Submitted:
01 June 2023
Posted:
06 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Overview of the Study Area
3. Materials and Methods
3.1. Data
| Model name | Institution | Resolution (Latitude ×Longitude) |
|---|---|---|
| EC-Earth3-Veg | EC-Earth-Cons (Europe) | 0.7°×0.7° |
| MPI-ESM1.2-HR | MPI-M(Germany) | 0.93°×0.94° |
| MRI-ESM2-0 | MRI(Japan) | 1.12°×1.12° |
| NorESM2-LM | NCC(Norway) | 1.89°×2.5° |
3.2. Research Methods
3.2.1. Calculation of Rainfall Erosivity (RE)
3.2.2. Calculation of Rainfall Erosivity Density (RED)
3.2.3. Trend Analysis
3.2.4. Theil-Sen Median Trend Analysis and Mann-Kendall Test
3.2.5. Extreme Rainfall Erosivity Index
4. Results
4.1. Temporal Dynamics of Rainfall Erosivity in the Hengduan Mountains Region
4.1.1. Annual Distribution of Rainfall Erosivity in the Hengduan Mountains Region
4.1.2. Interannual Variation of Rainfall Erosivity
4.2. Spatial Distribution Patterns of Rainfall Erosivity
4.2.1. Spatial Distribution Characteristics of Rainfall Erosivity at the Seasonal Scale
4.2.2. Annual-scale Spatial Distribution Characteristics of Rainfall Erosivity
4.2.3. Spatial Distribution Characteristics of the Trend in Rainfall erosivity
4.3. Prediction of Rainfall erosivity in the Hengduan Mountains
4.3.1. Prediction of Rainfall erosivity Index in the Hengduan Mountains
4.3.2. Prediction of Rainfall erosivity Variation
5. Discussion and Conclusion
5.1. Discussion
5.2. Conclusion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fenta, A.A.; Yasuda, H; Shimizu, K; Haregeweyn, N; Kawai, T; Sultan, D; Ebabu, K; Belay, A S. Spatial distribution and temporal trends of rainfall and erosivity in the Eastern Africa region. Hydrol Process 2017, 31, 4555–4567. [CrossRef]
- Jia, L.; Yu, K.; Li, Z.; Li, P.; Zhang, J.; Wang, A.; Ma, Ling; Xu, G.; Zhang, X. Temporal and spatial variation of rainfall erosivity in the Loess Plateau of China and its impact on sediment load. CATENA 2022, 210, 105931. [Google Scholar] [CrossRef]
- Tsitsagi, M.; Berdzenishvili, A.; Gugeshashvili, M. Spatial and temporal variations of rainfall-runoff erosivity (R) factor in Kakheti, Georgia. Annals of Agrarian Science 2018, 16, 226–235. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Rainfall energy and its relationship to soil loss. Eos:Transactions American Geo-physical Union 1958, 39, 285–291. [Google Scholar] [CrossRef]
- Xu, X.; Yan, Y.; Dai, Q.; Yi, X.; Hu, Z.; Cen, L. Spatial and temporal dynamics of rainfall erosivity in the karst region of southwest China: Interannual and seasonal changes. CATENA 2023, 1, 106763. [Google Scholar] [CrossRef]
- Shin, J.; Kim, T.; Heo, J.; Lee, J. Spatial and temporal variations in rainfall erosivity and erosivity density in South Korea. CATENA 2019, 176, 125–144. [Google Scholar] [CrossRef]
- Mondal, A.; Khare, D.; Kundu, S. Change in rainfall erosivity in the past and future due to climate change in the central part of India. Int. Soil Water Conserv. Res. 2016, 4, 186–194. [Google Scholar] [CrossRef]
- Amanambu, A.C.; Li, L.; Egbinola, C.N.; Obarein, O.A.; Christophe, M.; Chen, D. Spatio-temporal variation in rainfall-runoff erosivity due to climate change in the Lower Niger Basin, West Africa. CATENA 2019, 172, 324–334. [Google Scholar] [CrossRef]
