Submitted:
14 June 2023
Posted:
15 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methods
- technologies and tools for citywide geodata collection and management (cloud computing, sensor networks, location-based services, geo-visualization, Geographic Information Systems, mapping, the Internet of Things (IoT), data warehouses, etc.)
- technologies and tools for public participation (crowdsourcing platforms, web-based participatory tools, social media, Living Labs, etc.), and
- sectoral applications (for example, energy, transport, environment, etc.)
3. Results and Discussion
3.1. Emerging and disruptive technologies for improving disaster resilience in Smart Cities
3.1.1. Technologies and tools for citywide geodata collection and management
- Cloud computing
- Internet of Things
- Bigdata
- Geo-visualisation and Geographical Information Systems (GIS)
- Sensor networks
- Grid technologies
- Wireless Wide Area Communication and Wireless Local Area Networks
- Location-Based Services (LBS)
- Geographical positioning techniques
- Blockchain
- Data Warehouses
- Digital twins
- Unmanned Aerial Vehicle(UAV)
- Cyber-Physical Systems (CPS)
- Building Information Modelling (BIM)
- Smart Disaster Response Systems (Smart DRS)
- Early warning systems
- Virtual Reality (VR), Augmented Reality (AR), And Mixed Reality (MR)
- Artificial Intelligence and machine learning
3.1.2. Artificial intelligence helps to reduce the cascading effects of the destruction of critical infrastructures and allows rapid recovery [97]. Artificial intelligence (AI) applications, including tracking and mapping, remote sensing techniques, geospatial analysis, robotics, machine learning, drone technology, telecom and network services, smart city urban planning, accident and hot spot analysis, environmental impact analysis, and transportation planning, are the technological components of societal change which drives the societal response to hazards and disasters [98]. Accordingly, machine learning and smart city planning are subsets of artificial intelligence. Studies have found prediction and forecasting, early warning systems, resilient infrastructure, financial instruments, and resilience planning as the AI application areas in disaster resilience [99]. With the speed and better ability to analyse large volumes of disaster related data (compared to humans), AI can generate acceptable forecasts to deploy resources and develop disaster plans [100].
- Crowdsourcing platforms
- Volunteered Geographical Information (VGI)
- Web-based participatory tools
- Social media
- Living Labs
3.2. Classification of technologies
3.2.1. Impact on the society
3.2.2. Adoption speed by Smart Cities
3.2.3. Maturity of the technology
3.2.4. Capabilities offered to the community.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. The World’s Cities in 2018—Data Booklet; Department of Economic and Social Affairs, Population Division. 2018.
- Chourabi, H.; Nam, T.; Walker, S.; Gil-Garcia, J.R.; Mellouli, S.; Nahon, K.; Pardo, T.A.; Scholl, H.J. Understanding Smart Cities: An Integrative Framework. In Proceedings of the 2012 45th Hawaii International Conference on System Sciences, 4-7 Jan. 2012; pp. 2289–2297. [Google Scholar]
- Marek, L.; Campbell, M.; Bui, L. Shaking for innovation: The (re)building of a (smart) city in a post disaster environment. Cities 2017, 63, 41–50. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Seo, J. Cyber attack scenarios on smart city and their ripple effects. In Proceedings of the 2019 International Conference on Platform Technology and Service (PlatCon), 28-30 Jan. 2019; pp. 1–5. [Google Scholar]
- Cowley, R.; Caprotti, F.; Ferretti, M.; Zhong, C. Ordinary Chinese smart cities: the case of Wuhan. In Inside smart cities; Routledge: 2018; pp. 45-64.
- Hu, X.; Li, L.; Dong, K. What matters for regional economic resilience amid COVID-19? Evidence from cities in Northeast China. Cities 2022, 120, 103440. [Google Scholar] [CrossRef] [PubMed]
- Samarakkody, A.; Amaratunga, D.; Haigh, R. Characterising Smartness to Make Smart Cities Resilient. Sustainability 2022, 14, 12716. [Google Scholar] [CrossRef]
- MacAskill, K.; Guthrie, P. Multiple Interpretations of Resilience in Disaster Risk Management. Procedia Economics and Finance 2014, 18, 667–674. [Google Scholar] [CrossRef]
- Bansal, N.; Mukherjee, M.; Gairola, A. Smart Cities and Disaster Resilience. Singapore, 2017; pp. 109-122.
