Submitted:
22 May 2023
Posted:
23 May 2023
You are already at the latest version
Abstract
Keywords:
MSC: 34A34; 34A08; 34D20
1. Introduction
2. Some notes on Fractional Calculus
- (i)
- Let there exist a limit . Then
- (ii)
- Let . If there exists the limit , then
3. Comparison results for GPRLFD
4. BAM neural networks modeled by GPRLFD
4.1. General case of the model
4.1.1. Variable in time equilibrium
- 1.
- and .
- 2.
- The functions ,
- 3.
- The activation functions , and there exist positive constants , such that and for ,
- 4.
- There exist constants such that the algebraic system (30) is satisfied for all
- 5.
- There exist constants , such that the inequalitieshold.
4.1.2.Constant equilibrium
0
5. Examples
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- G. Wang, K. Pei, Y. Q. Chen, Stability analysis of nonlinear Hadamard fractional differential system, J. Franklin Inst.356, 12, (2019), 6538-654. [CrossRef]
- Li Y., Chen Y., Podlubny I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag Leffler stability, Comput. Math. Appl. 59 (2010) 1810–1821. [CrossRef]
- N. Aguila-Camacho, M. A. Duarte-Mermoud, J. A. Gallegos, Lyapunov functions for fractional order systems, Comm. Nonlinear Sci. Numer. Simul., 19, (2014) 2951-2957. [CrossRef]
- D. Qian, Ch. Li, R. P. Agarwal, P. J.Y. Wong, Stability analysis of fractional differential system with Riemann–Liouville derivative, Math. Comput. Modell. 52 (2010) 862–874. [CrossRef]
- Hristova, S.; Tersian, S.; Terzieva, R. Lipschitz Stability in Time for Riemann–Liouville Fractional Differential Equations, Fractal Fract., 5, 37, (2021). [CrossRef]
- Liu S., Wu X., Zhou X.F., Jiang W. Asymptotical stability of Riemann-Liouville fractional nonlinear systems,Nonlinear Dynamics, 86 (2016), 65–71. [CrossRef]
- Devi, J.V.; Rae, F.A.M.; Drici, Z. Variational Lyapunov method for fractional differential equations, Comput. Math. Appl. 64, (2012) 2982–2989. [CrossRef]
- Agarwal, R., Hristova, S., O’Regan, D. Practical stability for Riemann–Liouville delay fractional differential equations. Arab. J. Math., 10, 271–283 (2021). [CrossRef]
- Benchohra, M.; Bouriah, S.; Nieto, J. J. Existence and Ulam stability for nonlinear implicit differential equations with Riemann-Liouville fractional derivative, Demonstratio Mathematica, 52, 1, (2019), 437–450. [CrossRef]
- Agarwal, R.; Hristova, S.; O’Regan, D. Stability Concepts of Riemann-Liouville Fractional-Order Delay Nonlinear Systems. Mathematics 2021, 9, 435. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Alzabut, J. Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top. 2017, 226, 3457–3471. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. Syst. Ser. S 2020, 13, 709–722. [Google Scholar] [CrossRef]
- Abbas, M.I.; Hristova, S. On the Initial Value Problems for Caputo-Type Generalized Proportional Vector-Order Fractional Differential Equations. Mathematics 2021, 9, 2720. [Google Scholar] [CrossRef]
- D. Boucenna, D. Baleanu, A. B. Makhlouf, A.M. Nagy, Analysis and numerical solution of the generalized proportional fractional Cauchy problem, Applied Numerical Mathematics 167 (2021) 173–186. [CrossRef]
- Hristova, S.; Abbas, M.I. Explicit Solutions of Initial Value Problems for Fractional Generalized Proportional Differential Equations with and without Impulses. Symmetry, 13, (2021), 996. [CrossRef]
- M. I. Abbas, Controllability and Hyers-Ulam stability results of initial value problems for fractional differential equations via generalized proportional-Caputo fractional derivative, Miskolc Mathematical Notes 22 2, (2021), 491–502. [CrossRef]
