Submitted:
06 June 2023
Posted:
06 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Location and Research Data
2.2. Household Capital of Rice Farmers
- Human capital is the resources that the head of the household and its members have outwardly and that are cultivated. The role of human beings is to function the other four household capitals in the household had. The four capitals are natural capital, physical capital, and financial capital. This research uses human capital, namely age, experience, skills.
- Social capital is a resource owned by households. Social capital is a resource owned by the family. Social capital can mobilize human capital to optimize the other three household capital. Other capital is natural capital, physical capital, and financial capital. The social problems used in this study were trust (honest, orderly, and cooperative behavior) and social networks (bonding/homogeneous community with family/friends/neighbors, bridging/heterogeneous, and land tenure institutions).
- Natural capital is a resource available in nature. Natural capital has direct and indirect benefits in nature sustainability. The benefits of natural capital provide nutrient cycling and protection from erosion and storms. This research uses natural capital, namely the availability of water and water sources, land tenure, climate change, environmental services, and biodiversities.
- Physical capital is a resource owned by a household. Physical capital is a means of carrying out livelihood diversification activities. This research uses physical capital, namely: infrastructure and its condition (roads, markets, and others), agricultural tools and machinery, and access to agricultural technology (communication networks).
- Financial capital is a household's financial resources used to diversify livelihoods. This research uses financial capital, namely: sources of income, access to credit, and sources of capital.
2.3. Livelihood Diversification
2.3.1. Livelihood Diversification Index Analysis
- Ɛ:
- Entropy index, 0 ≤ Ɛ ≤ 1
- ρi:
- the proportion of household members working on the nth type of job to the amount og household members working on all types of livelihood
- I:
- the amount of household member working on the ith type of job
- L:
- the amount of household member working on all types of livelihood
- n:
- the amount of job type done as household livelihood (1, 2, …)
- Entropy index value:
- If the value of Ɛ is 1, the diversification of household members is done to all types of livelihood in a balanced manner.
- If the value of Ɛ is 0, no diversification of household members is done (the livelihood is specialized).
2.3.2. Diversification of Agricultural Livelihood
2.3.3. Diversification of Non-Agricultural Livelihoods
2.4. Capital Relationship of Rice Farmer Households and Livelihood Diversification
2.4.1. The relationship of household capital of rice farmers to the diversification of agricultural livelihoods
2.4.2. The relationship between household capital of rice farmers to the diversification of non-agricultural livelihoods
2.4.3. The relationship of household capital of rice farmers to the value of the level of livelihood diversification
2.5. Sampling Techniques, Number of Samples, and Data Sources
2.6. Data Model Analysis
2.6.1. Partial Least Square
2.6.2. Evaluation of the Measurement Model (Outer Model)
2.6.3. Structural Model Evaluation (Inner Model)
3. Results
3.1. Evaluation of the Inner Model
3.1.1. Reliability Item
3.1.2. Composite Reliability and Average Variance Extracted (AVE)
3.1.3. Discriminant Validity
3.2. Structural Model Evaluation
3.2.1. Path Coefficient
3.2.2. R-Square
3.2.3. Good of Fit (GoF)
4. Discussion
5. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Variable manifest/Indicator | Description | Original Sampel (O) | Standard Deviation (Stdev) | T-Value (O/Stdev) | VIF (outer model) |
|---|---|---|---|---|---|