- Correa, S.W.; Mello, C.R.; Chou, S.C.; Curi, N.; Norton, L.D. Soil erosion risk associated with climate change at Mantaro River basin, Peruvian Andes. CATENA 2016, 147, 110–124. [Google Scholar] [CrossRef]
- Grillakis, M.G.; Polykretis, C.; Alexakis, D.D. Past and projected climate change impacts on rainfall erosivity: Ad-vancing our knowledge for the eastern Mediterranean island of Crete. CATENA 2020, 193, 104625. [Google Scholar] [CrossRef]
- Riquetti, N.B.; Mello, C.R.; Beskow, S.; Viola, M.R. Rainfall erosivity in South America: Current patterns and future perspectives. Sci. Total Environ. 2020, 724, 138315. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci Rep 2017, 7, 4175. [Google Scholar] [CrossRef]
- Bezak, N.; Ballabio, C.; Mikoš, M.; Petan, S.; Borrelli, P.; Panagos, P. Reconstruction of past rainfall erosivity and trend detection based on the REDES database and rea-nalysis rainfall. J. Hydrol. 2020, 590, 125372. [Google Scholar] [CrossRef]
- Bezak, N.; Borrelli, P.; Panagos, P. Exploring the possible role of satellite-based rainfall data in estimating inter- and intra-annual global rainfall erosivity. Hydrol. Earth Syst. Sci. 2022, 26, 1907–1924. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Matthews, F.; Liakos, L.; Bezak, N. Global rainfall erosivity projections for 2050 and 2070. J. Hydrol. 2022, 610, 127865. [Google Scholar] [CrossRef]
- Angulo-Martínez, M.; Beguería, S. Estimating rainfall erosivity from daily precipitation records: A comparison among methods using data from the Ebro Basin (NE Spain). J. Hydrol. 2009, 379, 111–121. [Google Scholar] [CrossRef]
- Richardson, C.W.; Foster, G.R.; Wright, D.A. Estimation of Erosion Index from Daily Rainfall Amount. Trans. ASABE 1983, 26, 0153–0156. [Google Scholar] [CrossRef]
- Zhang, W.B.; Fu, J.S. RAINFALL EROSIVITY ESTIMATION UNDER DIFFERENT RAINFALL AMOUNT. Re-sources Science 2003, 35–41. [Google Scholar] [CrossRef]
- Yu, B. and C. Rosewell, An assessment of a daily rainfall erosivity model for New South Wales. Aust. J. Soil Res. 1996, 34, 139–152. [Google Scholar] [CrossRef]
- Hoyos, N.; P.R. Waylen; J. Álvaro. Seasonal and spatial patterns of erosivity in a tropical watershed of the Co-lombian Andes. J. Hydrol. 2005, 314, 177–191. [CrossRef]
- Renard, K.G.; J.R. Freimund. Using monthly precipitation data to estimate the R-factor in the revised USLE. J. Hydrol. 1994, 157, 287–306. [CrossRef]
- Suye, W. Simplified algorithm and spatiotemporal distribution pattern of rainfall erosivity in the Dabie Mountains of Anhui Province. Soil and Water Conservation in China 1994, 12–13. [Google Scholar] [CrossRef]
- Zhou, F.J.; Y.H. Huang. R value of rainfall erosivity index in Fujian Province. Journal of Soil and Water Conservation 1995, 9, 13–18.
- Shi, D.M.; X.P. Lu; G.Y. Jiang. Simulation on simple algorithm of rainfall erosivity in purple hilly area. Transactions of the Chinese Society of Agricultural Engineering 2010, 26, 116–122. [CrossRef]
- Teng, H. Assimilating multi-source data to model and map potential soil loss in China. Doctor, Zhejiang University, Zhejiang China, 2017.