- Rauniyar, A.; Engelstad, P.; Feng, B.; Thanh, D.V. Crowdsourcing-Based Disaster Management Using Fog Computing in Internet of Things Paradigm. In Proceedings of the 2016 IEEE 2nd International Conference on Collaboration and Internet Computing (CIC), 1-3 Nov. 2016; pp. 490–494. [Google Scholar]
- Kurwakumire, E.; Muchechetere, P.; Kuzhazha, S.; Ikokou, G.B. Geographic Information and Geo-visualisation in support of Disaster Resilience. In Proceedings of the Proc. ICA; 2019; pp. 1–8. [Google Scholar]
- Dembski, F.; Wössner, U.; Letzgus, M.; Ruddat, M.; Yamu, C. Urban Digital Twins for Smart Cities and Citizens: The Case Study of Herrenberg, Germany. Sustainability 2020, 12, 2307. [Google Scholar] [CrossRef]
- Bellini, E.; Nesi, P. Exploiting smart technologies to build smart resilient cities. In Routledge Handbook of Sustainable and Resilient Infrastructure; 2018; pp. 685-705.
- Stratigea, A.; Papadopoulou, C.-A.; Panagiotopoulou, M. Tools and Technologies for Planning the Development of Smart Cities. Journal of Urban Technology 2015, 22. [Google Scholar] [CrossRef]
- Sakurai, M.; Shaw, R. Emerging Technologies for Disaster Resilience: Practical Cases and Theories; Springer. 2021.
- Yeh, H. The effects of successful ICT-based smart city services: From citizens' perspectives. Government Information Quarterly 2017, 34, 556–565. [Google Scholar] [CrossRef]
- Nam, T.; Pardo, T.A. Conceptualizing smart city with dimensions of technology, people, and institutions. In Proceedings of the Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times, College Park, Maryland, USA, 2011; pp. 282–291.
- Kogan, N.; Lee, K.J. Exploratory research on the success factors and challenges of smart city projects. Asia Pacific Journal of Information Systems 2014, 24, 141–189. [Google Scholar] [CrossRef]
- Rodríguez-Bolívar, M.P. Transforming city governments for successful smart cities; Springer: 2015.
- Lea, R.J. Smart cities: An overview of the technology trends driving smart cities. IEEE Advancing Technology for Humanity 2017. [Google Scholar]
- Ahad, M.A.; Paiva, S.; Tripathi, G.; Feroz, N. Enabling technologies and sustainable smart cities. Sustainable Cities and Society 2020, 61, 102301. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.E.; Hawken, S.; Sargolzaei, S.; Foroozanfa, M. Implementing citizen centric technology in developing smart cities: A model for predicting the acceptance of urban technologies. Technological Forecasting and Social Change 2019, 142, 105–116. [Google Scholar] [CrossRef]
- Angelidou, M. The Role of Smart City Characteristics in the Plans of Fifteen Cities. Journal of Urban Technology 2017, 24, 3–28. [Google Scholar] [CrossRef]
- Stock, K.; Guesgen, H. Chapter 10 - Geospatial Reasoning With Open Data. In Automating Open Source Intelligence, Layton, R., Watters, P.A., Eds.; Syngress: Boston, 2016; pp. 171–204. [Google Scholar]
- Pashova, E.L.; Bandrova, E.T.; Kouteva-Guentcheva, E.M. Usage of geo-data for educational, purposes to improve disaster preparedness. In Proceedings of the 7th International Conference on Cartography and GIS, Sozopol, Bulgaria; 2018. [Google Scholar]
- Qian, L.; Luo, Z.; Du, Y.; Guo, L. Cloud Computing: An Overview. Berlin, Heidelberg, 2009; pp. 626-631.
- Voorsluys, W.; Broberg, J.; Buyya, R. Introduction to Cloud Computing. In Cloud Computing; 2011; pp. 1-41.
