmelen, V. Targeting white, brown and perivascular adipose tissue in atherosclerosis development. Eur J Pharmacol. 2017, 816, 82–92. [Google Scholar] [CrossRef]
- Purdham, D.M.; Zou, M.X.; Rajapurohitam, V.; Karmazyn, M. Rat heart is a site of leptin production and action. Am J Physiol Heart Circ Physiol. 2004, 287, H2877–H2884. [Google Scholar] [CrossRef] [PubMed]
- Parhami, F.; Tintut, Y.; Ballard, A.; Fogelman, A.M.; Demer, L.L. Leptin enhances the calcification of vascular cells: artery wall as a target of leptin. Circ Res. 2001, 88, 954–960. [Google Scholar] [CrossRef]
- Werner, N.; Nickenig, G. From fat fighter to risk factor: the zigzag trek of leptin. Arterioscler Thromb Vasc Biol. 2004, 24, 7–9. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, S.I.; Edelstein, D.; Du, X.L.; Kaneda, Y.; Guzmán, M.; Brownlee, M. Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A. J Biol Chem. 2001, 276, 25096–25100. [Google Scholar] [CrossRef]
- Catharina, AS.; Modolo, R.; Ritter, A.; Sabbatini, A.; Correa, N.; Brunelli, V.; Fraccaro, N.; Almeida, A.; Lopes, H.; Moreno, H.; De Faria, A. [PP.05.34] metabolic syndrome-related features in controlled and resistant hypertensive subjects. J. Hypertens. 2017, 35, e128. [Google Scholar] [CrossRef]
- Grassi, G.; Seravalle, G.; Brambilla, G.; Buzzi, S.; Volpe, M.; Cesana, F.; Dell'oro, R.; Mancia, G. Regional differences in sympathetic activation in lean and obese normotensive individuals with obstructive sleep apnoea. J Hypertens. 2014, 32, 383–388. [Google Scholar] [CrossRef]
- Grassi, G.; Mark, A.; Esler, M. The sympathetic nervous system alterations in human hypertension. Circ Res. 2015, 116, 976–990. [Google Scholar] [CrossRef] [PubMed]
- Grassi, G.; Pisano, A.; Bolignano, D.; Seravalle, G.; D'Arrigo, G.; Quarti-Trevano, F.; Mallamaci, F.; Zoccali, C.; Mancia, G. Sympathetic Nerve Traffic Activation in Essential Hypertension and Its Correlates: Systematic Reviews and Meta-Analyses. Hypertension. 2018, 72, 483–491. [Google Scholar] [CrossRef]
- Schütten, M.T.; Houben, A.J.; de Leeuw, P.W.; Stehouwer, C.D. The Link Between Adipose Tissue Renin-Angiotensin-Aldosterone System Signaling and Obesity-Associated Hypertension. Physiology (Bethesda). 2017, 32, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Fonkoue, I.T.; Le, N.A.; Kankam, M.L.; DaCosta, D.; Jones, T.N.; Marvar, P.J.; Park, J. Sympathoexcitation and impaired arterial baroreflex sensitivity are linked to vascular inflammation in individuals with elevated resting blood pressure. Physiol Rep. 2019, 7, e14057. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Mukheja, S.; Varma, S.; Kalra, H.S.; Khosa, B.S.; Vohra, K. Serum progranulin/tumor necrosis factor-α ratio as independent predictor of systolic blood pressure in overweight hypertensive patients: a cross-sectional study. Egypt Heart J. 2020, 72, 25. [Google Scholar] [CrossRef]
- Virdis, A.; Dell'Agnello, U.; Taddei, S. Impact of inflammation on vascular disease in hypertension. Maturitas. 2014, 78, 179–183. [Google Scholar] [CrossRef]
