Submitted:
26 May 2023
Posted:
29 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Pandemic Preparedness for Emerging Pathogen Threats
- Disease surveillance and laboratory capacity. Monitoring infectious disease incidence and spread, as well as, testing of samples to confirm presence is critical in early detection of outbreaks.
- Strategic medical stockpiles: Stockpiling essential medical supplies such as therapeutics, vaccines, and personal protective equipment ensures that healthcare workers have the necessary resources to respond rapidly to an outbreak.
- Emergency preparedness planning: This involves developing plans to address disease outbreaks, including activation of emergency response teams, isolation and quarantine measures, and communication strategies to the public.
- Infection control measures: These involve implementing measures to reduce the spread of infectious diseases. They include hand hygiene, proper disposal of infectious waste, proper use of personal protective equipment, social distancing, and isolation/quarantine of infected individuals.
- Vaccination: Vaccination can play a key role in preventing and controlling the spread of infectious diseases. As seen with the COVID-19 pandemic, vaccines can mitigate disease impacts and reduce pathogen transmission.
- Communication: Effective communication is critical in any pandemic response, as it helps to provide accurate information to the public and to prevent panic and the spread of misinformation.
- Research and development of new tools: Continuous support of research is needed for developing new countermeasures, such as vaccines and therapeutics, to prevent and control outbreaks of new and re-emerging pathogens.
3. Threats from Emerging Viruses
3.1. Monkeypox
3.2. SARS-CoV-2
3.3. Ebola
3.4. Hepatitis E
4. Riboflavin+ UV Light Pathogen Reduction Technology
4.1. Monkeypox
4.2. SARS-CoV-2
4.3. Ebola
4.4. Hepatitis E
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ward, M. Transboundary and Emerging Diseases and Globalization. Have We Scored an Own Goal? Transbound. Emerg. Dis. 2022, 69, 2405–2406. [Google Scholar] [CrossRef] [PubMed]
- Ogden, N.; Gachon, P. Climate Change and Infectious Diseases: What Can We Expect? CCDR 2019, 45, 76–80. [Google Scholar] [CrossRef]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Belesova, K.; Berry, H.; Bouley, T.; Boykoff, M.; Byass, P.; Cai, W.; et al. The 2018 Report of the Lancet Countdown on Health and Climate Change: Shaping the Health of Nations for Centuries to Come. Lancet 2018, 392, 2479–2514. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, R.; Dahlman, L. Climate Change: Global Temperature Available online:. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature#:~:text=According%20to%20NOAA's%202021%20Annual,0.18%20%C2%B0C)%20per%20decade (accessed on 30 January 2023).
- Gyles, C. Climate Crisis. Can. Vet. J. 2019, 60, 1257–1258. [Google Scholar]
- Scholthof, K.-B.G. The Disease Triangle: Pathogens, the Environment and Society. Nat. Rev. Microbiol. 2007, 5, 152–156. [Google Scholar] [CrossRef]
- Stramer, S.L.; Hollinger, F.B.; Katz, L.M.; Kleinman, S.; Metzel, P.S.; Gregory, K.R.; Dodd, R.Y. Emerging Infectious Disease Agents and Their Potential Threat to Transfusion Safety. Transfusion 2009, 49, 1S–29S. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, N.D.; Dunavan, C.P.; Diamond, J. Origins of Major Human Infectious Diseases. Nature 2007, 447, 279–283. [Google Scholar] [CrossRef]
- de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: Recent Insights into Emerging Coronaviruses. Nat. Rev. Microbiol. 2016, 14, 523–534. [Google Scholar] [CrossRef]
- Musso, D.; Rodriguez-Morales, A.J.; Levi, J.E.; Cao-Lormeau, V.-M.; Gubler, D.J. Unexpected Outbreaks of Arbovirus Infections: Lessons Learned from the Pacific and Tropical America. Lancet Infect. Dis. 2018, 18, e355–e361. [Google Scholar] [CrossRef]
- Center for Systems Science and Engineering (CSSE) at Johns Hopkins University COVID-19 Dashborad Available online:. Available online: https://coronavirus.jhu.edu/map.html (accessed on 30 January 2023).