- Riisager, P.; Herzberg, P.; Bødtkjer, M.; Jørgensen, J.; Bergstedt, T.; Helsted, C. Geodata in the Cloud. Geoforum Perspektiv 2015, 14. [Google Scholar]
- Wieclaw, L.; Pasichnyk, V.; Kunanets, N.; Duda, O.; Matsiuk, O.; Falat, P. Cloud computing technologies in “smart city” projects. In Proceedings of the 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 21-23 Sept. 2017; pp. 339–342. [Google Scholar]
- Alazawi, Z.; Alani, O.; Abdljabar, M.B.; Altowaijri, S.; Mehmood, R. Alazawi, Z.; Alani, O.; Abdljabar, M.B.; Altowaijri, S.; Mehmood, R. A smart disaster management system for future cities. In Proceedings of the Proceedings of the 2014 ACM international workshop on Wireless and mobile technologies for smart cities, Philadelphia, Pennsylvania, USA, 2014; pp. 1–10.
- Ujjwal, K.C.; Saurabh, G.; James, H.; Jagannath, A.; Nicholas, F.-S. Cloud Computing in natural hazard modeling systems: Current research trends and future directions. International Journal of Disaster Risk Reduction 2019, 38, 101188. [Google Scholar] [CrossRef]
- Wan, Z.; Hong, Y.; Khan, S.; Gourley, J.; Flamig, Z.; Kirschbaum, D.; Tang, G. A cloud-based global flood disaster community cyber-infrastructure: Development and demonstration. Environmental Modelling & Software 2014, 58, 86–94. [Google Scholar] [CrossRef]
- Huang, Q.; Cervone, G.; Zhang, G. A cloud-enabled automatic disaster analysis system of multi-sourced data streams: An example synthesizing social media, remote sensing and Wikipedia data. Computers, Environment and Urban Systems 2017, 66, 23–37. [Google Scholar] [CrossRef]
- Qiu, M.; Ming, Z.; Wang, J.; Yang, L.T.; Xiang, Y. Enabling cloud computing in emergency management systems. IEEE Cloud Computing 2014, 1, 60–67. [Google Scholar] [CrossRef]
- Colman-Meixner, C.; Develder, C.; Tornatore, M.; Mukherjee, B. A Survey on Resiliency Techniques in Cloud Computing Infrastructures and Applications. IEEE Communications Surveys & Tutorials 2016, 18, 2244–2281. [Google Scholar] [CrossRef]
- Tsai, C.-W.; Lai, C.-F.; Vasilakos, A.V. Future Internet of Things: open issues and challenges. Wireless Networks 2014, 20, 2201–2217. [Google Scholar] [CrossRef]
- Goel, S.S.; Goel, A.; Kumar, M.; Moltó, G. A review of Internet of Things: qualifying technologies and boundless horizon. Journal of Reliable Intelligent Environments 2021, 7, 23–33. [Google Scholar] [CrossRef]
- Harrison, C.G.; Williams, P.R. A systems approach to natural disaster resilience. Simulation Modelling Practice and Theory 2016, 65, 11–31. [Google Scholar] [CrossRef]
- Li, H.; Ota, K.; Dong, M. Always Connected Things: Building Disaster Resilience IoT Communications. In Proceedings of the 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS), 4-6 Dec. 2019; pp. 570–577. [Google Scholar]
- Ray, P.P.; Mukherjee, M.; Shu, L. Internet of Things for Disaster Management: State-of-the-Art and Prospects. IEEE Access 2017, 5, 18818–18835. [Google Scholar] [CrossRef]
- Shah, S.A.; Seker, D.Z.; Rathore, M.M.; Hameed, S.; Ben Yahia, S.; Draheim, D. Towards Disaster Resilient Smart Cities: Can Internet of Things and Big Data Analytics Be the Game Changers? IEEE Access 2019, 7, 91885–91903. [Google Scholar] [CrossRef]
- Pence, H.E. What is big data and why is it important? Journal of Educational Technology Systems 2014, 43, 159–171. [Google Scholar] [CrossRef]
- Sarker, M.N.I.; Peng, Y.; Yiran, C.; Shouse, R.C. Disaster resilience through big data: Way to environmental sustainability. International Journal of Disaster Risk Reduction 2020, 51, 101769. [Google Scholar] [CrossRef]
- Dattana, V.; Gupta, K.; Kush, A. A probability based model for big data security in Smart city. 2019. [Google Scholar]
- Malik, K.R.; Sam, Y.; Hussain, M.; Abuarqoub, A. A methodology for real-time data sustainability in smart city: Towards inferencing and analytics for big-data. Sustainable Cities and Society 2018, 39, 548–556. [Google Scholar] [CrossRef]
- Lwin, K.K.; Sekimoto, Y.; Takeuchi, W. Development of GIS Integrated Big Data Research Toolbox (BigGIS-RTX) for Mobile CDR Data Processing in Disasters Management. Journal of Disaster Research 2018, 13, 380–386. [Google Scholar] [CrossRef]
- Cariolet, J.-M.; Vuillet, M.; Diab, Y. Mapping urban resilience to disasters – A review. Sustainable Cities and Society 2019, 51, 101746. [Google Scholar] [CrossRef]
- Tomaszewski, B. Geographic Information Systems for Disaster Management. Boca Raton 2015. [Google Scholar]
- Aloudat, A.; Michael, K. The application of location based services in national emergency warning systems: SMS, cell broadcast services and beyond. 2011.