- Maachi, M.; Piéroni, L.; Bruckert. E.; Jardel. C.; Fellahi, S.; Hainque, B.; Capeau, J.; Bastard, J.P. Systemic low-grade inflammation is related to both circulating and adipose tissue TNFalpha, leptin and IL-6 levels in obese women. Int J Obes Relat Metab Disord. 2004, 28, 993–997. [Google Scholar] [CrossRef] [PubMed]
- Olson, N.C.; Callas, P.W.; Hanley, A.J.; Festa, A.; Haffner, S.M.; Wagenknecht, L.E.; Tracy, R.P. Circulating levels of TNF-α are associated with impaired glucose tolerance, increased insulin resistance, and ethnicity: the Insulin Resistance Atherosclerosis Study. J Clin Endocrinol Metab. 2012, 97, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Small, H.Y.; Migliarino, S.; Czesnikiewicz-Guzik, M.; Guzik, T.J. Hypertension: Focus on autoimmunity and oxidative stress. Free Radic Biol Med. 2018, 125, 104–115. [Google Scholar] [CrossRef]
- Aladhami, A.K.; Unger, C.A.; Ennis, S.L.; Altomare, D.; Ji, H.; Hope, M.C. 3rd.; Velázquez, K.T.; Enos, R.T. Macrophage tumor necrosis factor-alpha deletion does not protect against obesity-associated metabolic dysfunction. FASEB J. 2021, 35, e21665. [Google Scholar] [CrossRef]
- Perticone, M.; Zito, R.; Miceli, S.; Pinto, A.; Suraci, E.; Greco, M.; Gigliotti, S.; Hribal, M.L.; Corrao, S.; Sesti, G.; Perticone, F. Immunity, Inflammation and Heart Failure: Their Role on Cardiac Function and Iron Status. Front Immunol. 2019, 10, 2315. [Google Scholar] [CrossRef]
- Geovanini, G.R.; Libby, P. Atherosclerosis and inflammation: overview and updates. Clin Sci (Lond). 2018, 132, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Raggi, P.; Genest, J.; Giles, J.T.; Rayner, K.J.; Dwivedi, G.; Beanlands, R.S.; Gupta, M. Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis. 2018, 276, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Ruparelia, N.; Choudhury, R. Inflammation and atherosclerosis: what is on the horizon? Heart. 2020, 106, 80–85. [Google Scholar] [CrossRef]
- Libby, P. The changing landscape of atherosclerosis. Nature. 2021, 592, 524–533. [Google Scholar] [CrossRef]
- Roubille, C.; Richer, V.; Starnino, T.; McCourt, C.; McFarlane, A.; Fleming, P.; Siu, S.; Kraft, J.; Lynde, C.; Pope, J.; et al. The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2015, 74, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xie, F.; Yun, H.; Chen, L.; Muntner, P.; Levitan, E.B.; Safford, M.M.; Kent, S.T.; Osterman, M.T.; Lewis, J.D.; et al. Comparative effects of biologics on cardiovascular risk among older patients with rheumatoid arthritis. Ann Rheum Dis. 2016, 75, 1813–1818. [Google Scholar] [CrossRef]
- Tedgui, A.; Mallat, Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 2006, 86, 515–581. [Google Scholar] [CrossRef]
- Libby, P.; Loscalzo, J.; Ridker, P.M.; Farkouh, ME.; Hsue, P.Y.; Fuster, V.; Hasan, A.A.; Amar, S. Inflammation, Immunity, and Infection in Atherothrombosis: JACC Review Topic of the Week. J Am Coll Cardiol. 2018, 72, 2071–2081. [Google Scholar] [CrossRef]
- Wolf, D.; Ley, K. Immunity and Inflammation in Atherosclerosis. Circ Res. 2019, 124, 315–327. [Google Scholar] [CrossRef]
- Corona, G.; Rastrelli, G.; Monami, M.; Guay, A.; Buvat, J.; Sforza, A.; Forti, G.; Mannucci, E.; Maggi, M. Hypogonadism as a risk factor for cardiovascular mortality in men: a meta-analytic study. Eur J Endocrinol. 2011, 165, 687–701. [Google Scholar] [CrossRef]
