Submitted:
29 May 2023
Posted:
31 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Progress in somatic embryogenesis of banana
3. Stages of somatic embryogenesis and regeneration in banana
3.1. Induction of embryogenic callus
3.2. Initiation and maintenance of cell suspension cultures
3.3. Development, maturation, and germination of somatic embryos
3.4. Post flask
3.5. Cryopreservation of cell suspension cultures
4. Factors influencing somatic embryogenesis
4.1. Explant selection and manipulation
4.2. Plant growth hormones for embryogenesis
4.3. Culture medium additives
4.4. Growth room conditions
5. Molecular basis of somatic embryogenesis
6. Future prospects for improving somatic embryogenesis
7. Conclusion
Authors Contributions
Acknowledgement
Conflict of interest
References
- Dale, J.; Paul, J.-Y.; Dugdale, B.; Harding, R. Modifying Bananas: From Transgenics to Organics? Sustainability 2017, 9, 333. [Google Scholar] [CrossRef]
- Ainembabazi, J.H.; Tripathi, L.; Rusike, J.; Abdoulaye, T.; Manyong, V. Ex-Ante Economic Impact Assessment of Genetically Modified Banana Resistant to Xanthomonas Wilt in the Great Lakes Region of Africa. PLOS ONE 2015, 10, e0138998. [Google Scholar] [CrossRef]
- Ploetz, R.C.; Evans, E.A. The Future of Global Banana Production; 2015; ISBN 978-1-119-10775-0.
- Arvanitoyannis, I.S.; Mavromatis, A.G.; Grammatikaki-Avgeli, G.; Sakellariou, M. Banana: Cultivars, Biotechnological Approaches and Genetic Transformation. International Journal of Food Science & Technology 2008, 43, 1871–1879. [Google Scholar] [CrossRef]
- Sluis, A.; Hake, S. Organogenesis in Plants: Initiation and Elaboration of Leaves. Trends in Genetics 2015, 31, 300–306. [Google Scholar] [CrossRef]
- Suman, S. PLANT TISSUE CULTURE : A PROMISING TOOL OF QUALITY MATERIAL PRODUCTION WITH SPECIAL REFERENCE TO MICROPROPAGATION OF BANANA. 2017, 17, 1–26.
- Thorpe, T.A.; Stasolla, C. Somatic Embryogenesis. In Current Trends in the Embryology of Angiosperms; Bhojwani, S.S., Soh, W.-Y., Eds.; Springer Netherlands: Dordrecht, 2001; ISBN 978-94-017-1203-3. [Google Scholar]
- Escobedo-GraciaMedrano, R.M.; Enríquez-Valencia, A.J.; Youssef, M.; López-Gómez, P.; Cruz-Cárdenas, C.I.; Ku-Cauich, J.R. Somatic Embryogenesis in Banana, Musa Ssp. In Somatic Embryogenesis: Fundamental Aspects and Applications; Loyola-Vargas, V.M., Ochoa-Alejo, N., Eds.; Springer International Publishing: Cham, 2016; ISBN 978-3-319-33705-0. [Google Scholar]
- Uma, S.; Kumaravel, M.; Backiyarani, S.; Saraswathi, M.S.; Durai, P.; Karthic, R. Somatic Embryogenesis as a Tool for Reproduction of Genetically Stable Plants in Banana and Confirmatory Field Trials. Plant Cell Tiss Organ Cult 2021, 147, 181–188. [Google Scholar] [CrossRef]
- Shivani; Awasthi, P. ; Sharma, V.; Kaur, N.; Kaur, N.; Pandey, P.; Tiwari, S. Genome-Wide Analysis of Transcription Factors during Somatic Embryogenesis in Banana (Musa Spp.) Cv. Grand Naine. PLOS ONE 2017, 12, e0182242. [Google Scholar] [CrossRef]
- Shivani; Kaur, N. ; Awasthi, P.; Tiwari, S. Identification and Expression Analysis of Genes Involved in Somatic Embryogenesis of Banana. Acta Physiol Plant 2018, 40, 139. [Google Scholar] [CrossRef]
- Cronauer, S.; Krikorian, A.D. Somatic Embryos from Cultured Tissues of Triploid Plantains (Musa ‘ABB’). Plant Cell Reports 1983, 2, 289–291. [Google Scholar] [CrossRef]
- Cronauer-Mitra, S.S.; Krikorian, A.D. Plant Regeneration via Somatic Embryogenesis in the Seeded Diploid Banana Musa Ornata Roxb. Plant Cell Reports 1988, 7, 23–25. [Google Scholar] [CrossRef]
- Novak, F.J.; Afza, R.; Van Duren, M.; Perea-Dallos, M.; Conger, B.V.; Xiaolang, T. Somatic Embryogenesis and Plant Regeneration in Suspension Cultures of Dessert (AA and AAA) and Cooking (ABB) Bananas (Musa Spp.). Nat Biotechnol 1989, 7, 154–159. [Google Scholar] [CrossRef]
- Plant Regeneration in Cell Suspension Cultures of the Cooking Banana Cv. Bluggoes’ (Musa Spp. ABB Group). Available online: https://www.musalit.org/seeMore.php?id=1635 (accessed on 12 September 2022).