- DesRoches, R.; Taylor, J.J.T.B. The promise of smart and resilient cities. 2018, 48.
- Asimakopoulou, E.; Bessis, N. Buildings and crowds: Forming smart cities for more effective disaster management. 2011; pp. 229-234.
- Adeel, A.; Gogate, M.; Farooq, S.; Ieracitano, C.; Dashtipour, K.; Larijani, H.; Hussain, A. A Survey on the Role of Wireless Sensor Networks and IoT in Disaster Management. In Geological Disaster Monitoring Based on Sensor Networks, Durrani, T.S., Wang, W., Forbes, S.M., Eds.; Springer Singapore: Singapore, 2019; pp. 57–66. [Google Scholar]
- Cheikhrouhou, O.; Koubaa, A.; Zarrad, A. A Cloud Based Disaster Management System. Journal of Sensor and Actuator Networks 2020, 9, 6. [Google Scholar] [CrossRef]
- Sharma, H.; Haque, A.; Blaabjerg, F. Machine Learning in Wireless Sensor Networks for Smart Cities: A Survey. Electronics 2021, 10, 1012. [Google Scholar] [CrossRef]
- Khalifeh, A.; Darabkh, K.A.; Khasawneh, A.M.; Alqaisieh, I.; Salameh, M.; AlAbdala, A.; Alrubaye, S.; Alassaf, A.; Al-HajAli, S.; Al-Wardat, R.; et al. Wireless Sensor Networks for Smart Cities: Network Design, Implementation and Performance Evaluation. Electronics 2021, 10, 218. [Google Scholar] [CrossRef]
- Heirman, D. What makes Smart Grid — Smart — And who is in the “game”? IEEE Electromagnetic Compatibility Magazine 2012, 1, 95–99. [Google Scholar] [CrossRef]
- Farmanbar, M.; Parham, K.; Arild, Ø.; Rong, C. A Widespread Review of Smart Grids Towards Smart Cities. Energies 2019, 12, 4484. [Google Scholar] [CrossRef]
- Nie, H.; Chen, Y.; Xia, Y.; Huang, S.; Liu, B. Optimizing the Post-Disaster Control of Islanded Microgrid: A Multi-Agent Deep Reinforcement Learning Approach. IEEE Access 2020, 8, 153455–153469. [Google Scholar] [CrossRef]
- Palmieri, F.; Ficco, M.; Pardi, S.; Castiglione, A. A cloud-based architecture for emergency management and first responders localization in smart city environments. Computers & Electrical Engineering 2016, 56, 810–830. [Google Scholar] [CrossRef]
- Ring, J.; Foo, E.; Looi, M. On Ensuring Continuity of Mobile Communications in a Disaster Environment. Recent Advances in Security Technology 2007 2007, 268–277. [Google Scholar]
- Casoni, M.; Grazia, C.A.; Klapez, M.; Patriciello, N.; Amditis, A.; Sdongos, E. Integration of satellite and LTE for disaster recovery. IEEE Communications Magazine 2015, 53, 47–53. [Google Scholar] [CrossRef]
- Yaqoob, I.; Hashem, I.A.T.; Mehmood, Y.; Gani, A.; Mokhtar, S.; Guizani, S. Enabling Communication Technologies for Smart Cities. IEEE Communications Magazine 2017, 55, 112–120. [Google Scholar] [CrossRef]
- Chan, N.; Lars, H. Introduction to location-based services. Lund University GIS Centre 2003, 1–12. [Google Scholar]
- Barnes, S.J. Location-Based Services: The State of the Art. e-Service Journal 2003, 2, 59–70. [Google Scholar] [CrossRef]
- Yudha, N.; Nasaruddin, S.; Roslidar, R. The Development of Online Disaster Information System Using Location Based Service (LBS) Technology. International Journal of Informatics and Communication Technology (IJ-ICT) 2014, 47-58.
