Submitted:
30 May 2023
Posted:
31 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Biosynthesis of CAPE
3. Biological Properties of CAPE
4. CAPE Derivatives as Novel Bioactive Compounds
5. CAPE Inhibits Oxidative Stress by Modulation of the Nrf2 Pathway
6. CAPE Inhibits Neuroinflammation by Modulation of the NF-κB Pathway
7. Delivery Systems for Novel CAPE Formulations
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aladag, M.A.; Turkoz, Y.; Ozcan, C.; Sahna, E.; Parlakpinar, H.; Akpolat, N.; Cigremis, Y. Caffeic acid phenethyl ester (CAPE) attenuates cerebral vasospasm after experimental subarachnoidal haemorrhage by increasing brain nitric oxide levels. Int J Dev Neurosci 2006, 24, 9–14. [Google Scholar] [CrossRef]
- Almowallad, S.; Alqahtani, L.S.; Mobashir, M. NF-kB in Signaling Patterns and Its Temporal Dynamics Encode/Decode Human Diseases. Life (Basel) 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Ang, E.S.; Pavlos, N.J.; Chai, L.Y.; Qi, M.; Cheng, T.S.; Steer, J.H.; Joyce, D.A.; Zheng, M.H.; Xu, J. Caffeic acid phenethyl ester, an active component of honeybee propolis attenuates osteoclastogenesis and bone resorption via the suppression of RANKL-induced NF-kappaB and NFAT activity. J Cell Physiol 2009, 221, 642–649. [Google Scholar] [CrossRef]
- Argente, P.G. Phenolic profile of propolis from diferent geographical origins. Final masters thesis in food safety and quality management polytechnic. University of Valencia, 2019.
- Almowallad, S.; Alqahtani, L.S.; Mobashir, M. NF-kB in Signaling Patterns and Its Temporal Dynamics Encode/Decode Human Diseases. Life (Basel) 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: problems and promises. Mol Pharm 2007, 4, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Borba, R.S.; Wilson, M.B.; Spivak, M. Hidden benefits of honeybee propolis in hives. Beekeeping–from science to practice 2017, 17–38. [CrossRef]
- Barber, S.C.; Shaw, P.J. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 2010, 48, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Borrás, C.; JSastre; García-Sala, D. ; Lloret, A.; Pallardó, F.V.; Viña, J. Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free Radic Biol Med 2003, 34, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Ceccatelli, S.; Tamm, C.; Zhang, Q.; Chen, M. Mechanisms and modulation of neural cell damage induced by oxidative stress. Physiol Behav 2007, 92, 87–92. [Google Scholar] [CrossRef]
- Celli, N.; Dragani, L.K.; Murzilli, S.; Pagliani, T.; Poggi, A. In vitro and in vivo stability of caffeic acid phenethyl ester, a bioactive compound of propolis. J Agric Food Chem 2007, 55, 3398–3407. [Google Scholar] [CrossRef] [PubMed]
- Chai, T.; Zhao, X.B.; Wang, W.F.; Qiang, Y.; Zhang, X.Y.; Yang, J.L. Design, Synthesis of N-phenethyl Cinnamide Derivatives and Their Biological Activities for the Treatment of Alzheimer's Disease: Antioxidant, Beta-amyloid Disaggregating and Rescue Effects on Memory Loss. Molecules 2018, 23. [Google Scholar] [CrossRef]
- Chan, G.C.; Cheung, K.W.; Sze, D.M. The immunomodulatory and anticancer properties of propolis. Clin Rev Allergy Immunol 2013, 44, 262–273. [Google Scholar] [CrossRef]
- Chen, C.; Kuo, Y.H.; Lin, C.C.; Chao, C.Y.; Pai, M.H.; Chiang, E.I.; Tang, F.Y. Decyl caffeic acid inhibits the proliferation of colorectal cancer cells in an autophagy-dependent manner in vitro and in vivo. PLoS One 2020, 15, e0232832. [Google Scholar] [CrossRef]
- Chen, H.; Tran, J.T.; Anderson, R.E.; Mandal, M.N. Caffeic acid phenethyl ester protects 661W cells from H2O2-mediated cell death and enhances electroretinography response in dim-reared albino rats. Mol Vis 2012, 18, 1325–1338. [Google Scholar] [PubMed]
- Chen, J.H.; Shao, Y.; Huang, M.T.; Chin, C.K.; Ho, C.T. Inhibitory effect of caffeic acid phenethyl ester on human leukemia HL-60 cells. Cancer Lett 1996, 108, 211–214. [Google Scholar] [CrossRef]
- Chen, M.J.; Chang, W.H.; Lin, C.C.; Liu, C.Y.; Wang, T.E.; Chu, C.H.; Shih, S.C.; Chen, Y.J. Caffeic acid phenethyl ester induces apoptosis of human pancreatic cancer cells involving caspase and mitochondrial dysfunction. Pancreatology 2008, 8, 566–576. [Google Scholar] [CrossRef]
- Chen, T.G.; Lee, J.J.; Lin, K.H.; Shen, C.H.; Chou, D.S.; Sheu, J.R. Antiplatelet activity of caffeic acid phenethyl ester is mediated through a cyclic GMP-dependent pathway in human platelets. Chin J Physiol 2007, 50, 121–126. [Google Scholar]
- Chen, Y.J.; Shiao, M.S.; Hsu, M.L.; Tsai, T.H.; Wang, S.Y. Effect of caffeic acid phenethyl ester, an antioxidant from propolis, on inducing apoptosis in human leukemic HL-60 cells. Journal of agricultural and food chemistry 2001, 49, 5615–5619. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Huang, A.C.; Chang, H.H.; Liao, H.F.; Jiang, C.M.; Lai, L.Y.; Chan, J.T.; Chen, Y.Y.; Chiang, J. Caffeic acid phenethyl ester, an antioxidant from propolis, protects peripheral blood mononuclear cells of competitive cyclists against hyperthermal stress. J Food Sci 2009, 74, H162–H167. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.C.; Chi, P.L.; Shen, M.C.; Shu, C.W.; Wann, S.R.; Liu, C.P.; Tseng, C.J.; Huang, W.C. Caffeic Acid Phenethyl Ester Rescues Pulmonary Arterial Hypertension through the Inhibition of AKT/ERK-Dependent PDGF/HIF-1α In Vitro and In Vivo. Int J Mol Sci 2019, 20. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Choi, S.S.; Kim, E.S.; Jedrychowski, M.P.; Yang, Y.R.; Jang, H.J.; Suh, P.G.; Banks, A.S.; Gygi, S.P.; Spiegelman, B.M. Thrap3 docks on phosphoserine 273 of PPARγ and controls diabetic gene programming. Genes Dev 2014, 28, 2361–2369. [Google Scholar] [CrossRef]