- Ma, S.S. Somatic Embryogenesis and Plant Regeneration from Cell Suspension Culture of Banana. In Proceedings of the Proceedings of symposium on tissue culture of horticultural crops, Taipei, Taiwan; pp. 19888181–188.
- Panis, B.; Van Wauwe, A.; Swennen, R. Plant Regeneration through Direct Somatic Embryogenesis from Protoplasts of Banana (Musa Spp.). Plant Cell Reports 1993, 12, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Escalant, J.-V.; Teisson, C.; Cote, F. Amplified Somatic Embryogenesis from Male Flowers of Triploid Banana and Plantain Cultivars (Musa Spp.). In Vitro Cell.Dev.Biol.–Plant 1994, 30, 181–186. [Google Scholar] [CrossRef]
- Gómez Kosky, R.; de Feria Silva, M.; Posada Pérez, L.; Gilliard, T.; Bernal Martínez, F.; Reyes Vega, M.; Chávez Milian, M.; Quiala Mendoza, E. Somatic Embryogenesis of the Banana Hybrid Cultivar FHIA-18 (AAAB) in Liquid Medium and Scaled-up in a Bioreactor. Plant Cell, Tissue and Organ Culture 2002, 68, 21–26. [Google Scholar] [CrossRef]
- Cryopreservation of Musa Suspension Cultures and Subsequent Regeneration of Plants. Available online: https://www.musalit.org/seeMore.php?id=7653 (accessed on 22 September 2022).
- Xu, C.; Panis, B.; Strosse, H.; Li, H.; Xiao, H.; Fan, H.; Swennen, R. Establishment of Embryogenic Cell Suspensions and Plant Regeneration of the Dessert Banana ‘Williams’ (Musa AAA Group). The Journal of Horticultural Science and Biotechnology 2005, 80, 551–556. [Google Scholar] [CrossRef]
- Wong, W.C.; Jalil, M.; Ong-Abdullah, M.; Othman, R.Y.; Khalid, N. Enhancement of Banana Plant Regeneration by Incorporating a Liquid-Based Embryo Development Medium for Embryogenic Cell Suspension. The Journal of Horticultural Science and Biotechnology 2006, 81, 385–390. [Google Scholar] [CrossRef]
- Strosse, H.; Schoofs, H.; Panis, B.; Andre, E.; Reyniers, K.; Swennen, R. Development of Embryogenic Cell Suspensions from Shoot Meristematic Tissue in Bananas and Plantains (Musa Spp.). Plant Science 2006, 170, 104–112. [Google Scholar] [CrossRef]
- Namanya, P.; Magambo, S.M.; Mutumba, G.; Tushemereirwe, W. Somatic Embryogenesis from Immature Male Inflorescences of East African Highland Banana CV ‘ Nakyetengu’. African Crop Science Journal 2004, 12, 43–49. [Google Scholar] [CrossRef]
- Yue-rong, W.E.I.; Hu, Y.; Bing-zhi, H.; Xia, H.; Xue-lin, H.; Ji-shui, Q.I.U.; Lin-bing, X.U. Effects of Picloram, ABA and TDZ on Somatic Embryogenesis of Banana. Acta Horticulturae Sinica 2007, 34, 81. [Google Scholar]
- Torres, J.L.; Kosky, R.J.; Perez, N.M.; Alvarez, D.R.; Cabrera, A.R.; Jova, M.C.; Pino, A.S.; Vega, V.M.; Pérez, M.B.; Roux, N. New Explant for Somatic Embryogenesis Induction and Plant Regeneration from Diploid Banana (‘Calcutta 4’, Musa AA). Biotechnologia Vegetal 2012, 12, 25–31. [Google Scholar]
- Tripathi, J.N.; Muwonge, A.; Tripathi, L. Efficient Regeneration and Transformation of Plantain Cv. “Gonja Manjaya” (Musa Spp. AAB) Using Embryogenic Cell Suspensions. In Vitro Cell.Dev.Biol.-Plant 2012, 48, 216–224. [Google Scholar] [CrossRef]