- Kleinman, S.H.; Lelie, N.; Busch, M.P. Infectivity of Human Immunodeficiency Virus-1, Hepatitis C Virus, and Hepatitis B Virus and Risk of Transmission by Transfusion. Transfusion 2009, 49, 2454–2489. [Google Scholar] [CrossRef]
- Hewitt, P.E.; Ijaz, S.; Brailsford, S.R.; Brett, R.; Dicks, S.; Haywood, B.; Kennedy, I.T.R.; Kitchen, A.; Patel, P.; Poh, J.; et al. Hepatitis E Virus in Blood Components: A Prevalence and Transmission Study in Southeast England. Lancet 2014, 384, 1766–1773. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Richarte, Á.; Ortiz de Salazar, M.I.; Giménez-Richarte, M.-P.; Collado, M.; Fernández, P.L.; Clavijo, C.; Navarro, L.; Arbona, C.; Marco, P.; Ramos-Rincon, J.-M. Transfusion-Transmitted Arboviruses: Update and Systematic Review. PLoS Negl. Trop. Dis. 2022, 16, e0010843. [Google Scholar] [CrossRef] [PubMed]
- Niederhauser, C.; Tinguely, C.; Stolz, M.; Vock, M.; El Dusouqui, S.A.; Gowland, P. Evolution of Blood Safety in Switzerland over the Last 25 Years for HIV, HCV, HBV and Treponema Pallidum. Viruses 2022, 14, 2611. [Google Scholar] [CrossRef]
- Yonemura, S.; Doane, S.; Keil, S.; Goodrich, R.; Pidcoke, H.; Cardoso, M. Improving the Safety of Whole Blood-Derived Transfusion Products with a Riboflavin-Based Pathogen Reduction Technology. Blood Transfus. 2017, 15, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, A. The Evolution of the Safety of Plasma Products from Pathogen Transmission—A Continuing Narrative. Pathogens 2023, 12, 318. [Google Scholar] [CrossRef] [PubMed]
- Domanović, D.; Ushiro-Lumb, I.; Compernolle, V.; Brusin, S.; Funk, M.; Gallian, P.; Georgsen, J.; Janssen, M.; Jimenez-Marco, T.; Knutson, F.; et al. Pathogen Reduction of Blood Components during Outbreaks of Infectious Diseases in the European Union: An Expert Opinion from the European Centre for Disease Prevention and Control Consultation Meeting. Blood Transfus. 2019, 433–448. [Google Scholar] [CrossRef]
- Allain, J.-P.; Owusu-Ofori, A.K.; Assennato, S.M.; Marschner, S.; Goodrich, R.P.; Owusu-Ofori, S. Effect of Plasmodium Inactivation in Whole Blood on the Incidence of Blood Transfusion-Transmitted Malaria in Endemic Regions: The African Investigation of the Mirasol System (AIMS) Randomised Controlled Trial. Lancet 2016, 387, 1753–1761. [Google Scholar] [CrossRef]
- Owusu-Ofori, A.; Asamoah-Akuoko, L.; Acquah, M.; Wilkinson, S.; Ansa, J.; Brown, B.; Owusu-Ofori, S. Hemovigilance on Mirasol Pathogen-Reduced Whole Blood in Ghana. Vox Sanguinis 2019, 114, 67. [Google Scholar]
- Trakhtman, P.; Kumukova, I.; Starostin, N.; Borsakova, D.; Balashov, D.; Ignatova, A.; Kadaeva, L.; Novichkova, G.; Rumiantcev, A. The Pathogen-reduced Red Blood Cell Suspension: Single Centre Study of Clinical Safety and Efficacy in Children with Oncological and Haematological Diseases. Vox Sang. 2019, 114, 223–231. [Google Scholar] [CrossRef]
- Drew, V.J.; Barro, L.; Seghatchian, J.; Burnouf, T. Towards Pathogen Inactivation of Red Blood Cells and Whole Blood Targeting Viral DNA/RNA: Design, Technologies, and Future Prospects for Developing Countries. Blood Transfus. 2017. [Google Scholar] [CrossRef]
- Handke, W.; Gravemann, U.; Müller, T.H.; Wagner, F.F.; Schulze, T.J.; Seltsam, A. New Ultraviolet C Light-based Method for Pathogen Inactivation of Red Blood Cell Units. Transfusion 2022, 62, 2314–2323. [Google Scholar] [CrossRef] [PubMed]
- Kumukova, I.; Starostin, N.; Trakhtman, P. Universal Pathogen Reduction in Blood Components Is a Close Perspective. Vox Sang. 2021, 116, 735–736. [Google Scholar] [CrossRef]
- Bloom, D.E.; Cadarette, D. Infectious Disease Threats in the Twenty-First Century: Strengthening the Global Response. Front. Immunol. 2019, 10, 549. [Google Scholar] [CrossRef] [PubMed]
- Haileamlak, A. The Impact of COVID-19 on Health and Health Systems. Ethiop. J. Health Sci. 2021, 31, 1073–1074. [Google Scholar] [CrossRef]
- Center for Disease Control 2022 Mpox Outbreak Global Map Available online:. Available online: https://www.cdc.gov/poxvirus/mpox/response/2022/world-map.html (accessed on 26 April 2023).
- Center for Disease Control Mpox Symptoms Available online:. Available online: https://www.cdc.gov/poxvirus/mpox/symptoms/index.html (accessed on 24 April 2023).
- World Health Organization Multi-Country Monkeypox Outbreak in Non-Endemic Countries Available online:. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON388 (accessed on 24 April 2023).