| Rice Farmers’ Household Capital (X) | |||||
| X1 | Human Capital | 0,633 | 0,050 | 12,758 | - |
| X1.1 | Age of household head | 0,647 | 0,106 | 6,088 | 1.417 |
| X1.2 | Experience of household head | 0,713 | 0,095 | 7,495 | 1.449 |
| X1.3 | Skills of household head | 0,717 | 0,083 | 8,689 | 1.027 |
| X2 | Social Capital | 0,734 | 0,032 | 22,905 | - |
| X2.1 | Trust | 0,781 | 0,034 | 22,827 | 1.075 |
| X2.2 | Social network | 0,809 | 0,033 | 24,887 | 1.075 |
| X3 | Natural Capital | 0,915 | 0,011 | 79,800 | - |
| X3.1 | Water and water sources | 0,629 | 0,043 | 14,612 | 1.355 |
| X3.2 | Land | 0,669 | 0,035 | 19,313 | 1.447 |
| X3.3 | Climate change | 0,876 | 0,019 | 46,024 | 2.431 |
| X3.4 | Environmental services | 0,833 | 0,026 | 32,575 | 2.286 |
| X3.5 | Biodiversity | 0,738 | 0,044 | 16,773 | 1.741 |
| X4 | Physical Capital | 0,941 | 0,007 | 134,942 | - |
| X4.1 | Infrastructure and its conditon | 0,857 | 0,033 | 26,331 | 1.984 |
| X4.2 | Agricultural tools and machines | 0,914 | 0,010 | 94,108 | 2.780 |
| X4.3 | Access to Agricultural technology | 0,879 | 0,017 | 52,164 | 2.208 |
| X5 | Financial Capital | 0,890 | 0,011 | 83,580 | - |
| X5.1 | Sources of income | 0,899 | 0,014 | 66,356 | 2.461 |
| X5.2 | Credit access | 0,831 | 0,025 | 33,660 | 1.841 |
| X5.3 | Sources of capital | 0,919 | 0,010 | 94,440 | 2.658 |
|
Livelihood Diversification (Y) (Original Sampel=0,664; Standard Deviasi=0,053; T-statistik=12,636; R-Square=0,441) | |||||
| Y1 | Assess the degree of diversification of livelihoods | 0,873 | 0,014 | 61,778 | 1.776 |
| Y2 | Diversification of agricultural livelihoods | 0,722 | 0,043 | 16,798 | 1.276 |
| Y3 | Diversification of non-agricultural livelihoods | 0,843 | 0,023 | 37,126 | 1.769 |
| Variabel Manifest | X1 | X2 | X3 | X4 | X5 | Y | Square |
|---|---|---|---|---|---|---|---|
| X1.1 | 0,647 | 0,418609 | |||||
| X1.2 | 0,713 | 0,508369 | |||||
| X1.3 | 0,717 | 0,514089 | |||||
| X2.1 | 0,781 | 0,609961 | |||||
| X2.2 | 0,809 | 0,654481 | |||||
| X3.1 | 0,629 | 0,395641 | |||||
| X3.2 | 0,669 | 0,447561 | |||||
| X3.3 | 0,876 | 0,767376 | |||||
| X3.4 | 0,833 | 0,693889 | |||||
| X3.5 | 0,738 | 0,544644 | |||||
| X4.1 | 0,857 | 0,734449 | |||||
| X4.2 | 0,914 | 0,835396 | |||||
| X4.3 | 0,879 | 0,772641 | |||||
| X5.1 | 0,899 | 0,808201 | |||||
| X5.2 | 0,831 | 0,690561 | |||||
| X5.3 | 0,919 | 0,844561 | |||||
| Y1 | 0,873 | 0,762129 | |||||
| Y2 | 0,722 | 0,521284 | |||||
| Y3 | 0,843 | 0,710649 | |||||
| Jumlah | 12,23449 | ||||||
| Rata-rata Communality Index | 0,643921 | ||||||
References
- Ministry of Agriculture. Rencana Strategis Kementerian Pertanian Tahun 2020-2024. Ministry of Agriculture Republic Indonesia, 2020; 1-176.
- Indonesia Central Bureau of Statistics. Statistical Yearbook of Indonesia 2017; Sub-directorate of Statistical Compilation and Publication; BPS-Statistics Indonesia: Jakarta, Indonesia, 2017; pp. 1–708. ISSN 0126-2912. [Google Scholar]
- Indonesia Centeral Bureau of Statistics. Statistical Yearbook of Indonesia 2020; Sub-directorate of Statistical Compilation and Publication; BPS-Statistics Indonesia: Jakarta, Indonesia, 2020; pp. 1–748. ISSN 0126-2912. [Google Scholar]
- Indramayu Regency Central Bureau of Statistis. Indramayu Regency in Figure 2021. BPS-Statistics of Indramayu Regency: Indramayu, Indonesia, 2021; pp. 1–299, ISBN. 978-623-6697-31-3. I.
- Ellis, F. Rural Livelihood in Developing Countries: Evidence and Policy Implication. Natural Resources perspectives; Administrative Editor: Melanie Woodland; Series Editor: John Farrington; Overseas Development Institute: London, UK, 1999; Number 40, ISSN: 1356-9228.
- Scoones, I. Sustainable Rural Livelihood A Framework for Analysis. IDS Working Paper 72. Dev. 1998, 42, 1–22. [CrossRef]
- Richard, M.O. Provisional Findings on Linking Climate Informatin to Livelihood Strategies through ICTs among Rural Women in Marginaalized Kenya. SSRN Electron J. 2019; pp. 1–7.