- Webb, C.M.; McNeill, J.G.; Hayward, C.S.; de Zeigler, D.; Collins, P. Effects of testosterone on coronary vasomotor regulation in men with coronary heart disease. Circulation. 1999, 100, 1690–1696. [Google Scholar] [CrossRef]
- English, K.M.; Steeds, R.P.; Jones, T.H.; Diver, M.J.; Channer, K.S. Low-dose transdermal testosterone therapy improves angina threshold in men with chronic stable angina: A randomized, double-blind, placebo-controlled study. Circulation. 2000, 102, 1906–1911. [Google Scholar] [CrossRef]
- Mathur, A.; Malkin, C.; Saeed, B.; Muthusamy, R.; Jones, T.H.; Channer, K. Long-term benefits of testosterone replacement therapy on angina threshold and atheroma in men. Eur J Endocrinol. 2009, 161, 443–449. [Google Scholar] [CrossRef]
- Malkin, C.J.; Pugh, P.J.; Morris, P.D.; Kerry, K.E.; Jones, R.D.; Jones, T.H.; Channer, K.S. Testosterone replacement in hypogonadal men with angina improves ischaemic threshold and quality of life. Heart. 2004, 90, 871–876. [Google Scholar] [CrossRef]
- Foresta, C.; Di Mambro, A.; Pagano, C.; Garolla, A.; Vettor, R.; Ferlin, A. Insulin-like factor 3 as a marker of testicular function in obese men. Clin Endocrinol (Oxf). 2009, 71, 722–726. [Google Scholar] [CrossRef]
- Kumagai, H.; Miyaki, A.; Higashino, R.; Akazawa, N.; Choi, Y. Lifestyle modification-induced increase in serum testosterone and SHBG decreases arterial stiffness in overweight and obese men. Artery Res. 2014, 8, 80–87. [Google Scholar] [CrossRef]
- Saboor Aftab, S.A.; Kumar, S.; Barber, T.M. The role of obesity and type 2 diabetes mellitus in the development of male obesity-associated secondary hypogonadism. Clin Endocrinol (Oxf). 2013, 78, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.M.; Jones, T.H. Testosterone and obesity. Obes Rev. 2015, 16, 581–606. [Google Scholar] [CrossRef] [PubMed]
- Pitteloud, N.; Dwyer, A.A.; DeCruz, S.; Lee, H.; Boepple, P.A.; Crowley, W.F. Jr.; Hayes, F.J. ; The relative role of gonadal sex steroids and gonadotropin-releasing hormone pulse frequency in the regulation of follicle-stimulating hormone secretion in men. J Clin Endocrinol Metab. 2008, 93, 2686–2692. [Google Scholar] [CrossRef] [PubMed]
- Dandona, P.; Dhindsa, S. Update: Hypogonadotropic hypogonadism in type 2 diabetes and obesity. J Clin Endocrinol Metab. 2011, 96, 2643–2651. [Google Scholar] [CrossRef]
- Lamm, S.; Chidakel, A.; Bansal, R. Obesity and hypogonadism. Urol Clin North Am. 2016, 43, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Mulhall, J.P.; Trost, L.W.; Brannigan, R.E.; Kurtz, E.G.; Redmon, J.B.; Chiles, K.A.; Lightner, D.J.; Miner, M.M.; Murad, M.H.; Nelson, C.J.; et al. Evaluation and Management of Testosterone Deficiency: AUA Guideline. J Urol. 2018, 200, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, E.J.; Gianatti, E.; Strauss, B.J.; Wentworth, J.; Lim-Joon, D.; Bolton, D.; Zajac, J.D.; Grossmann, M. Increase in visceral and subcutaneous abdominal fat in men with prostate cancer treated with androgen deprivation therapy. Clin Endocrinol (Oxf). 2011, 74, 377–383. [Google Scholar] [CrossRef]