- Moore, M.J.; Rathish, B.; Zahra, F. Mpox (Monkeypox). In StatPearls; StatPearls Publishing: Treasure Island (FL), 2023. [Google Scholar]
- Harvala, H.; Simmonds, P. Evaluating the Risk of Transfusion and Transplant-transmitted Monkeypox Infections. Transfus. Med. 2022, 12918. [Google Scholar] [CrossRef] [PubMed]
- Dodd, R.Y.; Stramer, S.L. Monkeypox and Transfusion Safety. Transfus. Med. Rev. 2022, S0887796322000475. [Google Scholar] [CrossRef]
- Focosi, D.; Franchini, M. What a Transfusion Physician Should Know about Monkeypox Virus: Barriers to and Risks for Transmission, and Possible Mitigation Strategies. Diagnostics 2022, 12, 2200. [Google Scholar] [CrossRef] [PubMed]
- Adler, H.; Gould, S.; Hine, P.; Snell, L.B.; Wong, W.; Houlihan, C.F.; Osborne, J.C.; Rampling, T.; Beadsworth, M.B.; Duncan, C.J.; et al. Clinical Features and Management of Human Monkeypox: A Retrospective Observational Study in the UK. Lancet Infect. Dis. 2022, 22, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Thornhill, J.P.; Barkati, S.; Walmsley, S.; Rockstroh, J.; Antinori, A.; Harrison, L.B.; Palich, R.; Nori, A.; Reeves, I.; Habibi, M.S.; et al. Monkeypox Virus Infection in Humans across 16 Countries — April–June 2022. N Engl J Med 2022, 387, 679–691. [Google Scholar] [CrossRef]
- Noe, S.; Zange, S.; Seilmaier, M.; Antwerpen, M.H.; Fenzl, T.; Schneider, J.; Spinner, C.D.; Bugert, J.J.; Wendtner, C.-M.; Wölfel, R. Clinical and Virological Features of First Human Monkeypox Cases in Germany. Infection 2022. [Google Scholar] [CrossRef]
- Palich, R.; Burrel, S.; Monsel, G.; Nouchi, A.; Bleibtreu, A.; Seang, S.; Bérot, V.; Brin, C.; Gavaud, A.; Wakim, Y.; et al. Viral Loads in Clinical Samples of Men with Monkeypox Virus Infection: A French Case Series. Lancet Infect. Dis. 2023, 23, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Villani, A.-C.; Satija, R.; Reynolds, G.; Sarkizova, S.; Shekhar, K.; Fletcher, J.; Griesbeck, M.; Butler, A.; Zheng, S.; Lazo, S.; et al. Single-Cell RNA-Seq Reveals New Types of Human Blood Dendritic Cells, Monocytes, and Progenitors. Science 2017, 356, eaah4573. [Google Scholar] [CrossRef]
- Suñer, C.; Ubals, M.; Tarín-Vicente, E.J.; Mendoza, A.; Alemany, A.; Hernández-Rodríguez, Á.; Casañ, C.; Descalzo, V.; Ouchi, D.; Marc, A.; et al. Viral Dynamics in Patients with Monkeypox Infection: A Prospective Cohort Study in Spain. Lancet Infect. Dis. 2023, 23, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Antinori, A.; Mazzotta, V.; Vita, S.; Carletti, F.; Tacconi, D.; Lapini, L.E.; D’Abramo, A.; Cicalini, S.; Lapa, D.; Pittalis, S.; et al. Epidemiological, Clinical and Virological Characteristics of Four Cases of Monkeypox Support Transmission through Sexual Contact, Italy, May 2022. Euro Surveill 2022, 27, 2200421. [Google Scholar] [CrossRef] [PubMed]
- Mileto, D.; Riva, A.; Cutrera, M.; Moschese, D.; Mancon, A.; Meroni, L.; Giacomelli, A.; Bestetti, G.; Rizzardini, G.; Gismondo, M.R.; et al. New Challenges in Human Monkeypox Outside Africa: A Review and Case Report from Italy. Travel. Med. Infect. Dis. 2022, 49, 102386. [Google Scholar] [CrossRef]
- Lapa, D.; Carletti, F.; Mazzotta, V.; Matusali, G.; Pinnetti, C.; Meschi, S.; Gagliardini, R.; Colavita, F.; Mondi, A.; Minosse, C.; et al. Monkeypox Virus Isolation from a Semen Sample Collected in the Early Phase of Infection in a Patient with Prolonged Seminal Viral Shedding. Lancet Infect. Dis. 2022, 22, 1267–1269. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.X.; Chen, Y.; Ruan, Q.; Huang, X.; Zhu, G.; Sun, J. Persistence of Monkeypox Virus DNA in Clinical Specimens. J. Infect. 2022, 85, 702–769. [Google Scholar] [CrossRef]
- Oprea, C.; Ianache, I.; Piscu, S.; Tardei, G.; Nica, M.; Ceausu, E.; Popescu, C.P.; Florescu, S.A. First Report of Monkeypox in a Patient Living with HIV from Romania. Travel. Med. Infect. Dis. 2022, 49, 102395. [Google Scholar] [CrossRef]