- Remakanthan, A.; Menon, T.G.; Soniya, E.V. Somatic Embryogenesis in Banana (Musa Acuminata AAA Cv. Grand Naine): Effect of Explant and Culture Conditions. In Vitro Cell.Dev.Biol.-Plant 2014, 50, 127–136. [Google Scholar] [CrossRef]
- Morais-Lino, L.S.; Santos-Serejo, J.A.; Amorim, E.P.; de Santana, J.R.F.; Pasqual, M.; de Oliveira e Silva, S. Somatic Embryogenesis, Cell Suspension, and Genetic Stability of Banana Cultivars. In Vitro Cell.Dev.Biol.-Plant 2016, 52, 99–106. [Google Scholar] [CrossRef]
- Natarajan, N.; Sundararajan, S.; Ramalingam, S.; Chellakan, P.S. Efficient and Rapid In-Vitro Plantlet Regeneration via Somatic Embryogenesis in Ornamental Bananas (Musa Spp.). Biologia 2020, 75, 317–326. [Google Scholar] [CrossRef]
- Escobedo-GraciaMedrano, R.M.; Maldonado-Borges, J.I.; Burgos-Tan, M.J.; Valadez-González, N.; Ku-Cauich, J.R. Using Flow Cytometry and Cytological Analyses to Assess the Genetic Stability of Somatic Embryo-Derived Plantlets from Embryogenic Musa Acuminata Colla (AA) Ssp. Malaccensis Cell Suspension Cultures. Plant Cell Tiss Organ Cult 2014, 116, 175–185. [Google Scholar] [CrossRef]
- Novak, F.J.; Afza, R.; Van Duren, M.; Perea-Dallos, M.; Conger, B.V.; Xiaolang, T. Somatic Embryogenesis and Plant Regeneration in Suspension Cultures of Dessert (AA and AAA) and Cooking (ABB) Bananas (Musa Spp.). Nat Biotechnol 1989, 7, 154–159. [Google Scholar] [CrossRef]
- Banana_and_plantain_embryogenic_cell_suspensions_975.Pdf.
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia plantarum 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Schenk, R.U.; Hildebrandt, A.C. Medium and Techniques for Induction and Growth of Monocotyledonous and Dicotyledonous Plant Cell Cultures. Can. J. Bot. 1972, 50, 199–204. [Google Scholar] [CrossRef]
- Ahmed, S.; Sharma, A. Studies on Hardening and Acclimatization of Micro-Propagated Plantlets of Banana Cv. Grand Naine. 2014, 9, 965–967. [Google Scholar]
- Panis, B.; Schoofs, H.; Remy, S.; Sági, L.; Swennen, R. Cryopreservation of Banana Embryogenic Cell Suspensions: An Aid for Genetic Transformation. Cryopreservation of tropical plant germplasm: Current research progress and application, 2000; 103–109. [Google Scholar]
- YanNa, L.; YiMing, W.; GuiBing, H.; HouBin, C.; ChunXiang, X. Plant regeneration via somatic embryogenesis after cryopreservation of embryogenic cell suspensions of banana (Musa spp. AAA) by vitrification and the genetic stability of regenerated plant. Acta Horticulturae Sinica 2010, 37, 899–905. [Google Scholar]
- Kulkarni, V.M.; Ganapathi, T.R. A Simple Procedure for Slow Growth Maintenance of Banana (Musa Spp.) Embryogenic Cell Suspension Cultures at Low Temperature. Current Science 2009, 96, 1372–1377. [Google Scholar]
- Cote, F.; Goue, O.; Domergue, R.; Panis, B.; Jenny, C. In-Field Behaviour of Banana Plants (Musa AA Sp) Obtained after Regeneration of Cryopreserved Embryogenic Cell Suspensions. Cryo Letters 2000, 21, 19–24. [Google Scholar] [PubMed]
- Youssef, M.; James, A.; Mayo-Mosqueda, A.; Ku-Cauich, J.R.; Grijalva-Arango, R.; Escobedo-GM, R.M. Influence of Genotype and Age of Explant Source on the Capacity for Somatic Embryogenesis of Two Cavendish Banana Cultivars (Musa Acuminata Colla, AAA). African Journal of Biotechnology 2010, 9, 2216–2223. [Google Scholar] [CrossRef]