- Choi, K.; Choi, C. Differential regulation of c-Jun N-terminal kinase and NF-kappaB pathway by caffeic acid phenethyl ester in astroglial and monocytic cells. J Neurochem 2008, 105, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Lee, D.Y.; Kang, S.; Lee, M.K.; Lee, J.H.; Lee, S.H.; Lee, H.L.; Lee, H.Y.; Jeong, Y.I. Caffeic Acid Phenethyl Ester-Incorporated Radio-Sensitive Nanoparticles of Phenylboronic Acid Pinacol Ester-Conjugated Hyaluronic Acid for Application in Radioprotection. Int J Mol Sci 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Villegas, V.; Istre, H.; Heppler, B.; Gonzalez, N.; Brusman, N.; Snider, L.; Hogle, E.; Tucker, J.; Oñate, A.; Oñate, S.; Ma, L.; Paula, S. Synthesis and characterization of CAPE derivatives as xanthine oxidase inhibitors with radical scavenging properties. Bioorg Chem 2019, 86, 686–695. [Google Scholar] [CrossRef]
- Chu, Y.; Wu, P.Y.; Chen, C.W.; Lyu, J.L.; Liu, Y.J.; Wen, K.C.; Lin, C.Y.; Kuo, Y.H.; Chiang, H.M. Protective Effects and Mechanisms of N-Phenethyl Caffeamide from UVA-Induced Skin Damage in Human Epidermal Keratinocytes through Nrf2/HO-1 Regulation. Int J Mol Sci 2019, 20. [Google Scholar] [CrossRef] [PubMed]
- Cullinan, S.B.; Gordan, J.D.; Jin, J.; Harper, J.W.; Diehl, J.A. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 2004, 24, 8477–8486. [Google Scholar] [CrossRef]
- Dawson, T.M.; Dawson, V.L. Nitric oxide synthase: role as a transmitter/mediator in the brain and endocrine system. Annu Rev Med 1996, 47, 219–227. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, D.M.; Sampaio, G.R.; Pinto, C.B.; Catharino, R.R.; Bastos, D.H.M. Bioavailability of chlorogenic acids in rats after acute ingestion of maté tea (Ilex paraguariensis) or 5-caffeoylquinic acid. Eur J Nutr 2017, 56, 2541–2556. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, J.S.; Monte-Alto-Costa, A. Caffeic acid phenethyl ester improves burn healing in rats through anti-inflammatory and antioxidant effects. J Burn Care Res 2013, 34, 682–688. [Google Scholar] [CrossRef]
- Dubois, B.; Villain, N.; Frisoni, G.B.; Rabinovici, G.D.; Sabbagh, M.; Cappa, S.; Bejanin, A.; Bombois, S.; Epelbaum, S.; Teichmann, M.; Habert, M.O.; Nordberg, A.; Blennow, K.; Galasko, D.; Stern, Y.; Rowe, C.C.; Salloway, S.; Schneider, L.S.; Cummings, J.L.; Feldman, H.H. Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. Lancet Neurol 2021, 20, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Dawson, T.M.; Dawson, V.L. Nitric oxide synthase: role as a transmitter/mediator in the brain and endocrine system. Annu Rev Med 1996, 47, 219–227. [Google Scholar] [CrossRef]
- Demchenko, Y.N.; Glebov, O.K.; Zingone, A.; Keats, J.J.; Bergsagel, P.L.; Kuehl, W.M. Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood 2010, 115, 3541–3552. [Google Scholar] [CrossRef] [PubMed]
- Drescher, N.; Klein, A.M.; Neumann, P.; Yañez, O.; Leonhardt, S.D. Inside Honeybee Hives: Impact of Natural Propolis on the Ectoparasitic Mite Varroa destructor and Viruses. Insects 2017, 8. [Google Scholar] [CrossRef]
- Erkkinen, M.G.; Kim, M.O.; Geschwind, M.D. Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harb Perspect Biol 2018, 10. [Google Scholar]
- Ebadi, M.; Srinivasan, S.K.; Baxi, M.D. Oxidative stress and antioxidant therapy in Parkinson's disease. Prog Neurobiol 1996, 48, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Egan, M.F.; Kojima, M.; Callicott, J.H.; Goldberg, T.E.; Kolachana, B.S.; Bertolino, A.; Zaitsev, E.; Gold, B.; Goldman, D.; Dean, M.; Lu, B.; Weinberger, D.R. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003, 112, 257–269. [Google Scholar] [CrossRef]
- Eşrefoğlu, M.; Iraz, M.; Ateş, B.; Gül, M. Not only melatonin but also caffeic acid phenethyl ester protects kidneys against aging-related oxidative damage in Sprague Dawley rats. Ultrastruct Pathol 2012, 36, 244–251. [Google Scholar]
- Fathalipour, M.; Eghtedari, M.; Borges, F.; Silva, T.; Moosavi, F.; Firuzi, O.; Mirkhani, H. Caffeic Acid Alkyl Amide Derivatives Ameliorate Oxidative Stress and Modulate ERK1/2 and AKT Signaling Pathways in a Rat Model of Diabetic Retinopathy. Chem Biodivers 2019, 16, e1900405. [Google Scholar] [CrossRef]
- Feng, Y.; Lu, Y.W.; Xu, P.H.; Long, Y.; Wu, W.M.; Li, W.; Wang, R. Caffeic acid phenethyl ester and its related compounds limit the functional alterations of the isolated mouse brain and liver mitochondria submitted to in vitro anoxia-reoxygenation: relationship to their antioxidant activities. Biochim Biophys Acta 2008, 1780, 659–672. [Google Scholar] [CrossRef]
- Fontanilla, C.V.; Ma, Z.; Wei, X.; Klotsche, J.; Zhao, L.; Wisniowski, P.; Dodel, R.C.; Farlow, M.R.; Oertel, W.H.; Du, Y. Caffeic acid phenethyl ester prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration. Neuroscience 2011, 188, 135–141. [Google Scholar] [CrossRef]
- Fontanilla, C.V.; Wei, X.; Zhao, L.; Johnstone, B.; Pascuzzi, R.M.; Farlow, M.R.; Du, Y. Caffeic acid phenethyl ester extends survival of a mouse model of amyotrophic lateral sclerosis. Neuroscience 2012, 205, 185–193. [Google Scholar] [CrossRef]
- García Argente, P. (2018). "Perfil fenólico de propóleos de diferentes orígenes geográficos.".