- Mazzotta, V.; Mondi, A.; Carletti, F.; Baldini, F.; Santoro, R.; Meschi, S.; Moccione, M.; Gebremeskel Teklè, S.; Minosse, C.; Camici, M.; et al. Ocular Involvement in Monkeypox: Description of an Unusual Presentation during the Current Outbreak. J. Infect. 2022, 85, 573–607. [Google Scholar] [CrossRef]
- Gaspari, V.; Rossini, G.; Robuffo, S.; Rapparini, L.; Scagliarini, A.; Mistral De Pascali, A.; Piraccini, B.M.; Lazzarotto, T. Monkeypox Outbreak 2022: Clinical and Virological Features of 30 Patients at the Sexually Transmitted Diseases Centre of Sant’ Orsola Hospital, Bologna, Northeastern Italy. J Clin Microbiol 2023, 61, e0136522. [Google Scholar] [CrossRef]
- Bubach Carvalho, L.; Casadio, L.; Polly, M.; Nastri, A.; Turdo, A.; de Araujo Eliodoro, R.; Sabino, E.; Levin, A.; Tonacio de Proenca, A.; Higashino, H. Monkeypox Virus Transmission to Healthcare Worker through Needlestick Injury. Emerg. Infect. Dis. 2022, 28. [Google Scholar] [CrossRef]
- Mendoza, R.; Petras, J.K.; Jenkins, P.; Gorensek, M.J.; Mableson, S.; Lee, P.A.; Carpenter, A.; Jones, H.; de Perio, M.A.; Chisty, Z.; et al. Monkeypox Virus Infection Resulting from an Occupational Needlestick — Florida, 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1348–1349. [Google Scholar] [CrossRef] [PubMed]
- Migaud, P.; Hosmann, K.; Drauz, D.; Mueller, M.; Haumann, J.; Stocker, H. A Case of Occupational Transmission of Mpox. Infection 2023, 1–5. [Google Scholar] [CrossRef]
- Paran, N.; Yahalom-Ronen, Y.; Shifman, O.; Lazar, S.; Ben-Ami, R.; Yakubovsky, M.; Levy, I.; Wieder-Feinsod, A.; Amit, S.; Katzir, M.; et al. Monkeypox DNA Levels Correlate with Virus Infectivity in Clinical Samples, Israel, 2022. Eurosurveillance 2022, 27. [Google Scholar] [CrossRef] [PubMed]
- Drosten, C.; Günther, S.; Preiser, W.; van der Werf, S.; Brodt, H.-R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A.M.; et al. Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. N. Engl. J. Med. 2003, 348, 1967–1976. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.K.O.; Hui, D.S.; Chan, K.C.A.; Hung, E.C.W.; Chiu, R.W.K.; Lee, N.; Wu, A.; Chim, S.S.C.; Tong, Y.K.; Sung, J.J.Y.; et al. Quantitative Analysis and Prognostic Implication of SARS Coronavirus RNA in the Plasma and Serum of Patients with Severe Acute Respiratory Syndrome. Clin. Chem. 2003, 49, 1976–1980. [Google Scholar] [CrossRef]
- Grant, P.R.; Garson, J.A.; Tedder, R.S.; Chan, P.K.S.; Tam, J.S.; Sung, J.J.Y. Detection of SARS Coronavirus in Plasma by Real-Time RT-PCR. N. Engl. J. Med. 2003, 349, 2468–2469. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-K.; Fang, C.-T.; Chen, H.-L.; Yang, C.-F.; Chen, Y.-C.; Chen, M.-L.; Chen, S.-Y.; Yang, J.-Y.; Lin, J.-H.; Yang, P.-C.; et al. Detection of Severe Acute Respiratory Syndrome Coronavirus RNA in Plasma during the Course of Infection. J. Clin. Microbiol. 2005, 43, 962–965. [Google Scholar] [CrossRef]
- Corman, V.M.; Albarrak, A.M.; Omrani, A.S.; Albarrak, M.M.; Farah, M.E.; Almasri, M.; Muth, D.; Sieberg, A.; Meyer, B.; Assiri, A.M.; et al. Viral Shedding and Antibody Response in 37 Patients With Middle East Respiratory Syndrome Coronavirus Infection. Clin. Infect. Dis. 2015, civ951. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Zhang, W.; Du, R.-H.; Li, B.; Zheng, X.-S.; Yang, X.-L.; Hu, B.; Wang, Y.-Y.; Xiao, G.-F.; Yan, B.; Shi, Z.-L.; et al. Molecular and Serological Investigation of 2019-NCoV Infected Patients: Implication of Multiple Shedding Routes. Emerg. Microbes Infect. 2020, 9, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Zhao, L.; Gong, H.; Wang, L.; Wang, L. Severe Acute Respiratory Syndrome Coronavirus 2 RNA Detected in Blood Donations. Emerg. Infect. Dis. 2020, 26, 1631–1633. [Google Scholar] [CrossRef]
- United States Food and Drug Administration Updated Information for Blood Establishments Regarding the COVID-19 Pandemic and Blood Donation Available online:. Available online: https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/updated-information-blood-establishments-regarding-covid-19-pandemic-and-blood-donation (accessed on 15 April 2023).