- Nandhakumar, N.; Kumar, K.; Sudhakar, D.; Soorianathasundaram, K. Plant Regeneration, Developmental Pattern and Genetic Fidelity of Somatic Embryogenesis Derived Musa Spp. Journal of Genetic Engineering and Biotechnology 2018, 16, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Iwase, A.; Mita, K.; Nonaka, S.; Ikeuchi, M.; Koizuka, C.; Ohnuma, M.; Ezura, H.; Imamura, J.; Sugimoto, K. WIND1-Based Acquisition of Regeneration Competency in Arabidopsis and Rapeseed. J Plant Res 2015, 128, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Kumaravel, M.; Uma, S.; Backiyarani, S.; Saraswathi, M.S.; Vaganan, M.M.; Muthusamy, M.; Sajith, K.P. Differential Proteome Analysis during Early Somatic Embryogenesis in Musa Spp. AAA Cv. Grand Naine. Plant Cell Rep 2017, 36, 163–178. [Google Scholar] [CrossRef]
- Kumaravel, M.; Backiyarani, S.; Saraswathi, M.S.; Arun, K.; Uma, S. Induction of Somatic Embryogenesis (SE) in Recalcitrant Musa Spp. by Media Manipulation Based on SE’s Molecular Mechanism. Acta Hortic. 2020; 119–127. [Google Scholar] [CrossRef]
- Ko, W.H.; Su, C.C.; Chen, C.L.; Chao, C.P. Control of Lethal Browning of Tissue Culture Plantlets of Cavendish Banana Cv. Formosana with Ascorbic Acid. Plant Cell Tiss Organ Cult 2009, 96, 137–141. [Google Scholar] [CrossRef]
- Ngomuo, M.; Mneney, E.; Ndakidemi, P. Control of Lethal Browning by Using Ascorbic Acid on Shoot Tip Cultures of a Local Musa Spp. (Banana) Cv. Mzuzu in Tanzania. African Journal of Biotechnology 2014, 13. [Google Scholar] [CrossRef]
- Leslie, C.A.; Romani, R.J. Salicylic Acid: A New Inhibitor of Ethylene Biosynthesis. Plant Cell Reports 1986, 5, 144–146. [Google Scholar] [CrossRef]
- Marimuthu, K.; Subbaraya, U.; Suthanthiram, B.; Marimuthu, S.S. Molecular Analysis of Somatic Embryogenesis through Proteomic Approach and Optimization of Protocol in Recalcitrant Musa Spp. Physiologia plantarum 2019, 167, 282–301. [Google Scholar] [CrossRef]
- García-Mendiguren, O.; Montalbán, I.A.; Goicoa, T.; Ugarte, M.D.; Moncaleán, P. Environmental Conditions at the Initial Stages of Pinus Radiata Somatic Embryogenesis Affect the Production of Somatic Embryos. Trees 2016, 30, 949–958. [Google Scholar] [CrossRef]
- Firoozabady, E.; DeBoer, D.L. Plant Regeneration via Somatic Embryogenesis in Many Cultivars of Cotton (Gossypium Hirsutum L.). In Vitro Cell Dev Biol - Plant 1993, 29, 166–173. [Google Scholar] [CrossRef]
- Kim, Y.W.; Moon, H.K. Enhancement of Somatic Embryogenesis and Plant Regeneration in Japanese Red Pine (Pinus Densiflora). Plant Biotechnol Rep 2014, 8, 259–266. [Google Scholar] [CrossRef]
- Mengxi, L.; Zhigang, X.; Yang, Y.; Yijie, F. Effects of Different Spectral Lights on Oncidium PLBs Induction, Proliferation, and Plant Regeneration. Plant Cell Tiss Organ Cult 2011, 106, 1–10. [Google Scholar] [CrossRef]
- Rodríguez-Sahagún, A.; Acevedo-Hernández, G.; Rodríguez-Domínguez, J.M.; Rodríguez-Garay, B.; Cervantes-Martínez, J.; Castellanos-Hernández, O.A. Effect of Light Quality and Culture Medium on Somatic Embryogenesis of Agave Tequilana Weber Var. Azul. Plant Cell Tiss Organ Cult 2011, 104, 271–275. [Google Scholar] [CrossRef]
