Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Ductile effect of PGA/PCL Blending Plastics using Novel Ionic Chain Extender with Non-Covalent Bonds

Version 1 : Received: 7 June 2023 / Approved: 7 June 2023 / Online: 7 June 2023 (13:16:49 CEST)

A peer-reviewed article of this Preprint also exists.

Kwon, H.J.; Jang, J.; Koh, W.-G.; Lee, J.-Y.; Hwang, K. Ductile Effect of PGA/PCL Blending Plastics Using a Novel Ionic Chain Extender with Non-Covalent Bonds. Polymers 2023, 15, 3025. Kwon, H.J.; Jang, J.; Koh, W.-G.; Lee, J.-Y.; Hwang, K. Ductile Effect of PGA/PCL Blending Plastics Using a Novel Ionic Chain Extender with Non-Covalent Bonds. Polymers 2023, 15, 3025.

Abstract

Polyglycolic acid (PGA) is a promising polymer in the packaging field owing to excellent hydrolysis, heat resistance and gas barrier properties, but there are limited in application due to poor toughness. For this reason, a covalently bonded chain extender is introduced to increase compatibility with flexible polymers. However, covalent bonds are unfavorable for application to degradable plastics because of require a lot of energy for reverse reactions. Therefore, it is intended to effectively control the ductility of blending plastics by using a novel ionic chain extender having a relatively weaker non-covalent bond than the existing covalent bond. Polycaprolactone (PCL), which has biodegradability and flexibility, was selected as a blending polymer. For comparison, a covalently reactive chain extender (G-CE) and a non-covalently ionic chain extender (D-CE) were synthesized and compounded to blending plastics. Each chain extenders were improved the compatibility between PGA and PCL, and the ductility of the PGA/PCL blending plastics were greatly enhanced with non-covalently bonding D-CE than with covalently bonding G-CE. At this time, the ductility of PGA/PCL blending plastic without CE is 7.2%, the ductility of 10D with D-CE is 26.6%, and the ductility of 10G with G-CE is 18.45%. Therefore, it was confirmed that the novel ionic chain extender inducing non-covalent bonds improves the compatibility between PGA and PCL and is more advantageous in enhancing ductility through a reversible reaction.

Keywords

Ionic chain extender; Non-covalent bonds; Ductility; Polyglycolic acid; Blending plastics

Subject

Chemistry and Materials Science, Polymers and Plastics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.