- Göçer, H.; Gülçin, I. Caffeic acid phenethyl ester (CAPE): correlation of structure and antioxidant properties. Int J Food Sci Nutr 2011, 62, 821–825. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; Gómez-Romero, M.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Advances in the analysis of phenolic compounds in products derived from bees. Journal of pharmaceutical and biomedical analysis 2006, 41, 1220–1234. [Google Scholar]
- Freires, I.A.; Queiroz, V.; Furletti, V.F.; Ikegaki, M.; de Alencar, S.M.; Duarte, M.C.T.; Rosalen, P.L. Chemical composition and antifungal potential of Brazilian propolis against Candida spp. J Mycol Med 2016, 26, 122–132. [Google Scholar] [CrossRef]
- Gupta, V.K.; Fakhri, A.; Agarwal, S.; Ahmadi, E.; Nejad, P.A. Synthesis and characterization of MnO(2)/NiO nanocomposites for photocatalysis of tetracycline antibiotic and modification with guanidine for carriers of Caffeic acid phenethyl ester-an anticancer drug. J Photochem Photobiol B 2017, 174, 235–242. [Google Scholar] [CrossRef]
- Ha, J.; Choi, H.S.; Lee, Y.; Lee, Z.H.; Kim, H.H. Caffeic acid phenethyl ester inhibits osteoclastogenesis by suppressing NF kappaB and downregulating NFATc1 and c-Fos. Int Immunopharmacol 2009, 9, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 2001, 18, 685–716. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Oxford University Press: 2015.
- Hammer, B.; Parker, W.D., Jr.; Bennett, J.P., Jr. NMDA receptors increase OH radicals in vivo by using nitric oxide synthase and protein kinase C. Neuroreport 1993, 5, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Hassan, N.A.; El-Bassossy, H.M.; Mahmoud, M.F.; Fahmy, A. Caffeic acid phenethyl ester, a 5-lipoxygenase enzyme inhibitor, alleviates diabetic atherosclerotic manifestations: effect on vascular reactivity and stiffness. Chem Biol Interact 2014, 213, 28–36. [Google Scholar] [CrossRef]
- Hayashi, M. Oxidative stress in developmental brain disorders. Neuropathology 2009, 29, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Heppner, F.L.; Ransohoff, R.M.; Becher, B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 2015, 16, 358–372. [Google Scholar] [CrossRef]
- Hernandez, J.; Goycoolea, F.M.; Quintero, J.; Acosta, A.; Castañeda, M.; Dominguez, Z.; Robles, R.; Vazquez-Moreno, L.; Velazquez, E.F.; Astiazaran, H.; Lugo, E. Sonoran propolis: chemical composition and antiproliferative activity on cancer cell lines. Planta medica 2007, 73, 1469–1474. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Jin, M.; Pi, R.; Zhang, J.; Chen, M.; Ouyang, Y.; Liu, A.; Chao, X.; Liu, P.; Liu, J.; Ramassamy, C. Protective effects of caffeic acid and caffeic acid phenethyl ester against acrolein-induced neurotoxicity in HT22 mouse hippocampal cells. Neurosci Lett 2013, 535, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Ilhan, A.; Akyol, O.; Gurel, A.; Armutcu, F.; Iraz, M.; Oztas, E. Protective effects of caffeic acid phenethyl ester against oxidative stress induced by experimental allergic encephalomyelitis in rats. Free Rad. Biol. Medicine 2004, 37, 386–394. [Google Scholar] [CrossRef]
- Irmak, M.K.; Fadillioglu, E.; Sogut, S.; Erdogan, H.; Gulec, M.; Ozer, M.; Yagmurca, M.; Gozukara, M.E. Effects of caffeic acid phenethyl ester and alpha-tocopherol on reperfusion injury in rat brain. Cell Biochem Funct 2003, 21, 283–289. [Google Scholar] [CrossRef]
- Itoh, K.; Tong, K.I.; Yamamoto, M. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 2004, 36, 1208–1213. [Google Scholar] [CrossRef] [PubMed]
- Jung, B.I.; Kim, M.S.; Kim, H.A.; Kim, D.; Yang, J.; Her, S.; Song, Y.S. Caffeic acid phenethyl ester, a component of beehive propolis, is a novel selective estrogen receptor modulator. Phytother Res 2010, 24, 295–300. [Google Scholar] [CrossRef]
- Kamat, C.D.; Gadal, S.; Mhatre, M.; Williamson, K.S.; Pye, Q.N.; Hensley, K. Antioxidants in central nervous system diseases: preclinical promise and translational challenges. J Alzheimers Dis 2008, 15, 473–493. [Google Scholar] [CrossRef]
- Kapare, H.S.; Lohidasan, S.; Sinnathambi, A.; Mahadik, K. Formulation Development of Folic Acid Conjugated PLGA Nanoparticles for Improved Cytotoxicity of Caffeic Acid Phenethyl Ester. Pharm Nanotechnol 2021, 9, 111–119. [Google Scholar] [CrossRef]
- Kazancioglu, H.O.; Aksakalli, S.; Ezirganli, S.; Birlik, M.; Esrefoglu, M.; Acar, A.H. Effect of caffeic acid phenethyl ester on bone formation in the expanded inter-premaxillary suture. Drug Des Devel Ther 2015, 9, 6483–6488. [Google Scholar] [CrossRef]
- Kazancioglu, H.O.; Bereket, M.C.; Ezirganli, S.; Aydin, M.S.; Aksakalli, S. Effects of caffeic acid phenethyl ester on wound healing in calvarial defects. Acta Odontol Scand 2015, 73, 21–27. [Google Scholar] [CrossRef]
- Khan, M.; Elango, C.; Ansari, M.A.; Singh, I.; Singh, A.K. Caffeic acid phenethyl ester reduces neurovascular inflammation and protects rat brain following transient focal cerebral ischemia. J Neurochem 2007, 102, 365–377. [Google Scholar] [CrossRef]