- Zandbergen, P.A. Accuracy of iPhone Locations: A Comparison of Assisted GPS, WiFi and Cellular Positioning. Transactions in GIS 2009, 13, 5–25. [Google Scholar] [CrossRef]
- Xie, Y.; Gupta, J.; Li, Y.; Shekhar, S. Transforming Smart Cities with Spatial Computing. In Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2), 16-19 Sept. 2018; pp. 1–9. [Google Scholar]
- Hakak, S.; Khan, W.Z.; Gilkar, G.A.; Imran, M.; Guizani, N. Securing Smart Cities through Blockchain Technology: Architecture, Requirements, and Challenges. IEEE Network 2020, 34, 8–14. [Google Scholar] [CrossRef]
- McIsaac, J.; Brulle, J.; Burg, J.; Tarnacki, G.; Sullivan, C.; Wassel, R. Blockchain Technology for Disaster and Refugee Relief Operations. Prehospital and Disaster Medicine 2019, 34, s106–s106. [Google Scholar] [CrossRef]
- Pour, F.S.A. Application of a blockchain enabled model in disaster aids supply network resilience. Old Dominion University, 2021.
- Hüsemann, B.; Lechtenbörger, J.; Vossen, G. Conceptual data warehouse design; Universität Münster. Angewandte Mathematik und Informatik: 2000; Volume 168.
- Costa, C.; Santos, M.Y. The SusCity big data warehousing approach for smart cities. In Proceedings of the Proceedings of the 21st international database engineering & applications symposium, 2017; pp. 264–273.
- H. Krasniqi, Z. THE ROLE OF DATA WAREHOUSE DURING THE NATURAL DISASTER. European Academic Research 2015. [Google Scholar]
- Kuhn, T. Digitaler Zwilling. Informatik-Spektrum 2017, 40, 440–444. [Google Scholar] [CrossRef]
- Ford, D.N.; Wolf, C.M. Smart Cities with Digital Twin Systems for Disaster Management. Journal of Management in Engineering 2020, 36. [Google Scholar] [CrossRef]
- Ye, X.; Du, J.; Han, Y.; Newman, G.; Retchless, D.; Zou, L.; Ham, Y.; Cai, Z. Developing Human-Centered Urban Digital Twins for Community Infrastructure Resilience: A Research Agenda. Journal of Planning Literature 2023, 38, 187–199. [Google Scholar] [CrossRef]
- Fan, C.; Zhang, C.; Yahja, A.; Mostafavi, A. Disaster City Digital Twin: A vision for integrating artificial and human intelligence for disaster management. International Journal of Information Management 2021, 56, 102049. [Google Scholar] [CrossRef]
- Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine 2018, 51, 1016–1022. [Google Scholar] [CrossRef]
- Aggarwal, S.; Kumar, N. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Computer Communications 2020, 149, 270–299. [Google Scholar] [CrossRef]
- Ali, M.; Naeem, F.; Adam, N.; Kaddoum, G.; Adnan, M.; Tariq, M. Integration of Data Driven Technologies in Smart Grids for Resilient and Sustainable Smart Cities: A Comprehensive Review. arXiv preprint arXiv:2301.08814 2023. arXiv:2301.08814 2023.