- Gebru, G.W.; Ichoku, H.E.; Phil-Eze, P.O. Determinant of livelihood diversification strategies in Eastern Tigray Region of Ethiopia. Agric & Food Secur. 2018, 7, 1–9. [CrossRef]
- Hufnagel, J.; Reckling, M.; Ewert, F. Diverse approaches to crop diversification in agricultural research. A review. Agron Sustain Dev. 2020, 40, 1–7. [Google Scholar] [CrossRef]
- Fanchone, A.; Alexandre, G.; Chia, E.; Diman, J.L.; Ozier-Lafontaine, H.; Angeon, V.A. Typology to understand the diversity of strategies of implementation of agroecological practices in the French West Indies. Eur J Agron. 2020, 117, 126058. [Google Scholar] [CrossRef]
- Akhtar, S.; LI G cheng, Nazir, A.; Razzaq, A.; Ullah, R.; Faisal, M.; Asad, M.; Naseer, U.R.; Raza, M.H. Maize production under risk: The simultaneous adoption of off-farm income diversification and agricultural credit to manager risk. J Integr Agric. 2019, 18, 460–470. [CrossRef]
- Damanhuri; Muspita, M.; Setyohadi, D. Pengembangan Diversifikasi Usahatani sebagai Penguatan Ekonomi di Kabupaten Bojonegoro, Tulungangung, dan Ponorogo. J Cakrawala. 2017, 11, 33–47.
- Hermanto, B.; Wahyuni, S.M. Model Pertanian Berkelanjutan terhadap Peningkatan Kesejahteraan Petani Kubis (Brassica oleraciae) Dataran Tinggi pada Kawasan Agropolitan di Kabupaten Simalungu Provinsi Sumatera Utara. Dalam Pros. Semin Nas Expo II Hasil Penelitian dan Pengabdian Masyarakat, Universitas Muslim Nusantara, Kota Medan, Sumaterea Utara, Indonesia, 2019; pp 893-900.
- Burchfield, E.K. Determinants of crop diversification in rice-dominanted Sri Lankan agricultural systems. J Rural Stud. 2018, 1–10. [Google Scholar] [CrossRef]
- Qiu, L.; Zhu, J.; Pan, Y.; Wu, S.; Dang, Y.; Xu, B.; Yang, H. The positive impacts of landscape fragmentation on the diversification of agricultural production in Zhejiang Province, China. J Clean Prod. 2019, 5, 1–24. [Google Scholar] [CrossRef]
- Rachman, H.P.S.; Purwantini, T.B.; Marisa, Y. Prospek Diversifikasi Usaha Rumah angga dalam Mendukung Ketahanan Pangan dan Penanggulangan Kemiskinan. Forum Peneliti Agro Ekon. 2006, 24, 1–13. [Google Scholar]
- Rahut, D.B.; Monttaleb, K.A.; Ali, A. Rural Livelihood Diversification Strategies and Household Welfare in Bhutan. Eur J dev Res. 2017, 30, 718–748. [Google Scholar] [CrossRef]
- Loison, A.S. Household livelihood diversification and gender: Panel evidence from rural Kenya. J Rural Stud. 2019, 69, 156–172. [Google Scholar] [CrossRef]
- Gebretsadik, Y.H.; Teklemariam, B.T.; Gebru, H.N. Effect of livelihood diversification on rural households’ poverty reduction in Central Zone of Tigray regional state, Ethiopia. Res Sq. 2020, 1–17. [Google Scholar] [CrossRef]
- Abimbola, O.A.; Oluwakemi, A.O. Livelihood diversification and welfare of rural households in Ondo State, Nigeria. J Dev Agric Econ. 2013, 5, 482–489. [Google Scholar] [CrossRef]
- Ellis, F.; Allison, E. Livelihood Diversification and Natural Resource Access. FAO, LSP WP 9, Access to Natural Resources Sub-Programme, Livelihood Diversification and Enterprise Development Sub-Programme; Overseas Development Group, University of Anglia, UK, 2004.
- Simatupang, P.; Rahmat, M.; Maulana, M. Laporan Akhir Kajian Isu-Isu Kebijakan Pembangunan Pertanian Tahun Anggaran 2016. Review dan Perumusan Indikator Kesejahteraan Petani; Pusat Sosial Ekonomi dan Kebijakan Pertanian, Badan Penelitian dan Pengembangan Bogor, Indonesia, 2016.
- Ellis, F.; Freeman, H.A. (eds.). Rural Livelihoods and Poverty Reduction Policies. Routledge Studies in Development Economics, Routledge Taylor & Francis Group, London and New York, 2005; e-book ISBN 0-203-00621-6.