- Kim, H.; Kim, W.; Yum, S.; Hong, S.; Oh, J.-E.; Lee, J.-W.; Kwak, M.-K.; Park, E.J.; Na, D.H.; Jung, Y. Caffeic acid phenethyl ester activation of Nrf2 pathway is enhanced under oxidative state: Structural analysis and potential as a pathologically targeted therapeutic agent in treatment of colonic inflammation. Free Radical Biology and Medicine 2013, 65, 552–562. [Google Scholar]
- Kızıldağ, A.; Arabacı, T.; Albayrak, M.; Taşdemir, U.; Şenel, E.; Dalyanoglu, M.; Demirci, E. Therapeutic effects of caffeic acid phenethyl ester on alveolar bone loss in rats with endotoxin-induced periodontitis. J Dent Sci 2019, 14, 339–345. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kang, M.I.; Okawa, H.; Ohtsuji, M.; Zenke, Y.; Chiba, T.; Igarashi, K.; Yamamoto, M. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 2004, 24, 7130–7139. [Google Scholar] [CrossRef] [PubMed]
- Krol, W.; Scheller, S.; Shani, J.; Pietsz, G.; Czuba, Z. Synergistic effect of ethanolic extract of propolis and antibiotics on the growth of staphylococcus aureus. Arzneimittelforschung 1993, 43, 607–609. [Google Scholar] [PubMed]
- Kuo, Y.H.; Chen, C.W.; Chu, Y.; Lin, P.; Chiang, H.M. In Vitro and In Vivo Studies on Protective Action of N-Phenethyl Caffeamide against Photodamage of Skin. PLoS One 2015, 10, e0136777. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.H.; Chiang, H.L.; Wu, P.Y.; Chu, Y.; Chang, Q.X.; Wen, K.C.; Lin, C.Y.; Chiang, H.M. Protection against Ultraviolet A-Induced Skin Apoptosis and Carcinogenesis through the Oxidative Stress Reduction Effects of N-(4-bromophenethyl) Caffeamide, A Propolis Derivative. Antioxidants (Basel) 2020, 9. [Google Scholar] [CrossRef]
- Kurauchi, Y.; Hisatsune, A.; Isohama, Y.; Mishima, S.; Katsuki, H. Caffeic acid phenethyl ester protects nigral dopaminergic neurons via dual mechanisms involving haem oxygenase-1 and brain-derived neurotrophic factor. Br J Pharmacol 2012, 166, 1151–1168. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Rzepecka-Stojko, A.; Górecki, M.; Stojko, J.; Sosada, M.; Świerczek-Zięba, G.J.M. Structure and antioxidant activity of polyphenols derived from propolis. Molecules 2013, 19, 78–101. [Google Scholar] [CrossRef]
- Karin, M.; Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 2000, 18, 621–663. [Google Scholar] [CrossRef]
- Lai, J.L.; Liu, Y.H.; Liu, C.; Qi, M.P.; Liu, R.N.; Zhu, X.F.; Zhou, Q.G.; Chen, Y.Y.; Guo, A.Z.; Hu, C.M. Indirubin Inhibits LPS-Induced Inflammation via TLR4 Abrogation Mediated by the NF-kB and MAPK Signaling Pathways. Inflammation 2017, 40, 1–12. [Google Scholar] [CrossRef]
- Lee, H.Y.; Jeong, Y.I.; Kim, E.J.; Lee, K.D.; Choi, S.H.; Kim, Y.J.; Kim, D.H.; Choi, K.C. Preparation of caffeic acid phenethyl ester-incorporated nanoparticles and their biological activity. J Pharm Sci 2015, 104, 144–154. [Google Scholar] [CrossRef]
- Lee, J.M.; Johnson, J.A. An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol 2004, 37, 139–143. [Google Scholar] [CrossRef]
- Leiva, A.M.; Martínez-Sanguinetti, M.A.; Troncoso-Pantoja, C.; Nazar, G.; Petermann-Rocha, F.; Celis-Morales, C. [Parkinson's Disease in Chile: Highest Prevalence in Latin America]. Rev Med Chil 2019, 147, 535–536. [Google Scholar] [CrossRef]
- Li, K.; Tu, Y.; Liu, Q.; Ouyang, Y.; He, M.; Luo, M.; Chen, J.; Pi, R.; Liu, A. PT93, a novel caffeic acid amide derivative, suppresses glioblastoma cells migration, proliferation and MMP-2/-9 expression. Oncol Lett 2017, 13, 1990–1996. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Y.; Lee, C.F.; Wei, Y.H. Role of reactive oxygen species-elicited apoptosis in the pathophysiology of mitochondrial and neurodegenerative diseases associated with mitochondrial DNA mutations. J Formos Med Assoc 2009, 108, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Loboda, A.; Damulewicz, M.; Pyza, E.; Jozkowicz, A.; Dulak, J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 2016, 73, 3221–3247. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Li, S.; Dai, D.; Zhang, Q.; Min, Z.; Yang, C.; Sun, S.; Ye, L.; Teng, C.; Cao, X.; Yin, H.; Lv, L.; Lv, W.; Xin, H. Enhanced treatment of cerebral ischemia-Reperfusion injury by intelligent nanocarriers through the regulation of neurovascular units. Acta Biomater 2022, 147, 314–326. [Google Scholar] [CrossRef]
- Markesbery, W.R.; Carney, J.M. Oxidative alterations in Alzheimer's disease. Brain Pathol 1999, 9, 133–146. [Google Scholar] [CrossRef]
- Marlatt, M.W.; Lucassen, P.J.; Perry, G.; Smith, M.A.; Zhu, X. Alzheimer's disease: cerebrovascular dysfunction, oxidative stress, and advanced clinical therapies. J Alzheimers Dis 2008, 15, 199–210. [Google Scholar] [CrossRef]
- Matsunaga, T.; Tsuchimura, S.; Azuma, N.; Endo, S.; Ichihara, K.; Ikari, A. Caffeic acid phenethyl ester potentiates gastric cancer cell sensitivity to doxorubicin and cisplatin by decreasing proteasome function. Anticancer Drugs 2019, 30, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Wang, Z.; Zhang, Y.; Wan, T.; Xue, J.; He, W.; Luo, Y.; Xu, Y.; Bai, X.; Wang, Q.; Huang, Y. FA-97, a New Synthetic Caffeic Acid Phenethyl Ester Derivative, Ameliorates DSS-Induced Colitis Against Oxidative Stress by Activating Nrf2/HO-1 Pathway. Front Immunol 2019, 10, 2969. [Google Scholar] [CrossRef]