- Qadir, Z.; Ullah, F.; Munawar, H.S.; Al-Turjman, F. Addressing disasters in smart cities through UAVs path planning and 5G communications: A systematic review. Computer Communications 2021, 168, 114–135. [Google Scholar] [CrossRef]
- Wolf, W. Cyber-physical systems. Computer 2009, 42, 88–89. [Google Scholar] [CrossRef]
- Lei, Y.; Rao, Y.; Wu, J.; Lin, C.-H. BIM based cyber-physical systems for intelligent disaster prevention. Journal of Industrial Information Integration 2020, 20, 100171. [Google Scholar] [CrossRef]
- Gunes, V.; Peter, S.; Givargis, T.; Vahid, F. A survey on concepts, applications, and challenges in cyber-physical systems. KSII Transactions on Internet and Information Systems (TIIS) 2014, 8, 4242–4268. [Google Scholar]
- Madanian, S.; Johnson, K.; St Martin, M.; Sinha, R.; Cámara, J.; Parry, D. Adaptable socio-cyber physical systems for supporting disaster. Australasian Journal of Disaster and Trauma Studies 2022, 26, 221–234. [Google Scholar]
- Kesswani, N.; Kumar, S. Cyber Physical Systems and Smart Cities. CSI CommuniCationS 2017. [Google Scholar]
- Butun, I.; Österberg, P. Detecting intrusions in cyber-physical systems of smart cities: Challenges and directions. Secure Cyber-Physical Systems for Smart Cities 2019, 74-102.
- Habibzadeh, H.; Nussbaum, B.H.; Anjomshoa, F.; Kantarci, B.; Soyata, T. A survey on cybersecurity, data privacy, and policy issues in cyber-physical system deployments in smart cities. Sustainable Cities and Society 2019, 50, 101660. [Google Scholar] [CrossRef]
- Isikdag, U. BIM: steppingstone in disaster management. GIM mapping the world 2010. [Google Scholar]
- Drogemuller, R. BIM support for disaster response. Risk-Informed Disaster Management: Planning for Response, Recovery and Resilience 2015, 391-405.
- Abdel-Basset, M.; Mohamed, R.; Elhoseny, M.; Chang, V. Evaluation framework for smart disaster response systems in uncertainty environment. Mechanical Systems and Signal Processing 2020, 145, 106941. [Google Scholar] [CrossRef]
- Jung, Y. Smart disaster response through localized short-term cooperation. 2017, 179 LNICST, 12-21. -21. [CrossRef]
- Riaz, K.; McAfee, M.; Gharbia, S.S. Management of Climate Resilience: Exploring the Potential of Digital Twin Technology, 3D City Modelling, and Early Warning Systems. Sensors 2023, 23, 2659. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Geng, P.; Sivaparthipan, C.; Muthu, B.A. Big data and artificial intelligence based early risk warning system of fire hazard for smart cities. Sustainable Energy Technologies and Assessments 2021, 45, 100986. [Google Scholar] [CrossRef]
- Ullah, F.; Qayyum, S.; Thaheem, M.J.; Al-Turjman, F.; Sepasgozar, S.M.E. Risk management in sustainable smart cities governance: A TOE framework. Technological Forecasting and Social Change 2021, 167, 120743. [Google Scholar] [CrossRef]
- Taylor, J.E.; Bennett, G.; Mohammadi, N. Engineering Smarter Cities with Smart City Digital Twins. Journal of Management in Engineering 2021, 37, 02021001. [Google Scholar] [CrossRef]
- Elvas, L.B.; Mataloto, B.M.; Martins, A.L.; Ferreira, J.C. Disaster Management in Smart Cities. Smart Cities 2021, 4, 819–839. [Google Scholar] [CrossRef]
- Abid, S.K.; Sulaiman, N.; Chan, S.W.; Nazir, U.; Abid, M.; Han, H.; Ariza-Montes, A.; Vega-Muñoz, A. Toward an Integrated Disaster Management Approach: How Artificial Intelligence Can Boost Disaster Management. Sustainability 2021, 13, 12560. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Butler, L.; Windle, E.; Desouza, K.C.; Mehmood, R.; Corchado, J.M. Can building “artificially intelligent cities” safeguard humanity from natural disasters, pandemics, and other catastrophes? An urban scholar’s perspective. Sensors 2020, 20, 2988. [Google Scholar] [CrossRef]
- Sun, W.; Bocchini, P.; Davison, B.D. Applications of artificial intelligence for disaster management. Natural Hazards 2020, 103, 2631–2689. [Google Scholar] [CrossRef]
- Ghezzi, A.; Gabelloni, D.; Martini, A.; Natalicchio, A. Crowdsourcing: a review and suggestions for future research. International Journal of management reviews 2018, 20, 343–363. [Google Scholar] [CrossRef]
- Hossain, M.; Kauranen, I. Crowdsourcing: a comprehensive literature review. Strategic Outsourcing: An International Journal 2015, 8, 2–22. [Google Scholar] [CrossRef]
- Harrison, S.E.; Johnson, P.A. Crowdsourcing the Disaster Management Cycle. International Journal of Information Systems for Crisis Response and Management (IJISCRAM) 2016, 8, 17–40. [Google Scholar] [CrossRef]
- Haklay, M. Citizen Science and Volunteered Geographic Information: Overview and Typology of Participation. In Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice, Sui, D., Elwood, S., Goodchild, M., Eds.; Springer Netherlands: Dordrecht, 2013; pp. 105–122. [Google Scholar]
- Goodchild, M.F.; Li, L. Assuring the quality of volunteered geographic information. Spatial Statistics 2012, 1, 110–120. [Google Scholar] [CrossRef]
- Flanagin, A.J.; Metzger, M.J. The credibility of volunteered geographic information. GeoJournal 2008, 72, 137–148. [Google Scholar] [CrossRef]
- Horita, F.E.A.; Degrossi, L.C.; de Assis, L.F.G.; Zipf, A.; de Albuquerque, J.P. The use of volunteered geographic information (VGI) and crowdsourcing in disaster management: a systematic literature review. 2013.