- Ding, W.; Jimoh, S.O.; Hou, Y.; Hou, X.; Zhang, W. Influence of livelihood capitals on livelihood strategies of herdsmen in inner Mongolia, China. Sustain. 2018, 10, 1–17. [Google Scholar] [CrossRef]
- Salam, S.; Bauer, S. Rural non-farm economy and livelihood diversification strategies: evidence from Bangladesh. GeoJournal. 2020, 2. [Google Scholar] [CrossRef]
- Susilowati, S.H.; Supadi, Saleh, C. Diversifikasi Sumber Pendapatan Rumah Tangga di Pedesaan Jawa Barat. J Agro Ekon. 2002, 20, 85–109. [Google Scholar] [CrossRef]
- Nuryanti, S.; Swastika, D.K.S. Peran Kelompok Tani dalam Penerapan Teknologi Pertanian. Forum Penelit. Agroekon. 2016, 29, 115–128. [Google Scholar] [CrossRef]
- Astrachan, C.B.; Patel, V.K.; Wanzenried, G. A comparative study of CB-SEM and PLS-SEM for theory development in family firm research. J Fam Bus Strateg. 2014, 5, 116–128. [Google Scholar] [CrossRef]
- Monecke, A.; Leisch, F. semPLS: Structural Equation Modeling Using Partial Least Squares Armin. J Stat Softw. 2012, 48, 1–32. [Google Scholar] [CrossRef]
- Hariz, A.R.; Purwanto; Suherman. Kajian Pengembangan Kawasan Industri Konvensional Menjadi Eco-Industrial Park. Dalam Prosiding Seminar Nasional Innovation In Environmental Management Diponegoro University and Queensland University, Semarang, Indonesia; 2015, VI-1-VI-6. ISBN 978-602-71228-3-3.
- Canagarajah, S.; Newman, C.; Bhattamishra, R. Non-farm income, gender, and inequality: evidence from rural Ghana and Uganda. Food Policy. 2001, 26, 405–420. [Google Scholar] [CrossRef]
- Sharpley, R.; Vass, A. Tourism, farming and diversification: An attitudinal study. Tour Manag. 2006, 27, 1040–1052. [Google Scholar] [CrossRef]
- Ellis, F. Household strategies and rural livelihood diversification. J Dev Stud. 1998, 35, 1–38. [Google Scholar] [CrossRef]
- Ntwalle, J.A. Determinants of Tanzania Rural Households’ Income Diversification and its Impact on Food security. Master’s thesis, Agricultural Economics and Management - Master's Programme Degree project/SLU, Department of Economics, Swedish University of Agricultural Sciences, Sweden, 2019; pp. 1–34. ISSN 1401-4084.
- Susilowati, S.H. Dinamika Diversifikasi Sumber Pendapatan Rumah Tangga Perdesaan di Berbagai Agroekosistem. J Agro Ekon. 2017, 35, 105–126. [Google Scholar] [CrossRef]
- Khatun, D.; Roy, B.C. Rural Livelihood Diversification in West Bengal: Determinants. Agric Econ Res Rev. 2012, 25, 115–124. [Google Scholar]
- Weldegebriel, Z.B. Non-Farm Diversification in Ethiopia: What Determines Participation and Returns? 2017; pp. 1–65. Available online: https://www.researchgate.net/publication/315715783. (accessed on 25 January 2023).
- Serrat, O. The Sustainable Livelihoods Approach. In Knowledge Solutions, 2017; pp. 22–26. [CrossRef]
- Kassie, G.W.; Kim, S.; Fellizar, F.P. Determinant factors of livelihood diversification: Evidence from Ethiopia. Cogent Soc Sci. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Demie, A.; Zeray, N. Determinants of Participation and Earnings in the rural non-farm economy in Eastern Ethiopia. African J Rural Dev. 2016, 1, 61–74. [Google Scholar]
- Ponce, C. Revisiting the Determinants of Non-Farm Income in the Peruvian Andes in a Context of Intraseasonal Climate Variability and Spatially Widespread Family Networks, Diana Balcázar Tafur (eds.); GRADE Group for the Analysis of Development; Av. Almirante Grau 915, Barranco, Lima, Peru, 2018; pp. 1–95.
- Davis, J.; Pearce, D. The rural non-farm economy in Central and Eastern Europe. Rural Non-Farm Economy Project, Social Sciences Department Central Avenue, Chatham Maritime, Kent ME4 4TB, United Kingdom, 2000; pp. 1–48.
- Loison, S.A. Rural Livelihood Diversification in Sub-Saharan Africa: A Literature Review. J Dev Stud. 2015, 51, 1125–1138. [Google Scholar] [CrossRef]
- Leng, C.; Ma, W.; Tang, J.; Zhu, Z. ICT adoption and income diversification among rural households in China. Appl Econ. 2020, 1–15. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Tran, H.C.; Ho, T.M.H.; Burny, P.; Lebailly, P. Dynamics of farming systems under the context of coastal zone development: The case of xuan thuy national park, Vietnam. Agric. 2019, 9, 1–19. [Google Scholar] [CrossRef]
- Bayu, E.K. Gender and Livelihood Diversification in Rural Ethiopia. Women’s Participation in Non - Farm Activities: The Case of Shebel Berenta Woreda, East Gojjam Zone, Amhara National Regional State, Department of Gender and Development Studies, Faculty of Social Science Post Graduate Program, Bahir Dar University, Ethiopia, 2018; pp. 1–139.
