Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Effect of Immobilized Pediococcus acidilactici ORE5 Cells on Pistachio Nuts on Functional Regulation of Novel Katiki Domokou-type Cheese Microbiome

Version 1 : Received: 8 June 2023 / Approved: 9 June 2023 / Online: 9 June 2023 (10:57:07 CEST)

A peer-reviewed article of this Preprint also exists.

Pavlatou, C.; Nikolaou, A.; Prapa, I.; Tegopoulos, K.; Plesssas, S.; Grigoriou, M.E.; Bezirtzoglou, E.; Kourkoutas, Y. Effect of Immobilized Pediococcus acidilactici ORE5 Cells on Pistachio Nuts on the Functional Regulation of the Novel Katiki Domokou-Type Cheese Microbiome. Appl. Sci. 2023, 13, 8047. Pavlatou, C.; Nikolaou, A.; Prapa, I.; Tegopoulos, K.; Plesssas, S.; Grigoriou, M.E.; Bezirtzoglou, E.; Kourkoutas, Y. Effect of Immobilized Pediococcus acidilactici ORE5 Cells on Pistachio Nuts on the Functional Regulation of the Novel Katiki Domokou-Type Cheese Microbiome. Appl. Sci. 2023, 13, 8047.

Abstract

Nowadays, functional foods supplemented with health-promoting microorganisms have attracted the consumers attention due to their health benefits. However, maintaining high cell loads, which consists of an essential requirement for conferring the health effect is a real bottleneck for the food industry, due to viability decline during food processing and storage. Hence, freeze-drying and cell immobilization have been suggested to enhance cell viability. The aim of our study was to assess the effect of freeze-dried immobilized P. acidilactici ORE5 on pistachio nuts on functional regulation of Katiki Domokou-type cheese microbiome. Supplementation of Katiki Domokou-type cheese with free or immobilized P. acidilactici ORE5 culture resulted in cell loads > 8.5 logcfu/g up to 7 days of storage. Both free and immobilized P. acidilactici ORE5 cells suppressed the growth of L. monocytogenes after deliberate inoculation, acting as a protecting shield. SPME GC/MS analysis showed that incorporation of P. acidilactici ORE5 culture in cheese resulted in an improved volatile compounds profile, as verified by the preliminary sensory evaluation. According to Next-Generation Sequencing analysis, a wide range of bacterial diversity was revealed among samples. The most abundant genus was Lactococcus in all samples, while the results showed increased presence of Pediococcus spp. in cheese fortified with P. acidilactici ORE5 culture, highlighting the ability of the strain to survive in the final product. Furthermore, the incorporation of P. acidilactici ORE5 culture in cheese had a significant impact on cheese microbiome composition, as the presence of spoilage bacteria, such as Chryseobacterium, Acinetobacter and Pseudomonas, were significantly lower compared to the control cheese, indicating quality improvement and prolongation of the product’s shelf- life.

Keywords

Pediococcus acidilactici ORE5; Katiki Domokou cheese; probiotic fortification; biopreservation

Subject

Biology and Life Sciences, Food Science and Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.