- Torné, J.M.; Moysset, L.; Santos, M.; Simón, E. Effects of Light Quality on Somatic Embryogenesis in Araujia Sericifera. Physiologia Plantarum 2001, 111, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Gulzar, B.; Mujib, A.; Malik, M.Q.; Sayeed, R.; Mamgain, J.; Ejaz, B. Genes, Proteins and Other Networks Regulating Somatic Embryogenesis in Plants. J Genet Eng Biotechnol 2020, 18, 31. [Google Scholar] [CrossRef]
- Méndez-Hernández, H.A.; Ledezma-Rodríguez, M.; Avilez-Montalvo, R.N.; Juárez-Gómez, Y.L.; Skeete, A.; Avilez-Montalvo, J.; De-la-Peña, C.; Loyola-Vargas, V.M. Signaling Overview of Plant Somatic Embryogenesis. Frontiers in Plant Science 2019, 10. [Google Scholar] [CrossRef]
- Jha, P.; Ochatt, S.J.; Kumar, V. WUSCHEL: A Master Regulator in Plant Growth Signaling. Plant Cell Rep 2020, 39, 431–444. [Google Scholar] [CrossRef]
- Zuo, J.; Niu, Q.-W.; Frugis, G.; Chua, N.-H. The WUSCHEL Gene Promotes Vegetative-to-Embryonic Transition in Arabidopsis. The Plant Journal 2002, 30, 349–359. [Google Scholar] [CrossRef]
- Kadri, A.; Grenier De March, G.; Guerineau, F.; Cosson, V.; Ratet, P. WUSCHEL Overexpression Promotes Callogenesis and Somatic Embryogenesis in Medicago Truncatula Gaertn. Plants 2021, 10, 715. [Google Scholar] [CrossRef]
- Zhang, A.; Li, Y.; Yarra, R.; Li, R.; Cao, H.; Jin, L. Genome-Wide Identification of WUSCHEL-Related Homeobox Gene Family and Their Expression Analysis During Somatic Embryogenesis in Oil Palm (Elaeis Guineensis). Tropical Plant Biol. 2022, 15, 55–64. [Google Scholar] [CrossRef]
- Lou, H.; Huang, Y.; Wang, W.; Cai, Z.; Cai, H.; Liu, Z.; Sun, L.; Xu, Q. Overexpression of the AtWUSCHEL Gene Promotes Somatic Embryogenesis and Lateral Branch Formation in Birch (Betula Platyphylla Suk.). Plant Cell Tiss Organ Cult 2022, 150, 371–383. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, Y.; Ding, Y.; Wu, J.; Wang, P.; Yu, Y.; Wei, X.; Wang, Y.; Zhang, C.; Li, F.; et al. Effects of GhWUS from Upland Cotton (Gossypium Hirsutum L.) on Somatic Embryogenesis and Shoot Regeneration. Plant Science 2018, 270, 157–165. [Google Scholar] [CrossRef]
- El Ouakfaoui, S.; Schnell, J.; Abdeen, A.; Colville, A.; Labbé, H.; Han, S.; Baum, B.; Laberge, S.; Miki, B. Control of Somatic Embryogenesis and Embryo Development by AP2 Transcription Factors. Plant Mol Biol 2010, 74, 313–326. [Google Scholar] [CrossRef]
- Passarinho, P.; Ketelaar, T.; Xing, M.; van Arkel, J.; Maliepaard, C.; Hendriks, M.W.; Joosen, R.; Lammers, M.; Herdies, L.; den Boer, B.; et al. BABY BOOM Target Genes Provide Diverse Entry Points into Cell Proliferation and Cell Growth Pathways. Plant Mol Biol 2008, 68, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Horstman, A.; Li, M.; Heidmann, I.; Weemen, M.; Chen, B.; Muino, J.M.; Angenent, G.C.; Boutilier, K. The BABY BOOM Transcription Factor Activates the LEC1-ABI3-FUS3-LEC2 Network to Induce Somatic Embryogenesis. Plant Physiology 2017, 175, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Boutilier, K.; Offringa, R.; Sharma, V.K.; Kieft, H.; Ouellet, T.; Zhang, L.; Hattori, J.; Liu, C.-M.; van Lammeren, A.A.M.; Miki, B.L.A.; et al. Ectopic Expression of BABY BOOM Triggers a Conversion from Vegetative to Embryonic Growth. The Plant Cell 2002, 14, 1737–1749. [Google Scholar] [CrossRef]