- Rehan, S.F. Diversification in Bangladesh: From on-Farm, Income and Food Consumption Perspectives. Academic Dissertation. Department of Economics and Management, University of Helsinki, Finland, August 20, 2020.
- Reardon, R.F. The impact of learning culture on worker response to new technology. J Work Learn. 2010, 22, 201–211. [Google Scholar] [CrossRef]
- Wulandari, E.; Meuwissen, M.P.M.; Karmana, M.H.; Lansink, A.G.J.M.O. The role of access to finance from different finance providers in production risks of horticulture in Indonesia. PLoS One. 2021, 16, 1–12. [Google Scholar] [CrossRef]
- Jacquemin, A.P.; Berry, C.H. Entropy Measure of Diversification and Corporate Growth. J Ind Econ. 1979, 27, 359–369. [Google Scholar] [CrossRef]
- Gollop, F.M.; Monahan, J.L. A generalized index of diversification: trends in US manufacturing. Rev Econ Stat. 1991, 73, 318–330. [Google Scholar] [CrossRef]
- Thiele, S. , Weiss, C. Consumer demand for food diversity: Evidence for Germany. Food Policy. 2003, 28, 99–115. [Google Scholar] [CrossRef]
- Piedra-Bonilla, E.B.; da Cunha, D.A.; Braga, M.J. Climate variability and crop diversification in Brazil: An ordered probit analysis. J Clean Prod. 2020, 256, 120252. [Google Scholar] [CrossRef]
- Mu’min, A.; Hastuti, K.; Angriani, P. Pengaruh Diversifikasi Pertanian Terhadap Pendapatan Masyarakat di Desa Belawang Kecamatan Belawang Kabupaten Barito Kuala. J Pendidik Geogr. 2014, 1, 8–20. [Google Scholar]
- Rosa-Schleich, J.; Loos, J.; Mußhoff, O.; Tscharntke, T. Ecological-economic trade-offs of Diversified Farming Systems – A review. Ecol Econ. 2019, 160, 251–263. [Google Scholar] [CrossRef]
- Ugwumba, C.O.A.; Okoh, R.N.; Ike, P.C.; Nnabuife, E.L.C.; Orji, E.C. Integrated Farming System and its Effect on Farm Cash Income in Awka South Agricultural Zone of Anambra State, Nigeria. J Agric Environ Sci. 2010, 8, 1–06. [Google Scholar]
- Munandar, M.; Gustiar, F.; Yakup, Y.; Hayati, R.; Munawar, A.I. Crop-Cattle Integrated Farming System: An Alternative of Climatic Change Mitigation. Media Peternak. 2015, 38, 95–103. [Google Scholar] [CrossRef]
- Asante, B.O.; Villano, R.A.; Patrick, I.W.; Battese, G.E. Determinants of farm diversification in integrated crop-livestock farming systems in Ghana. Renew Agric Food Syst. 2018, 33, 131–149. [Google Scholar] [CrossRef]
- Suratiyah, K. Konsep-Konsep Kegiatan Off-Farm. Populasi. 1994, 5, 1–14. [Google Scholar] [CrossRef]
- Barrett, C.B.; Reardon, T.; Webb, P. Nonfarm Income Diversification and Household Livelihood Strategies in Rural Africa: concepts, dynamics, and policy implications. Food Policy. 2001, 26, 315–331. [Google Scholar] [CrossRef]
- Conway, G.R.; Chambers, R. Sustainable rural livelihoods: practical concepts for the 21st century. IDS Discuss Pap 296, 1992; pp. 1–29. Available online: https://www.researchgate.net/publication/248535825%0ASustainable (accessed on 01 January 2023).
- Van den Broeck, G.; Kilic, T. Dynamics of off-farm employment in Sub-Saharan Africa: A gender perspective. World Dev. 2019, 119, 81–99. [Google Scholar] [CrossRef]
- Nneka, O.; Rafiu, Y.O. Managing the Nigerian Rural Environment through Women Empowerment in Non-Farm Activities in Kajuru Local Government Area of Kaduna State. J Mater Sci Res Rev. 2020, 5, 31–41. [Google Scholar]
- Swastika, D.K.; Elizabeth, R.; Hestina, J. Analisis Keberagaman Usaha Rumah Tangga Pertanian di Lahan Marjinal. Agro Ekon. 2016, 14, 1–16. [Google Scholar] [CrossRef]
- Khatun, D.; Roy, B.C. Rural Livelihood Diversification in West Bengal: Determinants and Constraints. Agric Econ Res Rev. 2012, 25, 115–124. [Google Scholar]
- Sitorus, M.T.F.; Soetarto, E.; Lubis, D.P.; Agusta, I.; Pambudy, R. Agribisnis Berbasis Komunitas. Sinergi Modal Ekonomi dan Sosial: Pengalaman ‘Sang Hyang Sri’ Sukamandi, edisi pertama; Penerbit Pustaka Wirausaha Muda, Bogor, Indonesia, 2001; pp. 1–128.
