Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Hypoxic-Ischemic Brain Injury in ECMO: Pathophysiology, Neuromonitoring, and Therapeutic Opportunities

Version 1 : Received: 24 May 2023 / Approved: 25 May 2023 / Online: 25 May 2023 (08:26:02 CEST)

A peer-reviewed article of this Preprint also exists.

Khanduja, S.; Kim, J.; Kang, J.K.; Feng, C.-Y.; Vogelsong, M.A.; Geocadin, R.G.; Whitman, G.; Cho, S.-M. Hypoxic-Ischemic Brain Injury in ECMO: Pathophysiology, Neuromonitoring, and Therapeutic Opportunities. Cells 2023, 12, 1546. Khanduja, S.; Kim, J.; Kang, J.K.; Feng, C.-Y.; Vogelsong, M.A.; Geocadin, R.G.; Whitman, G.; Cho, S.-M. Hypoxic-Ischemic Brain Injury in ECMO: Pathophysiology, Neuromonitoring, and Therapeutic Opportunities. Cells 2023, 12, 1546.

Abstract

Extracorporeal membrane oxygenation (ECMO), in conjunction with its life-saving benefits, carries a significant risk of acute brain injury (ABI). Hypoxic-ischemic brain injury (HIBI) is one of the most common types of ABI in ECMO patients. Various risk factors such as history of hypertension, high day 1 lactate level, low pH, cannulation technique, large peri-cannulation PaCO2 drop (∆PaCO2), and early low pulse pressure, have been associated with the development of HIBI in ECMO patients. The pathogenic mechanisms of HIBI in ECMO are complex and multifactorial, attributing to the underlying pathology requiring initiation of ECMO and the risk of HIBI associated with ECMO itself. HIBI is likely to occur in the peri-cannulation or peri-decannulation time secondary to underlying refractory cardiopulmonary failure before or after ECMO. Current therapeutics target pathological mechanisms, cerebral hypoxia and is-chemia, by employing targeted temperature management in the case of extracorporeal cardiopulmonary resuscitation (eCPR), and optimizing cerebral O2 saturations and cerebral perfusion. This review describes the pathophysiology, neuromonitoring, and therapeutic techniques to improve neurological outcomes in ECMO patients so as to prevent and minimize the morbidity of HIBI. Further studies aimed at stand-ardizing the most relevant neuromonitoring techniques, optimizing cerebral perfusion, and minimizing the severity of HIBI once it occurs will improve long-term neurological outcomes in ECMO patients.

Keywords

hypoxia-ischemia brain injury; extracorporeal membrane oxygenation; neurological complication; neu-romonitoring; outcome.

Subject

Medicine and Pharmacology, Clinical Medicine

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.