- Irikova, T.; Grozeva, S.; Denev, I. Identification of BABY BOOM and LEAFY COTYLEDON Genes in Sweet Pepper (Capsicum Annuum L.) Genome by Their Partial Gene Sequences. Plant Growth Regul 2012, 67, 191–198. [Google Scholar] [CrossRef]
- Salvo, S.A.G.D.; Hirsch, C.N.; Buell, C.R.; Kaeppler, S.M.; Kaeppler, H.F. Whole Transcriptome Profiling of Maize during Early Somatic Embryogenesis Reveals Altered Expression of Stress Factors and Embryogenesis-Related Genes. PLOS ONE 2014, 9, e111407. [Google Scholar] [CrossRef]
- Hecht, V.; Vielle-Calzada, J.-P.; Hartog, M.V.; Schmidt, E.D.L.; Boutilier, K.; Grossniklaus, U.; de Vries, S.C. The Arabidopsis Somatic Embryogenesis Receptor Kinase 1 Gene Is Expressed in Developing Ovules and Embryos and Enhances Embryogenic Competence in Culture. Plant Physiology 2001, 127, 803–816. [Google Scholar] [CrossRef]
- Somleva, M.N.; Schmidt, E.D.L.; de Vries, S.C. Embryogenic Cells in Dactylis Glomerata L. (Poaceae) Explants Identified by Cell Tracking and by SERK Expression. Plant Cell Reports 2000, 19, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.D.; Guzzo, F.; Toonen, M.A.; de Vries, S.C. A Leucine-Rich Repeat Containing Receptor-like Kinase Marks Somatic Plant Cells Competent to Form Embryos. Development 1997, 124, 2049–2062. [Google Scholar] [CrossRef]
- Huang, X.; Lu, X.-Y.; Zhao, J.-T.; Chen, J.-K.; Dai, X.-M.; Xiao, W.; Chen, Y.-P.; Chen, Y.-F.; Huang, X.-L. MaSERK1 Gene Expression Associated with Somatic Embryogenic Competence and Disease Resistance Response in Banana (Musa Spp.). Plant Mol Biol Rep 2010, 28, 309–316. [Google Scholar] [CrossRef]
- Stone, S.L.; Kwong, L.W.; Yee, K.M.; Pelletier, J.; Lepiniec, L.; Fischer, R.L.; Goldberg, R.B.; Harada, J.J. LEAFY COTYLEDON2 Encodes a B3 Domain Transcription Factor That Induces Embryo Development. Proceedings of the National Academy of Sciences 2001, 98, 11806–11811. [Google Scholar] [CrossRef]
- Zhang, Y.; Clemens, A.; Maximova, S.N.; Guiltinan, M.J. The Theobroma Cacao B3 Domain Transcription Factor TcLEC2plays a Duel Role in Control of Embryo Development and Maturation. BMC Plant Biology 2014, 14, 106. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.U.; Jung, S.-J.; Lee, K.-R.; Kim, E.H.; Lee, S.-M.; Roh, K.H.; Kim, J.-B. Ectopic Overexpression of Castor Bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis Triggers the Expression of Genes That Encode Regulators of Seed Maturation and Oil Body Proteins in Vegetative Tissues. FEBS Open Bio 2014, 4, 25–32. [Google Scholar] [CrossRef]
- Guo, F.; Liu, C.; Xia, H.; Bi, Y.; Zhao, C.; Zhao, S.; Hou, L.; Li, F.; Wang, X. Induced Expression of AtLEC1 and AtLEC2 Differentially Promotes Somatic Embryogenesis in Transgenic Tobacco Plants. PLOS ONE 2013, 8, e71714. [Google Scholar] [CrossRef]
- Ghasemi, Y.; Mashayekhi, K.; Ghasemnezhad, A.; MOVAHEDI, S. The Effects of Calcium and Magnesium on Carrot (Dacus Carrota Cv. Nants) Petiole Somatic Embryogenesis. 2009.