- Paolotti, D.; Carnahan, A.; Colizza, V.; Eames, K.; Edmunds, J.; Gomes, G.; Koppeschaar, C.; Rehn, M.; Smallenburg, R.; Turbelin, C.; et al. Web-based participatory surveillance of infectious diseases: the Influenzanet participatory surveillance experience. Clinical Microbiology and Infection 2014, 20, 17–21. [Google Scholar] [CrossRef]
- Aye, Z.C.; Jaboyedoff, M.; Derron, M.-H.; Van Westen, C.J. Prototype of a Web-based Participative Decision Support Platform in Natural Hazards and Risk Management. ISPRS International Journal of Geo-Information 2015, 4, 1201–1224. [Google Scholar] [CrossRef]
- Rouse, L.J.; Bergeron, S.J.; Harris, T.M. Participating in the Geospatial Web: Collaborative Mapping, Social Networks and Participatory GIS. In The Geospatial Web: How Geobrowsers, Social Software and the Web 2.0 are Shaping the Network Society, Scharl, A., Tochtermann, K., Eds.; Springer London: London, 2007; pp. 153–158. [Google Scholar]
- Phengsuwan, J.; Shah, T.; Thekkummal, N.B.; Wen, Z.; Sun, R.; Pullarkatt, D.; Thirugnanam, H.; Ramesh, M.V.; Morgan, G.; James, P.; et al. Use of Social Media Data in Disaster Management: A Survey. Future Internet 2021, 13, 46. [Google Scholar] [CrossRef]
- Sutton, J.N.; Palen, L.; Shklovski, I. Backchannels on the front lines: Emergency uses of social media in the 2007 Southern California Wildfires. 2008. [Google Scholar]
- Liu, B.F.; Fraustino, J.D.; Jin, Y. Social media use during disasters: How information form and source influence intended behavioral responses. Communication Research 2016, 43, 626–646. [Google Scholar] [CrossRef]
- Houston, J.B.; Hawthorne, J.; Perreault, M.F.; Park, E.H.; Goldstein Hode, M.; Halliwell, M.R.; Turner McGowen, S.E.; Davis, R.; Vaid, S.; McElderry, J.A. Social media and disasters: a functional framework for social media use in disaster planning, response, and research. Disasters 2015, 39, 1–22. [Google Scholar] [CrossRef]
- Schnebele, E.; Tanyu, B.F.; Cervone, G.; Waters, N. Review of remote sensing methodologies for pavement management and assessment. European Transport Research Review 2015, 7, 7. [Google Scholar] [CrossRef]
- Ballon, P.; Schuurman, D. Living labs: concepts, tools and cases. info 2015, 17. [Google Scholar] [CrossRef]
- Sharifi, A.; Srivastava, R.; Singh, N.; Tomar, R.; Raji, M.A. Recent Advances in Smart Cities and Urban Resilience and the Need for Resilient Smart Cities. In Resilient Smart Cities: Theoretical and Empirical Insights, Sharifi, A., Salehi, P., Eds.; Springer International Publishing: Cham, 2022; pp. 17–37. [Google Scholar]
- Pierce, P.; Andersson, B. Challenges with smart cities initiatives–A municipal decision makers’ perspective. In Proceedings of the Proceedings of the 50th Hawaii International Conference on System Sciences; 2017. [Google Scholar]
- Cavalcante, E.; Cacho, N.; Lopes, F.; Batista, T. Challenges to the Development of Smart City Systems: A System-of-Systems View. In Proceedings of the Proceedings of the XXXI Brazilian Symposium on Software Engineering, Fortaleza, CE, Brazil, 2017; pp. 244–249.