- Metzner, J.; Bekemeier, H.; Paintz, M.; Schneidewind, E. [On the antimicrobial activity of propolis and propolis constituents (author's transl)]. Pharmazie 1979, 34, 97–102. [Google Scholar]
- Moosavi, F.; Hosseini, R.; Rajaian, H.; Silva, T.; Magalhães, E.S.D.; Saso, L.; Edraki, N.; Miri, R.; Borges, F.; Firuzi, O. Derivatives of caffeic acid, a natural antioxidant, as the basis for the discovery of novel nonpeptidic neurotrophic agents. Bioorg Med Chem 2017, 25, 3235–3246. [Google Scholar] [CrossRef] [PubMed]
- Machado, B.A.; Silva, R.P.; Gde, A.B.; Costa, S.S.; Silva, D.F.; Brandão, H.N.; Rocha, J.L.; Dellagostin, O.A.; Henriques, J.A.; Umsza-Guez, M.A.; Padilha, F.F. Chemical Composition and Biological Activity of Extracts Obtained by Supercritical Extraction and Ethanolic Extraction of Brown, Green and Red Propolis Derived from Different Geographic Regions in Brazil. PLoS One 2016, 11, e0145954. [Google Scholar] [CrossRef] [PubMed]
- Mincheva, S.; Garcera, A.; Gou-Fabregas, M.; Encinas, M.; Dolcet, X.; Soler, R.M. The canonical nuclear factor-κB pathway regulates cell survival in a developmental model of spinal cord motoneurons. J Neurosci 2011, 31, 6493–6503. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, S.; Inagaki, R.; Saito, T.; Saido, T.C.; Fukunaga, K. Propolis Promotes Memantine-Dependent Rescue of Cognitive Deficits in APP-KI Mice. Mol Neurobiol 2022, 59, 4630–4646. [Google Scholar] [CrossRef]
- Morroni, F.; Sita, G.; Graziosi, A.; Turrini, E.; Fimognari, C.; Tarozzi, A.; Hrelia, P. Neuroprotective Effect of Caffeic Acid Phenethyl Ester in A Mouse Model of Alzheimer's Disease Involves Nrf2/HO-1 Pathway. Aging Dis 2018, 9, 605–622. [Google Scholar] [CrossRef]
- Murtaza, G.; Sajjad, A.; Mehmood, Z.; Shah, S.H.; Siddiqi, A.R. Possible molecular targets for therapeutic applications of caffeic acid phenethyl ester in inflammation and cancer. J Food Drug Anal 2015, 23, 11–18. [Google Scholar] [CrossRef]
- Natarajan, K.; Singh, S.; Burke, T.R., Jr.; Grunberger, D.; Aggarwal, B.B. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci USA 1996, 93, 9090–9095. [Google Scholar] [CrossRef]
- Nagaoka, T.; Banskota, A.H.; Tezuka, Y.; Saiki, I.; Kadota, S. Selective antiproliferative activity of caffeic acid phenethyl ester analogues on highly liver-metastatic murine colon 26-L5 carcinoma cell line. Bioorg Med Chem 2002, 10, 3351–3359. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, K.; Singh, S.; Burke, T.R., Jr.; Grunberger, D.; Aggarwal, B.B. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci USA 1996, 93, 9090–9095. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, K.; Zheng, S.; Wang, Y.; Ren, Q.; Li, H.; Ding, L.; Li, W.; Zhang, L. Antibacterial Effect of Caffeic Acid Phenethyl Ester on Cariogenic Bacteria and Streptococcus mutans Biofilms. Antimicrob Agents Chemother 2020, 64. [Google Scholar] [CrossRef]
- Omar, M.H.; Mullen, W.; Stalmach, A.; Auger, C.; Rouanet, J.M.; Teissedre, P.L.; Caldwell, S.T.; Hartley, R.C.; Crozier, A. Absorption, disposition, metabolism, and excretion of [3-(14)C]caffeic acid in rats. J Agric Food Chem 2012, 60, 5205–5214. [Google Scholar] [CrossRef] [PubMed]
- Ozdal, T.; Ceylan, F.D.; Eroglu, N.; Kaplan, M.; Olgun, E.O.; Capanoglu, E.J.F.R.I. Investigation of antioxidant capacity, bioaccessibility and LC-MS/MS phenolic profile of Turkish propolis. Food Research International 2019, 122, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Oeckinghaus, A.; Ghosh, S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 2009, 1, a000034. [Google Scholar] [CrossRef]
- Pazin, W.M.; Monaco, L.D.M.; Soares, A.E.E.; Miguel, F.G.; Berretta, A.A.; Ito, A.S. Antioxidant activities of three stingless bee propolis and green propolis types. Journal of Apicultural Research 2017, 56, 40–49. [Google Scholar] [CrossRef]
- Przybyłek, I.; Karpiński, T.M. Antibacterial Properties of Propolis. Molecules 2019, 24. [Google Scholar] [CrossRef]
- Sies, H. Biochemistry of oxidative stress. Angewandte Chemie International Edition in English 1986, 25, 1058–1071. [Google Scholar] [CrossRef]
- Pittalà, V.; Salerno, L.; Romeo, G.; Acquaviva, R.; Di Giacomo, C.; Sorrenti, V. Therapeutic Potential of Caffeic Acid Phenethyl Ester (CAPE) in Diabetes. Curr Med Chem 2018, 25, 4827–4836. [Google Scholar] [CrossRef]
- Colpan, R.D.; Erdemir, A. Co-delivery of quercetin and caffeic acid phenethyl ester by polymeric nanoparticles to enhance antitumor efficacy in colon cancer cells. Journal of Microencapsulation 2021, 38, 381–393. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free radical biology and medicine 1996, 20, 933–956. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.; Freire, J.; Pastene, E.; García, A.; Aranda, M.; González, C. Propolis polyphenolic compounds affect the viability and structure of Helicobacter pylori in vitro. Revista Brasileira de Farmacognosia 2019, 29, 325–332. [Google Scholar] [CrossRef]
- Roos, T.U.; Heiss, E.H.; Schwaiberger, A.V.; Schachner, D.; Sroka, I.M.; Oberan, T.; Vollmar, A.M.; Dirsch, V.M. Caffeic acid phenethyl ester inhibits PDGF-induced proliferation of vascular smooth muscle cells via activation of p38 MAPK, HIF-1α, and heme oxygenase-1. J Nat Prod 2011, 74, 352–356. [Google Scholar] [CrossRef]