- Chang, L.; Yan, Y.; Wang, L. Coronavirus Disease 2019: Coronaviruses and Blood Safety. Transfus. Med. Rev. 2020, 34, 75–80. [Google Scholar] [CrossRef]
- Pham, T.D.; Huang, C.; Wirz, O.F.; Röltgen, K.; Sahoo, M.K.; Layon, A.; Pandey, S.; Foung, S.K.; Boyd, S.D.; Pinsky, B.A. SARS-CoV-2 RNAemia in a Healthy Blood Donor 40 Days After Respiratory Illness Resolution. Ann. Intern. Med. 2020, 173, 853–854. [Google Scholar] [CrossRef]
- Gamlath, C.; Wickramasinghe, D.; Madusha, E. Place of COVID-19 Transmission in Blood Transmission: A Case Report. Int. J. Antimicrob. Agents 2021, 58, 21003563. [Google Scholar] [CrossRef]
- Andersson, M.I.; Arancibia-Carcamo, C.V.; Auckland, K.; Baillie, J.K.; Barnes, E.; Beneke, T.; Bibi, S.; Brooks, T.; Carroll, M.; Crook, D.; et al. SARS-CoV-2 RNA Detected in Blood Products from Patients with COVID-19 Is Not Associated with Infectious Virus. Wellcome Open Res. 2020, 5, 181. [Google Scholar] [CrossRef] [PubMed]
- Cappy, P.; Candotti, D.; Sauvage, V.; Lucas, Q.; Boizeau, L.; Gomez, J.; Enouf, V.; Chabli, L.; Pillonel, J.; Tiberghien, P.; et al. No Evidence of SARS-CoV-2 Transfusion Transmission despite RNA Detection in Blood Donors Showing Symptoms after Donation. Blood 2020, 136, 1888–1891. [Google Scholar] [CrossRef] [PubMed]
- Bakkour, S.; Saá, P.; Groves, J.A.; Montalvo, L.; Di Germanio, C.; Best, S.M.; Grebe, E.; Livezey, K.; Linnen, J.M.; Strauss, D.; et al. Minipool Testing for SARS-CoV -2 RNA in United States Blood Donors. Transfusion 2021, 61, 2384–2391. [Google Scholar] [CrossRef]
- Le Cam, S.; Gallian, P.; Ricard, C.; Narboux, C.; Barlet, V.; Maugard, C.; Hauser, L.; Brisbarre, N.; Cappy, P.; Pillonel, J.; et al. Low Rate of RNAemia in Blood Donations Collected during the First Wave of COVID -19 in France. Transfusion 2022, 62, 633–640. [Google Scholar] [CrossRef]
- Loubaki, L.; Gantner, P.; Pagliuzza, A.; Fausther-Bovendo, H.; Kobinger, G.; Chomont, N.; Germain, M. Testing for the Presence of SARS-CoV -2 RNA in Presymptomatic Blood Donors. Transfusion 2021, 61, 649–651. [Google Scholar] [CrossRef]
- Saá, P.; Fink, R.V.; Bakkour, S.; Jin, J.; Simmons, G.; Muench, M.O.; Dawar, H.; Di Germanio, C.; Hui, A.J.; Wright, D.J.; et al. Frequent Detection but Lack of Infectivity of SARS-CoV-2 RNA in Presymptomatic, Infected Blood Donor Plasma. J. Clin. Invest. 2022, 132, e159876. [Google Scholar] [CrossRef]
- Owusu, M.; Sylverken, A.A.; El-Duah, P.; Ayisi-Boateng, N.K.; Yeboah, R.; Adu, E.; Asamoah, J.; Frimpong, M.; Senyo, J.; Acheampong, G.; et al. Low Risk of SARS-CoV-2 in Blood Transfusion. PLoS ONE 2021, 16, e0249069. [Google Scholar] [CrossRef]
- Loua, A.; Kasilo, O.M.J.; Nikiema, J.B.; Sougou, A.S.; Kniazkov, S.; Annan, E.A. Impact of the COVID-19 Pandemic on Blood Supply and Demand in the WHO African Region. Vox Sang. 2021, 116, 774–784. [Google Scholar] [CrossRef]
- American Red Cross Red Cross Declares First-Ever Blood Crisis amid Omicron Surge Available online:. Available online: https://www.redcross.org/about-us/news-and-events/press-release/2022/blood-donors-needed-now-as-omicron-intensifies.html (accessed on 6 April 2023).