- Wang, Y.; Dai, E.; Ge, Q.; Zhang, X.; Yu, C. Spatial heterogeneity of ecosystem services and their trade-offs in the Hengduan Mountain region, Southwest China. CATENA 2021, 207, 105632. [Google Scholar] [CrossRef]
- Yu, H.; Miao, S.; Xie, G.; Guo, X.; Favre, A. Contrasting Floristic Diversity of the Hengduan Mountains, the Himalayas and the Qinghai-Tibet Plateau Sensu Stricto in China. Front. Ecol. Evol. 2020, 8, 136. [Google Scholar] [CrossRef]
- F Fan, J.; Liu, F.; Gong, K.; Guo, F. Spatial characteristics of soil erosion in Hengduan Mountain region, eastern Tibet based on GIS. Journal of Arid Land Resources and Environment 2012, 26, 144–149. [Google Scholar] [CrossRef]
- TENG, H.; HU, J.; ZHOU, Y.; ZHOU, L.; SHI, Z. Modelling and mapping soil erosion potential in China. J. Integr. Agric. 2019, 18, 251–264. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, Q.; Singh, V.; Wang, G.; Zhao, J.; Shen, Z.; Sun, S. A Data-Driven Model on Google Earth Engine for Landslide Susceptibility Assessment in the Hengduan Mountains, the Qinghai&ndash Tibetan Plateau. Remote Sens. 2022, 14, 4662. [Google Scholar] [CrossRef]
- Li, B.Y. Exploration of the Range of the Hengduan Mountains. Mountain Research 1987, 5, 74–82. [Google Scholar]
- Zhang, T.; Li, B.L.; He, Y.Q.; Du, J.K.; Niu, H.W.; Xin, H.J. Spatial and Temporal Distribution of Precipitation Based on Corrected TRMM Data in Hengduan Mountains. Journal of Natural Resources 2015, 30, 260–270. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, S. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Adv. Clim. Chang. Res. 2020, 11, 239–251. [Google Scholar] [CrossRef]
- Zhang, W.B.; Y. Xie; B.Y. Liu. Rainfall Erosivity Estimation Using Daily Rainfall Amounts. Scientia Geographica Sinica 2002, 22, 705–711. [CrossRef]
- Kinnell, P.I.A. Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review. J. Hydrol. 2010, 385, 384–397. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K. Spatio-temporal analysis of rainfall erosivity and erosivity density in Greece. CATENA 2016, 137, 161–172. [Google Scholar] [CrossRef]
- Li, X.; Hu, Q.; Zhang, Q.; Wang, R. Response of rainfall erosivity to changes in extreme precipitation in the Poyang Lake basin, China. J. Soil Water Conserv. 2020, 75, 537–548. [Google Scholar] [CrossRef]
- Wang, X.; Li, T.; Ikhumhen, H.O.; M. Sá, R. Spatio-temporal variability and persistence of PM2.5 concentrations in China using trend analysis methods and Hurst exponent. Atmos. Pollut. Res. 2022, 13, 101274. [CrossRef]
- Wang, W.; Yin S.; Gao G.; Papalexiou S.M.; Z., Wang. Increasing trends in rainfall erosivity in the Yellow River basin from 1971 to 2020. J. Hydrol. 2022, 610, 127851. [CrossRef]
- Dash, C.J.; N.K. Das; P.P. Adhikary. Rainfall erosivity and erosivity density in Eastern Ghats Highland of east India. Nat. Hazards 2019, 97, 727–746. [CrossRef]
- Li, X.; X. Ye.Variability of Rainfall Erosivity and Erosivity Density in the Ganjiang River Catchment, China: Characteristics and Influences of Climate Change. Atmosphere 2018, 9, 48. [CrossRef]
- Zhi-xian, S. The Causes of 98 Catastrophic Flood of the Yangtze River and Corresponding Countermeasure. JOURNAL OF SICHUAN TEACHERS COLLEGE NATURAL SCIENCE EDITION 2000, 21, 69–80. [Google Scholar] [CrossRef]
- Pan, J.H. and X.Q. Liu. Analysis of the unusual high temperature & drought during midsummer in Sichuan in 2006. JOURNAL OF SICHUAN METEOROLOGY 2006, 1003-7187, 12–14. [CrossRef]
- Lusi, W.; Linlin, C.; Xiaohan, Z.; Zhaowu, Z. Comparison Analysis of Three Torrential Rain Events in Summer, 2013 in Sichuan Basin. Plateau and Mountain Meteorology Research 2015, 35, 86–91. [Google Scholar] [CrossRef]
- Qiu, H.; Xiong, Y.; Xing, W.H.; Wang, L. Study on characteristics and causes of rainstorm in Yangtze River Basin during major flood season in 2020. Yangtze River 2020, 51, 104–110. [Google Scholar] [CrossRef]
- L., J.L.; M., S.E.; Olivia, M.; Andreas, K.;Wolfgang, S; Shengping, W.; Peter, S. An update of the spatial and temporal variability of rainfall erosivity (R-factor) for the main agricultural production zones of Austria. CATENA 2022, 215, 106305. [CrossRef]
- Ji, H.; YuRong, W.; HaiTao, C.; SongLin, W. Effects of Land Use Change on Rainfall Erosion in Luojiang River Basin, China. Sustainability 2022, 14, 8441. [Google Scholar] [CrossRef]
- Das, S.; M.K. Jain; V. Gupta. A step towards mapping rainfall erosivity for India using high-resolution GPM satellite rainfall products. CATENA 2022, 212, 106067. [CrossRef]
- Sun, X.; Zhang, G.; Wang, J.; Li, C.; Wu, S. Spatiotemporal variation of flash floods in the Hengduan Mountains region affected by rainfall properties and land use. Nat. Hazards 2022, 111, 465–488. [Google Scholar] [CrossRef]
- Li, Z.; He, Y.; Xin, H.; Wang, C. Spatio-temporal Variations of Temperature and Precipitation in Mts. Hengduan Region during 1960-2008. Acta Geographica Sinica 2010, 65, 563–579. [Google Scholar] [CrossRef]
- Fei, X.; Yangwen, J.; Cunwen, N.; Jiajia, L.; Wenhai, Z. Variation Character of Annual, Seasonal and Monthly Temperature and Precipitation. Mountain Research 2018, 36, 171–183. [Google Scholar]
- Zhou, C.; X. Jiang; Y. Li. Features of Climate Change of Water Vapor Resource over Eastern Region of the Tibetan Plateau and Its Surroundings. Plateau Meteorology 2009, 28, 55–63.