- Sapolsky, R.M. Why stress is bad for your brain. Science 1996, 273, 749–750. [Google Scholar] [CrossRef]
- Scheller, S.; Dworniczak, S.; Waldemar-Klimmek, K.; Rajca, M.; Tomczyk, A.; Shani, J. Synergism between ethanolic extract of propolis (EEP) and anti-tuberculosis drugs on growth of mycobacteria. Z Naturforsch C J Biosci 1999, 54, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Serarslan, G.; Altuğ, E.; Kontas, T.; Atik, E.; Avci, G. Caffeic acid phenethyl ester accelerates cutaneous wound healing in a rat model and decreases oxidative stress. Clin Exp Dermatol 2007, 32, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Yamashita, A.; Nakakoshi, M.; Yokoe, H.; Sudo, M.; Kasai, H.; Tanaka, T.; Fujimoto, Y.; Ikeda, M.; Kato, N.; Sakamoto, N.; Shindo, H.; Maekawa, S.; Enomoto, N.; Tsubuki, M.; Moriishi, K. Inhibitory effects of caffeic acid phenethyl ester derivatives on replication of hepatitis C virus. PLoS One 2013, 8, e82299. [Google Scholar] [CrossRef]
- Singh, J.; Khan, M.; Singh, I. Caffeic acid phenethyl ester induces adrenoleukodystrophy (Abcd2) gene in human X-ALD fibroblasts and inhibits the proinflammatory response in Abcd1/2 silenced mouse primary astrocytes. Biochim Biophys Acta 2013, 1831, 747–758. [Google Scholar] [CrossRef]
- Song, M.K.; Cho, A.R.; Sim, G.; Ahn, J.H. Synthesis of Diverse Hydroxycinnamoyl Phenylethanoid Esters Using Escherichia coli. J Agric Food Chem 2019, 67, 2028–2035. [Google Scholar] [CrossRef]
- Sonnen, J.A.; Breitner, J.C.; Lovell, M.A.; Markesbery, W.R.; Quinn, J.F.; Montine, T.J. Free radical-mediated damage to brain in Alzheimer's disease and its transgenic mouse models. Free Radic Biol Med 2008, 45, 219–230. [Google Scholar] [CrossRef]
- Sorrenti, V.; Raffaele, M.; Vanella, L.; Acquaviva, R.; Salerno, L.; Pittalà, V.; Intagliata, S.; Di Giacomo, C. Protective Effects of Caffeic Acid Phenethyl Ester (CAPE) and Novel Cape Analogue as Inducers of Heme Oxygenase-1 in Streptozotocin-Induced Type 1 Diabetic Rats. Int J Mol Sci 2019, 20. [Google Scholar] [CrossRef]
- Sun, W.; Xie, W.; Huang, D.; Cui, Y.; Yue, J.; He, Q.; Jiang, L.; Xiong, J.; Sun, W.; Yi, Q. Caffeic acid phenethyl ester attenuates osteoarthritis progression by activating NRF2/HO-1 and inhibiting the NF-κB signaling pathway. Int J Mol Med 2022, 50. [Google Scholar] [CrossRef] [PubMed]
- Sykiotis, G.P.; Bohmann, D. Stress-activated cap'n'collar transcription factors in aging and human disease. Sci Signal 2010, 3, re3. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Xie, W.; Huang, D.; Cui, Y.; Yue, J.; He, Q.; Jiang, L.; Xiong, J.; Sun, W.; Yi, Q. Caffeic acid phenethyl ester attenuates osteoarthritis progression by activating NRF2/HO-1 and inhibiting the NF-κB signaling pathway. Int J Mol Med 2022, 50. [Google Scholar] [CrossRef] [PubMed]
- Tiveron, A.P.; Rosalen, P.L.; Franchin, M.; Lacerda, R.C.; Bueno-Silva, B.; Benso, B.; Denny, C.; Ikegaki, M.; Alencar, S.M. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis. PLoS One 2016, 11, e0165588. [Google Scholar] [CrossRef]
- Tonda-Turo, C.; Origlia, N.; Mattu, C.; Accorroni, A.; Chiono, V. Current Limitations in the Treatment of Parkinson's and Alzheimer's Diseases: State-of-the-Art and Future Perspective of Polymeric Carriers. Curr Med Chem 2018, 25, 5755–5771. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi, S.J.; Cleeter, M.W.; Xuereb, J.; Taanman, J.W.; Cooper, J.M.; Schapira, A.H. Biochemical abnormalities and excitotoxicity in Huntington's disease brain. Ann Neurol 1999, 45, 25–32. [Google Scholar] [CrossRef]
- Tolba, M.F.; El-Serafi, A.T.; Omar, H.A. Caffeic acid phenethyl ester protects against glucocorticoid-induced osteoporosis in vivo: Impact on oxidative stress and RANKL/OPG signals. Toxicol Appl Pharmacol 2017, 324, 26–35. [Google Scholar] [CrossRef]
- Tomur, A.; Kanter, M.; Gurel, A.; Erboga, M. The efficiency of CAPE on retardation of hepatic fibrosis in biliary obstructed rats. J Mol Histol 2011, 42, 451–458. [Google Scholar] [CrossRef]
- Tsai, T.H.; Yu, C.H.; Chang, Y.P.; Lin, Y.T.; Huang, C.J.; Kuo, Y.H.; Tsai, P.J. Protective Effect of Caffeic Acid Derivatives on tert-Butyl Hydroperoxide-Induced Oxidative Hepato-Toxicity and Mitochondrial Dysfunction in HepG2 Cells. Molecules 2017, 22. [Google Scholar] [CrossRef] [PubMed]
- Veloz, J.J.; Alvear, M.; Salazar, L.A. Antimicrobial and Antibiofilm Activity against Streptococcus mutans of Individual and Mixtures of the Main Polyphenolic Compounds Found in Chilean Propolis. Biomed Res Int 2019, 2019, 7602343. [Google Scholar] [CrossRef]
- Wan, T.; Wang, Z.; Luo, Y.; Zhang, Y.; He, W.; Mei, Y.; Xue, J.; Li, M.; Pan, H.; Li, W.; Wang, Q.; Huang, Y. FA-97, a New Synthetic Caffeic Acid Phenethyl Ester Derivative, Protects against Oxidative Stress-Mediated Neuronal Cell Apoptosis and Scopolamine-Induced Cognitive Impairment by Activating Nrf2/HO-1 Signaling. Oxid Med Cell Longev 2019, 2019, 8239642. [Google Scholar] [CrossRef]