- Kiselev, K.V.; Turlenko, A.V.; Zhuravlev, Y.N. CDPK Gene Expression in Somatic Embryos of Panax Ginseng Expressing RolC. Plant Cell, Tissue and Organ Culture (PCTOC) 2009, 99, 141–149. [Google Scholar] [CrossRef]
- Enríquez-Valencia, A.J.; Vázquez-Flota, F.A.; Ku-Cauich, J.R.; Escobedo-GraciaMedrano, R.M. Differentially Expressed Genes during the Transition from Early to Late Development Phases in Somatic Embryo of Banana (Musa Spp. AAB Group, Silk Subgroup) Cv. Manzano. Plant Cell Tiss Organ Cult 2019, 136, 289–302. [Google Scholar] [CrossRef]
- Xie, Z.; Saha, N.; Chlan, C. Antimicrobial Activity of a Cys-Rich Peptide Derived from a Centrosema Virginianum Vicilin. American Journal of Plant Sciences 2016, 7, 92–107. [Google Scholar] [CrossRef]
- dos Santos, A.L.W.; Elbl, P.; Navarro, B.V.; de Oliveira, L.F.; Salvato, F.; Balbuena, T.S.; Floh, E.I.S. Quantitative Proteomic Analysis of Araucaria Angustifolia (Bertol.) Kuntze Cell Lines with Contrasting Embryogenic Potential. Journal of Proteomics 2016, 130, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Nic-Can, G.I.; De la Peña, C. Epigenetic Advances on Somatic Embryogenesis of Agronomical and Important Crops. In Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications: Transcriptional Regulation and Chromatin Remodelling in Plants; Alvarez-Venegas, R., De la Peña, C., Casas-Mollano, J.A., Eds.; Springer International Publishing: Cham, 2014; ISBN 978-3-319-07971-4. [Google Scholar]
- Kumar, V.; Van Staden, J. New Insights into Plant Somatic Embryogenesis: An Epigenetic View. Acta Physiol Plant 2017, 39, 194. [Google Scholar] [CrossRef]
- Méndez-Hernández, H.A.; Ledezma-Rodríguez, M.; Avilez-Montalvo, R.N.; Juárez-Gómez, Y.L.; Skeete, A.; Avilez-Montalvo, J.; De-la-Peña, C.; Loyola-Vargas, V.M. Signaling Overview of Plant Somatic Embryogenesis. Front Plant Sci 2019, 10, 77. [Google Scholar] [CrossRef] [PubMed]
- Bravo, S.; Bertín, A.; Turner, A.; Sepúlveda, F.; Jopia, P.; Parra, M.J.; Castillo, R.; Hasbún, R. Differences in DNA Methylation, DNA Structure and Embryogenesis-Related Gene Expression between Embryogenic and Non Embryogenic Lines of Pinus Radiata D. Don. Plant Cell Tiss Organ Cult 2017, 130, 521–529. [Google Scholar] [CrossRef]
- Xu, M.; Li, X.; Korban, S.S. DNA-Methylation Alterations and Exchanges during in Vitro Cellular Differentiation in Rose (Rosa Hybrida L.). Theor Appl Genet 2004, 109, 899–910. [Google Scholar] [CrossRef]
- Noceda, C.; Salaj, T.; Pérez, M.; Viejo, M.; Cañal, M.J.; Salaj, J.; Rodriguez, R. DNA Demethylation and Decrease on Free Polyamines Is Associated with the Embryogenic Capacity of Pinus Nigra Arn. Cell Culture. Trees 2009, 23, 1285. [Google Scholar] [CrossRef]
- Grzybkowska, D.; Morończyk, J.; Wójcikowska, B.; Gaj, M.D. Azacitidine (5-AzaC)-Treatment and Mutations in DNA Methylase Genes Affect Embryogenic Response and Expression of the Genes That Are Involved in Somatic Embryogenesis in Arabidopsis. Plant Growth Regul 2018, 85, 243–256. [Google Scholar] [CrossRef]