- Yujing, L.; Runping, S.; Chunxiang, S.; Yajie, X.; Shuai, S. Rainfall erosivity in China based on CLDAS fusion precipitation. Arid Land Geography 2022, 45, 1333–1346. [Google Scholar] [CrossRef]
- Kaiheng, H.; Wei, L.; Shuang, L.; Xiuzhen, L. Spatial pattern of debris flow catchments and the rainfall amount of triggering debris flows in the Hengduan Mountains region. Acta Geographica Sinica 2019, 74, 2303–2313. [Google Scholar] [CrossRef]
- Teng, H.; Liang, Z.; Chen, S.; Liu, Y. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Sci. Total Environ. 2018, 635, 673–686. [Google Scholar] [CrossRef]
- Chuenchum, P.; M. Xu; W. Tang.Predicted trends of soil erosion and sediment yield from future land use and climate change scenarios in the Lancang–Mekong River by using the modified RUSLE model. Int. Soil Water Conserv. Res. 2020, 8, 213–227. [CrossRef]
- Lun, Y.; Liu, L.; Cheng, L.; Li, X.; Li, H.; Xu, Z. Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. Int. J. Climatol. 2021, 41, 3994–4018. [Google Scholar] [CrossRef]












| Season | Type | MIN | MAX | MEAN | Cv |
|---|---|---|---|---|---|
| Spring | Rainfall | 100.76 | 206.45 | 152.08 | 0.17 |
| Rainfall Erosivity | 67.15 | 903.7 | 270.96 | 0.70 | |
| Rainfall Erosivity Density | 0.65 | 5.08 | 1.66 | 0.56 | |
| Summer | Rainfall | 295.97 | 667.02 | 405.40 | 0.19 |
| Rainfall Erosivity | 437.79 | 3600.28 | 1045.67 | 0.52 | |
| Rainfall Erosivity Density | 1.38 | 6.42 | 2.46 | 0.35 | |
| Autumn | Rainfall | 106.87 | 311.18 | 170.84 | 0.24 |
| Rainfall Erosivity | 82.51 | 1368.38 | 326.46 | 0.76 | |
| Rainfall Erosivity Density | 0.77 | 4.41 | 1.74 | 0.48 | |
| Winter | Rainfall | 9.64 | 56.82 | 26.78 | 0.55 |
| Rainfall Erosivity | 1.12 | 116.23 | 39.53 | 1.11 | |
| Rainfall Erosivity Density | 0.07 | 2.27 | 1.02 | 0.90 |
| Type | MIN | MAX | MEAN | Cv |
|---|---|---|---|---|
| Precipitation | 545.73 | 1218.18 | 758.41 | 0.19 |
| Rainfall Erosivity | 644.1 | 4850.11 | 1699.93 | 0.56 |
| Rainfall Erosivity Density | 1.09 | 4.43 | 2.09 | 0.36 |
| Type | S | Z | Trend | Area percentage |
|---|---|---|---|---|
| precipitation | >1 | >|1.96| | Significantly increase | 0.18 |
| >1 | -1.96~1.96 | Slightly increase | 29.50 | |
| -1~1 | -1.96~1.96 | Stable | 26.65 | |
| <-1 | >|1.96| | Significantly decrease | 16.52 | |
| <-1 | -1.96~1.96 | Slightly decrease | 27.15 | |
| Rainfall erosivity | >5 | >|1.96| | Significantly increase | 7.69 |
| >5 | -1.96~1.96 | Slightly increase | 24.99 | |
| -5~5 | -1.96~1.96 | Stable | 44.31 | |