- Kassie, G.W.; Kim, S.; Fellizar, F.P. Determinant factors of livelihood diversification: Evidence from Ethiopia. Cogent Soc Sci. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Khan, W.; Jamshed, M.; Fatima, S.; Dhamija, A. Determinants of Income Diversification of Farm Households in Uttar Pradesh, India. Forum Soc Econ. 2019, 1–19. [Google Scholar] [CrossRef]
- Paranata, A.; Wahyunadi; Daeng, A. ; Wijimulawiani, B.S. Mengurai Model Kesejahteraan Petani. Jejak. 2012, 5, 90–102. [Google Scholar]
- Agyeman, B.A.S.; Asuming-Brempong, S.; Onumah, E.E. Determinants of income diversification of farm households in the Western Region of Ghana. Q J Int Agric. 2014, 53, 55–72. [Google Scholar]
- Weldegebriel, Z.B.; Prowse, M. Climate-Change Adaptation in Ethiopia: To What Extent Does Social Protection Influence Livelihood Diversification? Dev Policy Rev. 2013, 31, 035–056. [Google Scholar] [CrossRef]
- Weldegebriel, Z.B.; Prowse, M. Climate variability and livelihood diversification in northern Ethiopia: a case study of Lasta and Beyeda districts. The Geographical Journal. 2016, 183, 84–96. [Google Scholar] [CrossRef]
- Nguyen, D.L.; Grote, U.; Nguyen, T.T. Migration, crop production and non-farm labor diversification in rural Vietnam. Econ Anal Policy. 2019, 63, 175–187. [Google Scholar] [CrossRef]
- Githaiga, P.N. Revenue diversification and financial sustainability of microfinance institutions. Asian J Account Res. 2022, 7, 31–43. [Google Scholar] [CrossRef]
- Sharma, G.P.; Pandit, R.; White, B.; Polyakov, M. The income diversification strategies of smallholders in the hills of Nepal. Dev Policy Rev. 2020, 38, 804–825. [Google Scholar] [CrossRef]
- Haryono, S. Metode SEM Untuk Penelitian Manajemen Dengan AMOS-LISREL-PLS. Cetakan pertama, Badan Penerbit PT. Intermedia Personalia Utama: Bekasi, Jawa Barat, Indonesia, 201; pp. 1–461.
- Chin, W.W. The partial least squares approach to structural equation modelling. In Modern Methods for Business Resesarch, Marcoulides, G.A. (ed.). Lawrence Erlbaum Associates, Publisher, Mahwah, New Jersey, London, 1998; pp. 295–336.
- Wold, S.; Eriksson, L.; Kettaneh, N. PLS in Data Mining Anda Data Integration. In Handbook of Partial Least Squares Concept, Methods, and Applications. Vinzi VE, Chin WW, Henseler, J., Wang, H., (eds.). Springer Heidelberg Dordrecht, London, New York, 2010; pp. 327–357.
- Hult, G.T.M.; Sarstedt, M.; Ringle, C.M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE Publiher, 2022; pp. 1–39.
- Illu, A.R.; Muhaimin, A.W.; Setiawan, B. The Effect of Livelihood Assets on Living Strategies: An Empirical Study of Farmer Household Characteristics. Int J Business, Technol Organ Behav. 2021, 1, 241–252. [Google Scholar] [CrossRef]
- Sushma KN, Thilagavathi M, Parimalarangan S, Vasanthi, R. Adoption Pattern of Mechanization of Paddy Farms in West Godavari District of Andhra Pradesh, India. Asian J Agric Extension, Econ Sociol. 2022, 40, 653–658. [Google Scholar] [CrossRef]
- Vortia, P.; Nasrin, M.; Bipasha, S.K.; Islam, M.M. Extent of farm mechanization and technical efficiency of rice production in some selected areas of Bangladesh. GeoJournal. 2019. [CrossRef]
- McCarthy, N., Sun, Y. Participation by Men and Women in Off-Farm Activities: An Empirical Analysis in Rural Northern Ghana. Paper 00852, Environment and Production Technology Division, International Food Policy Research Institute, 2009; pp. 1–26.