- Chiem, C.; Alghamdi, K.; Nguyen, T.; Han, J.H.; Huo, H.; Jackson, D. The Impact of COVID-19 on Blood Transfusion Services: A Systematic Review and Meta-Analysis. Transfus. Med. Hemother 2021, 30, 1–12. [Google Scholar] [CrossRef]
- Quaglietta, A.; Nicolucci, A.; Posata, R.; Frattari, A.; Parruti, G.; Accorsi, P. Impact of Covid-19 Epidemic on the Activities of a Blood Centre, Transfusion Support for Infected Patients and Clinical Outcomes. Transfus. Med. 2021, 31, 160–166. [Google Scholar] [CrossRef]
- Veseli, B.; Sandner, S.; Studte, S.; Clement, M. The Impact of COVID-19 on Blood Donations. PLoS ONE 2022, 17, e0265171. [Google Scholar] [CrossRef]
- Leroy, E.M.; Kumulungui, B.; Pourrut, X.; Rouquet, P.; Hassanin, A.; Yaba, P.; Délicat, A.; Paweska, J.T.; Gonzalez, J.-P.; Swanepoel, R. Fruit Bats as Reservoirs of Ebola Virus. Nature 2005, 438, 575–576. [Google Scholar] [CrossRef] [PubMed]
- Judson, S.; Prescott, J.; Munster, V. Understanding Ebola Virus Transmission. Viruses 2015, 7, 511–521. [Google Scholar] [CrossRef]
- Feldmann, H.; Geisbert, T.W. Ebola Haemorrhagic Fever. Lancet 2011, 377, 849–862. [Google Scholar] [CrossRef]
- Bannister, B. Viral Haemorrhagic Fevers Imported into Non-Endemic Countries: Risk Assessment and Management. Br. Med. Bull. 2010, 95, 193–225. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.I. Clinical Manifestations and Laboratory Diagnosis of Ebola Virus Infection. In Ebola Virus Disease; Elsevier, 2016; pp. 117–138 ISBN 978-0-12-804230-4.
- Faye, O.; Andronico, A.; Faye, O.; Salje, H.; Boëlle, P.-Y.; Magassouba, N.; Bah, E.I.; Koivogui, L.; Diallo, B.; Diallo, A.A.; et al. Use of Viremia to Evaluate the Baseline Case Fatality Ratio of Ebola Virus Disease and Inform Treatment Studies: A Retrospective Cohort Study. PLoS Med. 2015, 12, e1001908. [Google Scholar] [CrossRef] [PubMed]
- Lanini, S.; Portella, G.; Vairo, F.; Kobinger, G.P.; Pesenti, A.; Langer, M.; Kabia, S.; Brogiato, G.; Amone, J.; Castilletti, C.; et al. Blood Kinetics of Ebola Virus in Survivors and Nonsurvivors. J. Clin. Investig. 2015, 125, 4692–4698. [Google Scholar] [CrossRef]
- Emond, R.T.; Evans, B.; Bowen, E.T.; Lloyd, G. A Case of Ebola Virus Infection. Br. Med. J. 1977, 2, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Report of an International Commission Ebola Haemorrhagic Fever in Zaire, 1976. Bull World Health Organ 1978, 56, 271–293.
- Abdullah, S.; Karunamoorthi, K. Ebola and Blood Transfusion: Existing Challenges and Emerging Opportunities. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 2983–2996. [Google Scholar]
- Vetter, P.; Fischer, W.A.; Schibler, M.; Jacobs, M.; Bausch, D.G.; Kaiser, L. Ebola Virus Shedding and Transmission: Review of Current Evidence. J. Infect. Dis. 2016, 214, S177–S184. [Google Scholar] [CrossRef]
- Osterholm, M.T.; Moore, K.A.; Kelley, N.S.; Brosseau, L.M.; Wong, G.; Murphy, F.A.; Peters, C.J.; LeDuc, J.W.; Russell, P.K.; Van Herp, M.; et al. Transmission of Ebola Viruses: What We Know and What We Do Not Know. mBio 2015, 6, e00137. [Google Scholar] [CrossRef]
- Balayan, M.S.; Andjaparidze, A.G.; Savinskaya, S.S.; Ketiladze, E.S.; Braginsky, D.M.; Savinov, A.P.; Poleschuk, V.F. Evidence for a Virus in Non-A, Non-B Hepatitis Transmitted via the Fecal-Oral Route. Intervirology 1983, 20, 23–31. [Google Scholar] [CrossRef]
- Okamoto, H. Genetic Variability and Evolution of Hepatitis E Virus. Virus Res. 2007, 127, 216–228. [Google Scholar] [CrossRef]
- Labrique, A.B.; Kuniholm, M.H.; Nelson, K.E. The Global Impact of Hepatitis E: New Horizons for an Emerging Virus. In Emerging Infections 9; Michael Scheld, W., Lindsay Grayson, M., Hughes, J.M., Eds.; ASM Press: Washington, DC, USA, 2014; pp. 53–93. ISBN 978-1-68367-125-1. [Google Scholar]