| <-5 | -1.96~1.96 | Slightly decrease | 23.01 | |
| Rainfall erosivity density | >0.005 | >|1.96| | Significantly increase | 3.41 |
| >0.005 | -1.96~1.96 | Slightly increase | 43.28 | |
| -0.005~0.005 | -1.96~1.96 | Stable | 41.60 | |
| <-0.005 | -1.96~1.96 | Slightly decrease | 11.7 |
| Rain guage | Reference period (2005-2010) | Forecast period (2025-2040) | ||||||
|---|---|---|---|---|---|---|---|---|
| EEP | EED | LCED | TEP | EEP | EED | LCED | TEP | |
| Shiqu | 25.8 | 1 | 3 | 179.9 | 21.4 | 1 | 6 | 276.5 |
| Dingqing | 30.3 | 1 | 4 | 245.1 | 23.7 | 1 | 7 | 290.3 |
| Luolong | 27.2 | 1 | 2 | 129.0 | 26.7 | 1 | 8 | 384.0 |
| Bomi | 37.5 | 1 | 6 | 397.9 | 34.4 | 3 | 11 | 882.6 |
| Chayu | 39.9 | 1 | 4 | 362.4 | 42.3 | 3 | 14 | 1335.8 |
| Gongshan | 50.5 | 2 | 7 | 1065.6 | 39.3 | 3 | 13 | 957.8 |
| Nujiang | 50.2 | 1 | 4 | 577.2 | 37.0 | 3 | 16 | 834.4 |
| Tengchong | 49.4 | 2 | 5 | 1001.0 | 35.8 | 3 | 16 | 797.5 |
| Baoshan | 53.3 | 1 | 5 | 589.4 | 34.8 | 2 | 11 | 697.1 |
| Yanyuan | 41.5 | 1 | 3 | 467.0 | 34.2 | 2 | 11 | 661.0 |
| Jiulong | 30.8 | 1 | 4 | 481.3 | 31.5 | 2 | 11 | 702.2 |
| Kangding | 32.5 | 1 | 4 | 422.9 | 33.5 | 2 | 8 | 795.7 |
| Dujiangyan | 90.8 | 1 | 6 | 790.3 | 41.9 | 2 | 8 | 707.7 |
| Songpan | 29.5 | 1 | 4 | 307.4 | 37.0 | 2 | 8 | 651.1 |
| Ruoergai | 33.2 | 1 | 3 | 308.5 | 30.1 | 2 | 6 | 538.1 |
| Hongyuan | 29.3 | 1 | 3 | 342.1 | 30.7 | 2 | 7 | 623.1 |
| Seda | 27.6 | 1 | 4 | 289.3 | 24.0 | 1 | 7 | 405.3 |
| Dege | 28.9 | 1 | 4 | 278.9 | 23.1 | 1 | 7 | 369.0 |
| Ganzi | 26.1 | 1 | 3 | 282.5 | 24.5 | 2 | 9 | 467.9 |
| Changdu | 34.4 | 1 | 3 | 164.0 | 24.8 | 1 | 8 | 309.7 |
| Xinlong | 29.1 | 1 | 5 | 266.4 | 26.3 | 2 | 9 | 568.9 |
| Daofu | 30.7 | 1 | 9 | 288.1 | 28.2 | 2 | 7 | 670.8 |
| Zuogong | 27.7 | 1 | 3 | 178.4 | 29.8 | 1 | 7 | 453.7 |
| Batang | 30.4 | 1 | 4 | 178.3 | 26.2 | 1 | 10 | 378.7 |
| Litang | 32.9 | 1 | 4 | 344.0 | 27.1 | 2 | 9 | 604.2 |
| Daocheng | 31.7 | 1 | 5 | 309.1 | 28.5 | 2 | 11 | 630.8 |
| Deqin | 37.5 | 1 | 5 | 281.2 | 32.0 | 2 | 11 | 747.1 |
| Shangri-La | 37.1 | 1 | 3 | 287.5 | 31.3 | 2 | 11 | 693.1 |
| Muli | 42.3 | 1 | 4 | 474.0 | 33.8 | 2 | 13 | 697.6 |
| Weixi | 40.0 | 1 | 5 | 517.0 | 34.7 | 3 | 13 | 756.3 |
| Maerkang | 32.1 | 1 | 5 | 408.8 | 31.1 | 2 | 7 | 736.7 |
| Xiaojin | 29.3 | 1 | 4 | 249.4 | 35.9 | 3 | 12 | 1589.3 |
| Dali | 57.2 | 1 | 4 | 708.5 | 33.0 | 2 | 10 | 1076.7 |
| Lijiang | 50.0 | 1 | 4 | 580.1 | 31.5 | 2 | 10 | 1156.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