- Wang, J.; Bhargava, P.; Yu, Y.; Sari, A.N.; Zhang, H.; Ishii, N.; Yan, K.; Zhang, Z.; Ishida, Y.; Terao, K.; Kaul, S.C.; Miyako, E.; Wadhwa, R. Novel Caffeic Acid Phenethyl Ester-Mortalin Antibody Nanoparticles Offer Enhanced Selective Cytotoxicity to Cancer Cells. Cancers (Basel) 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, L.; Wu, W.; Long, Y.; Wang, R. Potential cytoprotection: antioxidant defence by caffeic acid phenethyl ester against free radical-induced damage of lipids, DNA, and proteins. Can J Physiol Pharmacol 2008, 86, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Stavchansky, S.; Kerwin, S.M.; Bowman, P.D. Structure-activity relationships in the cytoprotective effect of caffeic acid phenethyl ester (CAPE) and fluorinated derivatives: effects on heme oxygenase-1 induction and antioxidant activities. Eur J Pharmacol 2010, 635, 16–22. [Google Scholar] [CrossRef]
- Watabe, M.; Hishikawa, K.; Takayanagi, A.; Shimizu, N.; Nakaki, T.J.J.O.B.C. Caffeic acid phenethyl ester induces apoptosis by inhibition of NFκB and activation of Fas in human breast cancer MCF-7 cells. Journal of Biological Chemistry 2004, 279, 6017–6026. [Google Scholar] [CrossRef]
- Wei, X.; Zhao, L.; Ma, Z.; Holtzman, D.M.; Yan, C.; Dodel, R.C.; Hampel, H.; Oertel, W.; Farlow, M.R.; Du, Y. Caffeic acid phenethyl ester prevents neonatal hypoxic-ischaemic brain injury. Brain 2004, 127 Pt 12, 2629–2635. [Google Scholar] [CrossRef]
- Xiang, D.; Wang, D.; He, Y.; Xie, J.; Zhong, Z.; Li, Z.; Xie, J. Caffeic acid phenethyl ester induces growth arrest and apoptosis of colon cancer cells via the β-catenin/T-cell factor signaling. Anti-cancer drugs 2006, 17, 753–762. [Google Scholar] [CrossRef]
- Yasui, N.; Nishiyama, E.; Juman, S.; Negishi, H.; Miki, T.; Yamori, Y.; Ikeda, K. Caffeic acid phenethyl ester suppresses oxidative stress in 3T3-L1 adipocytes. J Asian Nat Prod Res 2013, 15, 1189–1196. [Google Scholar] [CrossRef]
- Yordanov, Y.; Aluani, D.; Tzankova, V.; Rangelov, S.; Odzhakov, F.; Apostolov, A.; Yoncheva, K. Safety assessment of a newly synthesized copolymer for micellar delivery of hydrophobic caffeic acid phenethyl ester. Pharmaceutical Development and Technology 2020, 25, 1271–1280. [Google Scholar] [CrossRef] [PubMed]
- Zawawi, M.S.; Perilli, E.; Stansborough, R.L.; Marino, V.; Cantley, M.D.; Xu, J.; Dharmapatni, A.A.; Haynes, D.R.; Gibson, R.J.; Crotti, T.N. Caffeic acid phenethyl ester abrogates bone resorption in a murine calvarial model of polyethylene particle-induced osteolysis. Calcif Tissue Int 2015, 96, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Huang, Y.; Przedborski, S. Oxidative stress in Parkinson's disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci 2008, 1147, 93–104. [Google Scholar] [CrossRef] [PubMed]









| Pharmacological effect | Molecular mechanism | Reference |
|---|---|---|
| Wound repair | CAPE promotes early inflammatory response (increased NOS2, TNF-α, and NF-κB) associated with a short-term event, leading to fast skin wound healing and inhibition of inflammation. Significant increase in the glutathione (GSH) level, an endogenous antioxidant that plays a key role in cellular defense against oxidative stress. Considerable decrease in malondialdehyde (MDA) and superoxide dismutase activity. | (Serarslan, Altuğ et al. 2007, dos Santos and Monte-Alto-Costa 2013) |
|
Antidiabetic Properties |
CAPE is a heme oxygenase 1 (HO-1) inducer, combating the increase of reactive oxygen species (ROS), induced by hyperglycemia. It inhibits the 5-lipoxygenase, alleviating diabetic atherosclerotic symptoms (an important macrovascular complication of diabetes). It restores adipocyte function by increasing adiponectin and PPARγ (their activation leads to improved insulin sensitivity), leading the reduction of proinflammatory factors. | (Choi, Choi et al. 2014, Hassan, El-Bassossy et al. 2014, Pittalà, Salerno et al. 2018, Sorrenti, Raffaele et al. 2019) |
| Anticancer properties | Inhibition of DNA synthesis, disruption of growth signal transmission, induction of apoptosis through an internal apoptotic pathway and promotion of anti-angiogenic effects. It enhances the anti-cancer effect of first-line chemotherapy drugs, an example being the drug paclitaxel in a rat model of DMBA-induced breast cancer, resulting in lower tumor weights compared to those with paclitaxel alone. CAPE protects normal cells against the effects of anticancer drugs by acting as a chemopreventive agent, in the case of the drug irinotecan it protects normal blood, liver and kidney cells without affecting the cytotoxicity of irinotecan in the in vivo model of Ehrlich ascites tumor cells. |
(Natarajan, Singh et al. 1996, Chen, Chang et al. 2008, Roos, Heiss et al. 2011, Chan, Cheung et al. 2013, Yasui, Nishiyama et al. 2013, Matsunaga, Tsuchimura et al. 2019) |
| Periodontitis treatment | It improves bone healing, preventing RANKL-induced osteoclastogenesis (causes follicular bone destruction), suggesting its use as a regenerative agent in therapy of bone resorption. | (Kazancioglu, Aksakalli et al. 2015, Kazancioglu, Bereket et al. 2015, Kızıldağ, Arabacı et al. 2019) |
|
Antibacterial activity |