- Kumar, A.; Beniwal, M.; Kar, P.; Sharma, J.B.; Murthy, N.S. Hepatitis E in Pregnancy. Int. J. Gynaecol. Obs. 2004, 85, 240–244. [Google Scholar] [CrossRef]
- Singh, S.; Mohanty, A.; Joshi, Y.K.; Deka, D.; Mohanty, S.; Panda, S.K. Mother-to-Child Transmission of Hepatitis E Virus Infection. Indian. J. Pediatr. 2003, 70, 37–39. [Google Scholar] [CrossRef] [PubMed]
- Chibber, R.M.; Usmani, M.A.; Al-Sibai, M.H. Should HEV Infected Mothers Breast Feed? Arch. Gynecol. Obs. 2004, 270, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Khuroo, M.S.; Kamili, S.; Khuroo, M.S. Clinical Course and Duration of Viremia in Vertically Transmitted Hepatitis E Virus (HEV) Infection in Babies Born to HEV-Infected Mothers. J. Viral Hepat. 2009, 16, 519–523. [Google Scholar] [CrossRef] [PubMed]
- El Sayed Zaki, M.; El Aal, A.A.E.; Badawy, A.; El-Deeb, D.R.; El-Kheir, N.Y.A. Clinicolaboratory Study of Mother-to-Neonate Transmission of Hepatitis E Virus in Egypt. Am. J. Clin. Pathol. 2013, 140, 721–726. [Google Scholar] [CrossRef]
- Khuroo, M.S.; Khuroo, M.S.; Khuroo, N.S. Transmission of Hepatitis E Virus in Developing Countries. Viruses 2016, 8, 253. [Google Scholar] [CrossRef] [PubMed]
- Arankalle, V.A.; Chobe, L.P. Retrospective Analysis of Blood Transfusion Recipients: Evidence for Post-Transfusion Hepatitis E. Vox Sang. 2000, 79, 72–74. [Google Scholar] [CrossRef]
- Gallian, P.; Lhomme, S.; Piquet, Y.; Sauné, K.; Abravanel, F.; Assal, A.; Tiberghien, P.; Izopet, J. Hepatitis E Virus Infections in Blood Donors, France. Emerg. Infect. Dis. 2014, 20, 1914–1917. [Google Scholar] [CrossRef]
- Cleland, A.; Smith, L.; Crossan, C.; Blatchford, O.; Dalton, H.R.; Scobie, L.; Petrik, J. Hepatitis E Virus in Scottish Blood Donors. Vox Sang. 2013, 105, 283–289. [Google Scholar] [CrossRef]
- Khuroo, M.S.; Kamili, S.; Yattoo, G.N. Hepatitis E Virus Infection May Be Transmitted through Blood Transfusions in an Endemic Area. J. Gastroenterol. Hepatol. 2004, 19, 778–784. [Google Scholar] [CrossRef]
- Gotanda, Y.; Iwata, A.; Ohnuma, H.; Yoshikawa, A.; Mizoguchi, H.; Endo, K.; Takahashi, M.; Okamoto, H. Ongoing Subclinical Infection of Hepatitis E Virus among Blood Donors with an Elevated Alanine Aminotransferase Level in Japan. J. Med. Virol. 2007, 79, 734–742. [Google Scholar] [CrossRef]
- Ren, H.; Li, J.; Yuan, Z.-A.; Hu, J.-Y.; Yu, Y.; Lu, Y.-H. The Development of a Combined Mathematical Model to Forecast the Incidence of Hepatitis E in Shanghai, China. BMC Infect. Dis. 2013, 13, 421. [Google Scholar] [CrossRef]
- Juhl, D.; Baylis, S.A.; Blümel, J.; Görg, S.; Hennig, H. Seroprevalence and Incidence of Hepatitis E Virus Infection in German Blood Donors. Transfusion 2014, 54, 49–56. [Google Scholar] [CrossRef]
- Hogema, B.M.; Molier, M.; Slot, E.; Zaaijer, H.L. Past and Present of Hepatitis E in the Netherlands. Transfusion 2014, 54, 3092–3096. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.; Hofmann, M.; Danzer, M.; Hofer, K.; Kaar, J.; Gabriel, C. Seroprevalence and Incidence of Hepatitis E in Blood Donors in Upper Austria. PLoS ONE 2015, 10, e0119576. [Google Scholar] [CrossRef] [PubMed]
- Khuroo, M.S.; Khuroo, M.S. Hepatitis E: An Emerging Global Disease - from Discovery towards Control and Cure. J. Viral Hepat. 2016, 23, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Hauser, L.; Roque-Afonso, A.-M.; Beylouné, A.; Simonet, M.; Deau Fischer, B.; Burin des Roziers, N.; Mallet, V.; Tiberghien, P.; Bierling, P. Hepatitis E Transmission by Transfusion of Intercept Blood System–Treated Plasma. Blood 2014, 123, 796–797. [Google Scholar] [CrossRef] [PubMed]