- Muvuna, J.; Boutaleb, T.; Baker, K.J.; Mickovski, S.B. A Methodology to Model Integrated Smart City System from the Information Perspective. Smart Cities 2019, 2, 496–511. [Google Scholar] [CrossRef]
- Kopackova, H.; Libalova, P. Smart city concept as socio-technical system. In Proceedings of the 2017 International Conference on Information and Digital Technologies (IDT), 5-7 July 2017; pp. 198–205. [Google Scholar]
- Leavitt, H.J. Applied Organizational Change in Industry, I JG March (ed.) Handbook of Organizations. Chicago: Rand McNally 1965, 1144, 1170. [Google Scholar]
- Biloria, N. Smart Cities: A Socio-Technical Perspective. 2021.
- Kopáčková, H.; Libalova, P. THE RISE OF SMART CITIES–RESULT OF GLOBAL PROBLEMS OR TECHNOLOGY CHALLENGE? In Proceedings of the Globalization and its socio-economic consequences: 17th International scientific conference: proceedings, 2017.
- Mora, L.; Deakin, M.; Zhang, X.; Batty, M.; de Jong, M.; Santi, P.; Appio, F.P. Assembling Sustainable Smart City Transitions: An Interdisciplinary Theoretical Perspective. Journal of Urban Technology 2021, 28, 1–27. [Google Scholar] [CrossRef]
- Opazo, M.P. Revitalizing the concept of sociotechnical systems in social studies of technology, 2010. 2010.
- Guseva, A.I.; Kireev, V.S.; Bochkarev, P.V.; Kuznetsov, I.A.; Filippov, S.A. End-to-end digital technologies in “smart cities” of Russia. IOP Conference Series: Earth and Environmental Science 2021, 740, 012022. [Google Scholar] [CrossRef]
- Héder, M. From NASA to EU: the evolution of the TRL scale in Public Sector Innovation. The Innovation Journal 2017, 22, 1–23. [Google Scholar]
- Engel, D.W.; Dalton, A.C.; Anderson, K.K.; Sivaramakrishnan, C.; Lansing, C. Development of Technology Readiness Level (TRL) Metrics and Risk Measures; United States, 2012; p. Medium: ED; Size: PDFN.
- Bruno, I.; Lobo, G.; Covino, B.V.; Donarelli, A.; Marchetti, V.; Panni, A.S.; Molinari, F. Technology readiness revisited: a proposal for extending the scope of impact assessment of European public services. In Proceedings of the ICEGOV; 2020; pp. 369–380. [Google Scholar]
- Giffinger, R.; Fertner, C.; Kramar, H.; Kalasek, R.; Pichler-Milanović, N.; Meijers, E. Smart cities: Ranking of european medium-sized cities. vienna, austria: Centre of regional science (srf), vienna university of technology. www. smart-cities. eu/download/smart cities final report. pdf 2007.
- Roche, S.; Nabian, N.; Kloeckl, K.; Ratti, C. Are ‘smart cities’ smart enough. In Proceedings of the Global geospatial conference; 2012; pp. 215–235. [Google Scholar]
- Haenssgen, M.J.; Ariana, P. The place of technology in the Capability Approach. Oxford Development Studies 2018, 46, 98–112. [Google Scholar] [CrossRef]
- Nikou, S.; Agahari, W.; Keijzer-Broers, W.; de Reuver, M. Digital healthcare technology adoption by elderly people: A capability approach model. Telematics and Informatics 2020, 53, 101315. [Google Scholar] [CrossRef]




| Factor/Criteria | a | b | c | d | e | f | g | h | i |
|---|---|---|---|---|---|---|---|---|---|
| Impact on the society | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| Adoption Speed by Smart Cities | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| Maturity of the technology | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
| Capabilities offered to the community | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| a=[14],b=[15],c=[16],d=[17],e=[18],f=[19],g=[20],h=[21],i=[22] | |||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