High activity against Mycobactrium tuberculosis, Mycobacterium avium, Streptococcus piogenes Klebsiella pneumoniae and Staphylococcus epidermidis. It presents synergistic activity with many antituberculosis drugs, including rifamycin, streptomycin, isoniazid and antibiotics as gentamicin, tetracycline, chloramphenicol, vancomycin, clindamycin, netilmicin. CAPE Inhibits biofilm formation and lactic acid and extracellular polysaccharide production in S. mutans. | (Krol, Scheller et al. 1993, Scheller, Dworniczak et al. 1999, Veloz, Alvear et al. 2019, Niu, Wang et al. 2020) |
|
Antiatherogenic effects |
In human platelets CAPE (15 and 25 µM) markedly inhibited platelet aggregation stimulated by collagen (2 µg/ml). |
(Chen, Lee et al. 2007) |
|
Estrogenic effects |
CAPE is a selective agonist of ER-β estrogen receptors (present in the lungs, blood vessels, brain and bones). | (Jung, Kim et al. 2010) |
| Hepatoprotective effects | In liver CAPE elevates tissue catalase (CAT) activity and ameliorates ultrastructural changes associated with aging, also gives protection against necrosis, lipid peroxidation, aberrant cell proliferation and p65 activation (decreased number of preneoplastic nodules and reduced incidence of liver tumors). Reduced malondialdehyde (MDA) levels and increased activities of glutathione peroxidase (GPx) together with superoxide dismutase (SOD) in liver tissue. | (Tomur, Kanter et al. 2011, Eşrefoğlu, Iraz et al. 2012) |
| Lung protection | Effects on pulmonary arterial hypertension and fibrosis by HIF-1α/platelet-derived growth factor (PDGF)-dependent Akt/ERK pathways. | (Cheng, Chi et al. 2019) |
|
Protection of the bone diseases |
CAPE induce osteoclast apoptosis, antioxidant effects and modulation of osteoprotegrin signaling pathways, by suppressing NF-κB activity, CAPE significantly inhibits osteoclastogenesis and osteoclast differentiation. |
(Ang, Pavlos et al. 2009, Ha, Choi et al. 2009, Zawawi, Perilli et al. 2015, Tolba, El-Serafi et al. 2017) |
| Alzheimer’s disease | CAPE significantly inhibits neuronal apoptosis and neuroinflammation, induces Nrf2 activation, inhibits glycogen synthase kinase 3β in the hippocampus, and improves learning and memory and cognition. | (Morroni, Sita et al. 2018) |
| Formulation | Target | Results | Reference |
|---|---|---|---|
| Poly(lactic-co-glycolic acid) (PLGA) co-loaded nanoparticles (QuCaNP) quercetin and CAPE. | Improving anticancer efficacy in HT-29 human colorectal carcinoma. | Increased caspase-3 (2.38-fold) and caspase-9 (2-fold) mRNA levels and expressions of key proteins in the intrinsic apoptosis pathway in HT-29 cells. | (Dilsu and Erdemir 2021) |
| Copolymer: polyglycerol and poly(allyl glycidyl ether) (C12-PAGE-PG), loaded with CAPE | To evaluate the in vitro and in vivo safety of a CAPE-loaded micellar system as a drug delivery platform on HepG2 cells. | Empty micelles loaded with CAPE showed no cytotoxic effects and retained the cytotoxic activity of CAPE loaded in the micelles, making it a good strategy to use this hydrophobic compound and improve the effectiveness of the treatments. | (Yordanov et al. 2020) |
| NiO nanoparticles and MnO2 /NiO nanocomposites with guanidine and CAPE as a carrier | Evaluate its capacity as an anchoring method for drug carriers. | The drug loading time was 100 min and drug release in 1-10 h with 20-80 % drug release. | (Gupta, Fakhri et al. 2017) |
| Hyaluronic acid (HA) conjugated with phenylboronic acid pinacol ester (PBPE) with radiosensitive delivery of CAPE | Manufacture radiosensitive delivery of CAPE for application in radioprotection. | Prevention of radiation-induced apoptosis and intracellular ROS accumulation, with increased survivability of mice against radiation-induced death. | (Choi, Lee et al. 2021) |
| Methoxy poly(ethylene glycol)-b -poly(ε-caprolactone) copolymer nanoparticles (CE) with CAPE. | Study antitumor activity against lung metastasis by CT26 colon carcinoma cells. | Superior anti-metastatic efficacy against the tumor than CAPE itself. | (Lee, Jeong et al. 2015) |
|
Caffeic acid phenethyl ester-morphthalin antibody nanoparticles |
Generate a potent anticancer drug by recruiting an anti-mortalin antibody (hsp70 chaperone that is enriched on the cancer cell surface). | Enhanced growth arrest/apoptosis of cancer cells through down-regulation of cyclin D1-CDK4, phospho-Rb, PARP-1 and the anti-apoptotic protein Bcl2. Significantly increased expression of p53, p21 WAF1, and caspase cleavage. Significantly improved down-regulation of proteins involved in cell migration |
(Wang, Bhargava et al. 2020) |
| Folic acid-conjugated PLGA nanoparticles. | Improve cytotoxicity, solubility, and achieve sustained release of CAPE. | It showed enhanced cytotoxicity in vivo and in vitro, causing a decrease in cell proliferation by 46%. | (Kapare, Lohidasan et al. 2021) |
| Stimuli-responsive liposomal nanocarrier loaded with CAPE modified with ac peptide (RGDyK) | Attack ischemic lesions and remodel neurovascular units (NVU) to reduce the progression of brain injury. | Drugs release in response to pathological signaling stimuli, localization of cerebral ischemia-reperfusion injury and remodeling of neurovascular units by reducing neuronal apoptosis, regulating microglia polarization and repair of vascular endothelial cells. | (Lu, Li et al. 2022) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