- Owada, T.; Kaneko, M.; Matsumoto, C.; Sobata, R.; Igarashi, M.; Suzuki, K.; Matsubayashi, K.; Mio, K.; Uchida, S.; Satake, M.; et al. Establishment of Culture Systems for Genotypes 3 and 4 Hepatitis E Virus (HEV) Obtained from Human Blood and Application of HEV Inactivation Using a Pathogen Reduction Technology System: Inactivation of Cultured Hev Using PRT. Transfusion 2014, 54, 2820–2827. [Google Scholar] [CrossRef]
- Cap, A.P.; Pidcoke, H.F.; Keil, S.D.; Staples, H.M.; Anantpadma, M.; Carrion, R.; Davey, R.A.; Frazer-Abel, A.; Taylor, A.L.; Gonzales, R.; et al. Treatment of Blood with a Pathogen Reduction Technology Using Ultraviolet Light and Riboflavin Inactivates Ebola Virus in Vitro: MIRASOL INACTIVATES EBOLA VIRUS. Transfusion 2016, 56, S6–S15. [Google Scholar] [CrossRef]
- Ragan, I.; Hartson, L.; Pidcoke, H.; Bowen, R.; Goodrich, R. Pathogen Reduction of SARS-CoV-2 Virus in Plasma and Whole Blood Using Riboflavin and UV Light. PLoS ONE 2020, 15, e0233947. [Google Scholar] [CrossRef]
- Keil, S.D.; Ragan, I.; Yonemura, S.; Hartson, L.; Dart, N.K.; Bowen, R. Inactivation of Severe Acute Respiratory Syndrome Coronavirus 2 in Plasma and Platelet Products Using a Riboflavin and Ultraviolet Light-based Photochemical Treatment. Vox Sang. 2020, 115, 495–501. [Google Scholar] [CrossRef]
- Ferrari, A.; Cassaniti, I.; Sammartino, J.C.; Mortellaro, C.; Del Fante, C.; De Vitis, S.; Barone, E.; Troletti, D.; Prati, F.; Baldanti, F.; et al. SARS-CoV-2 Variants Inactivation of Plasma Units Using a Riboflavin and Ultraviolet Light-Based Photochemical Treatment. Transfus. Apher. Sci. 2022, 61, 103398. [Google Scholar] [CrossRef] [PubMed]
- Ragan, I.K.; Hartson, L.M.; Sullivan, E.J.; Bowen, R.A.; Goodrich, R.P. Pathogen Reduction of Monkeypox Virus in Plasma and Whole Blood Using Riboflavin and UV Light. PLoS ONE 2023, 18, e0278862. [Google Scholar] [CrossRef] [PubMed]
- Saá, P.; Proctor, M.; Foster, G.; Krysztof, D.; Winton, C.; Linnen, J.M.; Gao, K.; Brodsky, J.P.; Limberger, R.J.; Dodd, R.Y.; et al. Investigational Testing for Zika Virus among U.S. Blood Donors. N. Engl. J. Med. 2018, 378, 1778–1788. [Google Scholar] [CrossRef] [PubMed]
- Jutzi, M.; Mansouri Taleghani, B.; Rueesch, M.; Amsler, L.; Buser, A. Nationwide Implementation of Pathogen Inactivation for All Platelet Concentrates in Switzerland. Transfus. Med. Hemother 2018, 45, 151–156. [Google Scholar] [CrossRef]
- Gowland, P.; Fontana, S.; Stolz, M.; Andina, N.; Niederhauser, C. Parvovirus B19 Passive Transmission by Transfusion of Intercept® Blood System-Treated Platelet Concentrate. Transfus. Med. Hemother 2016, 43, 198–202. [Google Scholar] [CrossRef]
- Ojea, A.; Seco, C.; Mata, P.; Munoz, C.; Rodriguez, M. In Asturias, Spain Asymptomatic Donor Transmits HEV by Transfuion of RBB but Not PC Due to Riboflavin/UV PRT Treatment. Vox Sanguinis 2020, 115, 224–225. [Google Scholar]
- Petersen, L.R. Epidemiology of West Nile Virus in the United States: Implications for Arbovirology and Public Health. J. Med. Entomol. 2019, 56, 1456–1462. [Google Scholar] [CrossRef]
- Vermeulen, M.; Lelie, N.; Coleman, C.; Sykes, W.; Jacobs, G.; Swanevelder, R.; Busch, M.; van Zyl, G.; Grebe, E.; Welte, A.; et al. Assessment of HIV Transfusion Transmission Risk in South Africa: A 10-Year Analysis Following Implementation of Individual Donation Nucleic Acid Amplification Technology Testing and Donor Demographics Eligibility Changes. Transfusion 2019, 59, 267–276. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