- Fraga, H.P.F.; Vieira, L.N.; Heringer, A.S.; Puttkammer, C.C.; Silveira, V.; Guerra, M.P. DNA Methylation and Proteome Profiles of Araucaria Angustifolia (Bertol.) Kuntze Embryogenic Cultures as Affected by Plant Growth Regulators Supplementation. Plant Cell Tiss Organ Cult 2016, 125, 353–374. [Google Scholar] [CrossRef]
- Yamamoto, N.; Kobayashi, H.; Togashi, T.; Mori, Y.; Kikuchi, K.; Kuriyama, K.; Tokuji, Y. Formation of Embryogenic Cell Clumps from Carrot Epidermal Cells Is Suppressed by 5-Azacytidine, a DNA Methylation Inhibitor. Journal of Plant Physiology 2005, 162, 47–54. [Google Scholar] [CrossRef]
- Santos, D.; Fevereiro, P. Loss of DNA Methylation Affects Somatic Embryogenesis in Medicago Truncatula. Plant Cell, Tissue and Organ Culture 2002, 70, 155–161. [Google Scholar] [CrossRef]
- De-la-Peña, C.; Nic-Can, G.; Galaz-Ávalos, R.; Avilez-Montalvo, R.; Loyola-Vargas, V. The Role of Chromatin Modifications in Somatic Embryogenesis in Plants. Frontiers in Plant Science 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Park, O.-S.; Jung, S.-J.; Seo, P.J. Histone Deacetylation-Mediated Cellular Dedifferentiation in Arabidopsis. Journal of Plant Physiology 2016, 191, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Mozgová, I.; Muñoz-Viana, R.; Hennig, L. PRC2 Represses Hormone-Induced Somatic Embryogenesis in Vegetative Tissue of Arabidopsis Thaliana. PLOS Genetics 2017, 13, e1006562. [Google Scholar] [CrossRef] [PubMed]

| Medium | Components | Reference |
|---|---|---|
| Ma1 | Full-strength MS salts, MS vitamins, 3% sucrose, 1 mg/l biotin, 4 mg/l 2,4-D,1 mg/l NAA, 1 mg/l IAA, 3 g/l gelrite, pH 5.8 | [16,27] |
| Ma2 | Full-strength MS salts plus vitamins, 3% sucrose, 1 mg/l biotin, 1 mg/l 2,4-D, 100 mg/l glutamine, 100 mg/l malt extract, pH 5.8 | [16,23] |
| Ma3 | SH basal salts, MS vitamins, 60 mg/l ascorbic acid, 100 mg/l glutamine, 250 mg/l proline, 100 mg/l malt extract, 400 mg/l cysteine, 60 mg/l citric acid, 0.2 mg/l NAA, 0.2 mg/l 2-ip, 0.2 mg/l kinetin, 4.5% sucrose, 3 g/l gelrite, pH 5.8 | [16,23] |
| Ma4 | Full-strength MS salts, 3% sucrose, 2 mg/l IAA, 0.5 mg/l BAP, Morel vitamins, pH 5.8 | [16,23] |
| RD1 | ½ strength MS macro salts, MS micro salts, 3% sucrose, 10 mg/l Ascorbic acid | [16,23] |
| RD2 | ½ strength MS macros salts, MS micro salts, 3% sucrose, 10 mg/l Ascorbic acid, 0.25 mg/l BAP, pH 5.8 | [23] |
| ZZ | ½ strength MS macro salts, MS micro salts, 3% sucrose, 10 mg/l Ascorbic acid, 1mg/l 2,4-D, 0.2 mg/l zeatin, 3g/l gelrite, pH 5.8 | [23,27] |
| PM | Full-strength MS salts plus vitamins, 10 mg/l ascorbic acid, 3% sucrose, 2.5 mg/l BAP, 2.4 g/l gelrite, pH 5.8 | [27] |
| RM | Full-strength MS salts plus vitamins, 10 mg/l ascorbic acid, 3% sucrose, 1 mg/l IBA, 2.4 g/l gelrite, pH 5.8 | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