- Lopez-Ridaura, S.; Frelat, R.; van Wijk, M.T.; Valbuena, D.; Krupnik, T.J.; Jat, M.L. Climate smart agriculture, farm household typologies and food security: An ex-ante assessment from Eastern India. Agric Syst. 2018, 59, 57–68. [Google Scholar] [CrossRef]
- Paut, R.; Sabatier, R.; Tchamitchian, M. Reducing risk through crop diversification: An application of portfolio theory to diversified horticultural systems. Agric Syst. 2019, 168, 123–130. [Google Scholar] [CrossRef]
- van Zonneveld, M.; Turmel, M.S.; Hellin, J. Decision-Making to Diversify Farm Systems for Climate Change Adaptation. Front Sustain Food Syst. 2020, 4, 1–20. [Google Scholar] [CrossRef]
- Yuliastuti, N.; Sukmawati, A.M.; Purwoningsih, P. Utilization of Social Facilities to Reinforce Social Interaction in Formal Housing. Int J Archit Res ArchNet-IJAR. 2018, 2, 134–151. [Google Scholar] [CrossRef]
- Yamin, S.; Dartanto, T. Pengentasan Orang Miskin di Indonesia: Peran Modal Sosial yang Terlupakan. J Ekon dan Pembang Indones. 2016, 17, 88–102 https://doiorg/1021002/jepiv17i1656. [Google Scholar] [CrossRef]
- Djuwendah, E.; Priyatna, T.; Kusno, K.; Deliana, Y.; Wulandari, E. Building agribusiness model of LEISA to achieve sustainable agriculture in Surian Subdistrict of Sumedang Regency West Java Indonesia. IOP Conf Ser Earth Environ Sci. 2018, 142, 1–8. [Google Scholar] [CrossRef]
- Huffman, W.E.; El-Osta, H. Off-Farm Work Participation, Off-Farm Labor Supply and On-Farm Labor Demand of U.S. Farm Operators, Economic Staff Paper Series 276, IOWA State University, 1997; pp. 1–35.




| Manifest Variables | Indicators | Definition | Parameters | Scale Unit | X and Y Relationship Hypothesis | Analysis Tools | Reference |
|---|---|---|---|---|---|---|---|
| Exogenous Latent Variables of Household Capital of Rice Farmers (X) | |||||||
| Human Capital (X1) | Age (X1.1) | Duration of life of the head of the household | Year | Ratio | +-/Sig. | (Binary logistic models; Multiple linear model-index entropy) | [34,35] |
| Farming experience (X1.2) | The length of time the head of the household has been in farming | Year | Ratio | +/Sig. | (Multiple Regression-Index Simpthon) | [36] | |
| Farming skills (X1.3) | Types of skills mastered due to the training followed | Likert scale | Ordinal | +/Sig. | (Tobit Models and Double-hurdle Models) | [37] | |
| Social Capital (X2) | Belief (X2.1.) | The level of honesty, order, and cooperation in groups | Likert scale | Ordinal | - | - | [33,38] |
| Social networks (X2.2) | Relationships between relatives and friends (bonding capital), social organizations (bridging capital), land tenure institutions | Likert scale | Ordinal | - | - | - | |
| Natural Capital (X3) | Availability of air and water source (X3.1) | The existence of a water source so that irrigation water for plants is always available every growing season | Likert scale | Ordinal | - | - | [21] |
| Soil (X.3.2) | Narrower paddy field land tenure and land topography | Likert scale | Ordinal | +/Sig. | (Logit model; multinomial logit; Spearman's correlation analysis) | [15.39,40] | |
| Climate change (X3.3) | Climate change conditions (temperature, rainy days, rainfall, solar intensity) affect crop production in the field | Likert scale | Ordinal | +/Sig. | (Binaary logistics) | [34,41] | |
| Environmental services (X3.4) | Environmental services are obtained from natural beauty, agricultural agrotourism. | Likert scale | Ordinal | - | - | [21] | |
| Biodiversity (X3.5) | Various living things that remain preserved in rice fields, such as: ground snakes, eels, microorganisms. | Likert scale | Ordinal | - | - | [21] | |
| Physical Capital (X4) | Infrastructure and its condition (X4.1) | Good physical condition on farm roads, irrigation networks, agricultural markets, internet networks. | Likert scale | Ordinal | +/Sig | (Multiniminal logit; rivew literature) | [40,41,42,43] |