- Isidori, A.M.; Caprio, M.; Strollo, F.; Moretti, C.; Frajese, G.; Isidori, A.; Fabbri, A. Leptin and androgens in male obesity: evidence for leptin contribution to reduced androgen levels. J Clin Endocrinol Metab. 1999, 84, 3673–3680. [Google Scholar]
- Lafontan, M. Fat cells: afferent and efferent messages define new approaches to treat obesity. Annu Rev Pharmacol Toxicol. 2005, 45, 119–146. [Google Scholar] [CrossRef] [PubMed]
- Cinti, S.; Mitchell, G.; Barbatelli, G.; Murano, I.; Ceresi, E.; Faloia, E.; Wang, S.; Fortier, M.; Greenberg, A.S.; Obin, M.S. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005, 46, 2347–2355. [Google Scholar] [CrossRef]
- Karastergiou, K.; Mohamed-Ali, V. The autocrine and paracrine roles of adipokines. Mol Cell Endocrinol. 2010, 318, 69–78. [Google Scholar] [CrossRef]
- Ellulu, M.S.; Khaza'ai, H.; Abed, Y.; Rahmat, A.; Ismail, P.; Ranneh, Y. Role of fish oil in human health and possible mechanism to reduce the inflammation. Inflammopharmacology. 2015, 23, 79–89. [Google Scholar] [CrossRef]
- Smith, J.C.; Bennett, S.; Evans, L.M.; Kynaston, H.G.; Parmar, M.; Mason, M.D.; Cockcroft, J.R.; Scanlon, M.F.; Davies, J.S. The effects of induced hypogonadism on arterial stiffness, body composition, and metabolic parameters in males with prostate cancer. J Clin Endocrinol Metab. 2001, 86, 4261–4267. [Google Scholar] [CrossRef]
| Variables | Normal Weight, Hypertensive and Overweight hypertensive Subjects (n: 292) | P-value® | ||
|---|---|---|---|---|
| NC | HT | OHT | ||
| Number of subjects (n) | 98 | 97 | 97 | - |
| Sex (male) | 98 | 97 | 97 | - |
| Age (years) | 55.37±2.86 | 55.35±2.82 | 55.36±2.78 | NS |
| Age range (years) | 51-60 | 51-60 | 51-60 | - |
| BMI (kg/m2) | 24.04±0.60 | 24.03±0.61 | 29.06±0.58^3, $3 | <0.001 |
| BMI range (kg/m2) | 23-24.9 | 23-24.9 | 28-29.9 | - |
| TC (mg/dl) | 177.06±9.49 | 189.32±13.65#3 | 194.16±12.37^3, $1 | <0.001 |
| IL-6 ((pg/ml) | 6.46±6.23 | 7.88±6.03 | 10.90±8.63^3, $1 | <0.001 |
| TNF-α (pg/ml) | 4.69±2.10 | 8.25±3.57#3 | 11.71±5.07^3, $3 | <0.001 |
| ST (mg/dl) | 417.96±175.28 | 378.09±179.41 | 345.36±155.80^1 | <0.05 |
| Leptin (ng/mL) | 5.75±2.27 | 10.02±6.35$3 | 13.13±7.26^3, $2 | <0.001 |
| Variables | Coefficient of Determination (R2) for the Correlation of Serum Leptin with Other Variables | ||
|---|---|---|---|
| NC (n: 98) | HT (n:97) | OHT (n:97) | |
| TNF-α | 0.62 | 0.69 | 0.91 |
| ST | 0.34 | 0.27 | 0.34 |
| IL-6 | 0.37 | 0.72 | 0.73 |
| TC | 0.07 | 0.09 | 0.12 |
| Variables | Coefficient of Determination (R2) for the Correlation of Serum TNF-alpha with Other Variables | ||
|---|---|---|---|
| NC | HT | OHT | |
| ST | 0.39 | 0.48 | 0.37 |
| IL-6 | 0.38 | 0.50 | 0.63 |
| TC | 0.12 | 0.13 | 0.11 |
| Variables | Coefficient of Determination (R2) for the Correlation of Serum Testosterone (ST) with Other Variables | ||
|---|---|---|---|
| NC | HT | OHT | |
| IL-6 | 0.11 | 0.21 | 0.18 |
| TC | 0.09 | 0.010 | 0.01 |
| Variable | Coefficient of Determination (R2) for Correlation | ||
|---|---|---|---|
| Serum IL-6 | |||
| NC | HT | OHT | |
| TC | 0.13 | 0.11 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