| Agricultural tools and machinery (X4.2) | Agricultural equipment owned and its conditions for farming | Likert scale | Ordinal | - | - | - | |
| Access to agricultural technology (X4.3) | Skills in using agricultural tools and machinery, post-harvest technology and its processing, communication tools and the internet | Likert scale | Ordinal | +/Sig. | Treatment effects (TE) model |
[43,44] | |
| Financial Capital (X5) | Sources of income (X5.1) | Various sources of income come from on-farm (crops and livestock), off-farm (labor wages, rent of tools, machinery, and land), and non-farm (labor wages, pension funds, stalls, delivery) | Likert scale | Ordinal | +/Siq. | (Multinominal logit; econometrics; regression model) | [18,40,42,43] |
| Ease of credit access (X5.2) | There is easy access to credit, such as: ownership of land certificates, status of arable land tenure, family relationships, friends, and participation in groups/institutions | Likert scale | Ordinal | +/Sig. | (Mixed method;exploratory factor analysis; bivariate and multinomial probit) | [11,46,47,48] | |
| Sources of capital (X5.3) | Working capital obtained from various sources, such as: own capital, family loans / abouta / friend, government assistance, banks, middlemen/entrepreneurs, agricultural kiosks. | Likert scale | Ordinal | - | (censored regression model) | [49] | |
| Endogenous latent variables | Manifest variables (Indicators) | Definition | Parameters | Scale Unit | X and Y Relationship Hypothesis | Analysis Tools | Reference |
|---|---|---|---|---|---|---|---|
| Livelihood Diversification (Y) | Value of Diversification Level (Y1) | The level of diversity of livelihoods based on the number of working household members and the number of types of work | Entropy Index | Ratio | +/Sig | (Multinominal logit; correlation coefficient; multiple linear models) | [26,35,64] |
| Diversification of Agricultural Livelihoods (Y2) | The diversity of agricultural livelihoods provides additional income | Likert scale | Ordinal | - | - | - | |
| Diversification of Non-Agricultural Livelihoods (Y3) | The diversity of non-agricultural livelihoods provides additional income and savings | Likert scale | Ordinal | - | - | - |
| Code | Dimensions/Variables | AVE | Composite Reliability |
|---|---|---|---|
| X1 | Human capital | 0.560 | 0.734 |
| X2 | Social Capital | 0.632 | 0.774 |
| X3 | Natural Capital | 0.570 | 0.867 |
| X4 | Physical Capital | 0.781 | 0.915 |
| X5 | Financial Capital | 0.781 | 0.914 |
| Y | Livelihood Diversification | 0.664 | 0.855 |
| Code | X1 | X2 | X3 | X4 | X5 | Y |
|---|---|---|---|---|---|---|
| X1.1 | 0.647 | 0.191 | 0.293 | 0.275 | 0.233 | 0.384 |
| X1.2 | 0.713 | 0.181 | 0.214 | 0.272 | 0.277 | 0.444 |
| X1.3 | 0.717 | 0.341 | 0.441 | 0.499 | 0.471 | 0.408 |
| X2.1 | 0.149 | 0.781 | 0.522 | 0.576 | 0.383 | 0.315 |
| X2.2 | 0.425 | 0.809 | 0.389 | 0.494 | 0.596 | 0.541 |
| X3.1 | 0.246 | 0.378 | 0.629 | 0.510 | 0.463 | 0.324 |
| X3.2 | 0.353 | 0.320 | 0.669 | 0.536 | 0.567 | 0.456 |
| X3.3 | 0.435 | 0.548 | 0.876 | 0.726 | 0.665 | 0.442 |
| X3.4 | 0.393 | 0.449 | 0.833 | 0.655 | 0.579 | 0.384 |
| X3.5 | 0.376 | 0.430 | 0.738 | 0.743 | 0.462 | 0.282 |
| X4.1 | 0.469 | 0.668 | 0.699 | 0.857 | 0.659 | 0.558 |
| X4.2 | 0.513 | 0.585 | 0.726 | 0.914 | 0.649 | 0.543 |
| X4.3 | 0.443 | 0.530 | 0.817 | 0.879 | 0.741 | 0.485 |
| X5.1 | 0.397 | 0.497 | 0.722 | 0.688 | 0.899 | 0.511 |
| X5.2 | 0.394 | 0.566 | 0.457 | 0.550 | 0.831 | 0.548 |
| X5.3 | 0.534 | 0.585 | 0.723 | 0.789 | 0.919 | 0.623 |
| Y1 | 0.527 | 0.504 | 0.477 | 0.572 | 0.582 | 0.873 |
| Y2 | 0.462 | 0.376 | 0.333 | 0.434 | 0.455 | 0.722 |
| Y3 | 0.451 | 0.436 | 0.398 | 0.440 | 0.506 | 0.843 |
| Original Sample (O) | Standard Error (STERR) | T-Statistics (|O/STERR) |
P-Value | R-Square | |
|---|---|---|---|---|---|
| X → Y | 0.664 | 0.053 | 12.636 | 0.000 | 0.441 |
| R Square | The Value of Communality | |
|---|---|---|
| Y | 0.441 | 0.644* |
| GoF | 0.541 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