- Almeida, R.; Agarwal, R. P.; Hristova, S.; O’Regan, D., Quadratic Lyapunov Functions for Stability of the Generalized Proportional Fractional Differential Equations with Applications to Neural Networks. Axioms, 10, 4, (2021) 322. [CrossRef]
- S. Hristova; M. I. Abbas, Fractional differential equations with anti-periodic fractional integral boundary conditions via the generalized proportional fractional derivatives, AIP Conference Proceedings 2459, 030014 (2022). [CrossRef]
- J. Alzabut, J. Viji, V. Muthulakshmi, W. Sudsutad, Oscillatory Behavior of a Type of Generalized Proportional Fractional Differential Equations with Forcing and Damping Terms, Mathematics 2020, 8, 1037. [CrossRef]
- W. Sudsutad, J. Alzabut, C. Tearnbucha, C.Thaiprayoon, On the oscillation of differential equations in frame of generalized proportional fractional derivatives, AIMS Mathematics, 5 (2) (2020) 856–871. [CrossRef]
- M.I. Abbas, M. Ghaderi, S. Rezapour, S. T. M. Thabet, On a coupled system of fractional differential equations via the generalized proportional fractional derivatives, J. Function Spaces, 2022, (2022), Article ID 4779213. [CrossRef]
- Sh. Das, Functional Fractional Calculus, Springer-Verlag Berlin Heidelberg, 2011.
- I. Podlubny,Fractional Differential Equations, Academic Press, San Diego, 1999.
- G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, 1993.
- F. Sabzikar, M.M. Meerschaert, J. Chen, Tempered fractional calculus,J. Comput. Phys. 293 (2015) 14–28. [CrossRef]
- A. Fernandez, C. Ustaoglu, On some analytic properties of tempered fractional calculus, J. Comput. Appl. Math. 366 (2020) 112400. [CrossRef]
- S. Liu, X. Wu, Y.-J. Zhang, Asymptotical stability of Riemann–Liouville fractional neutral systems, Appl. Math. Letters, 69, 2017, 168-173. [CrossRef]
- M. A. Duarte-Mermoud, N. Aguila-Camacho, J. A. Gallegos, R. Castro-Linares, Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun. Nonlinear Sci. Numer. Simulat., 22, 2015, 650-659. [CrossRef]
- R. Zhang, Sh. Yang, Sh. Feng, Stability analysis of a class of nonlinear fractional differential systems with Riemann-Liouville derivative, EE/CAA J. Autom. Sinica. [CrossRef]
- J. Alidousti, R. Khoshsiar Ghaziani, A. B. Eshkaftaki, Stability analysis of nonlinear fractional differential order systems with Caputo and Riemann–Liouville derivatives, Turk. J. Math., bf 41, (2017) 1260–1278. [CrossRef]
- Z. Qin, R. Wu, Y. Lu, Stability analysis of fractionalorder systems with the Riemann–Liouville derivative, Systems Sci. Control Eng.: An Open Access J., 2, 2014, 727–731. [CrossRef]
- H. Zhang, R. Ye, J. Cao, Ah. Alsaedi, Existence and Globally Asymptotic Stability of Equilibrium Solution for Fractional-Order Hybrid BAM Neural Networks with Distributed Delays and Impulses, Complexity, 2017, (2017), Art. ID 6875874. [CrossRef]
- Bohner, M., Hristova, S. Stability for generalized Caputo proportional fractional delay integro-differential equations. Bound Value Probl 2022, 14 (2022). [CrossRef]
- A. Fernandez, M.A. Ozarslan, D. Baleanu, On fractional calculus with general analytic kernels, Appl. Math. Comput. 354 (2019) 248–265. [CrossRef]
- Gu, C.-Y.; Zheng, F.-H.; Shiri, B. Mittag–Leffler stability analysis of tempered fractional neural networks with short memory and variable-order, Fractals, bf 8, (2021), 2140029. [CrossRef]
- Meerschaert, M.M.; Sabzikar, F.; Phanikumar, M.S.; Zeleke, A. Tempered fractional time series model for turbulence in geophysical flows, J. Stat. Mech. Theory Exper., 9, (2014), 9023. [CrossRef]
- Syed Ali M., Narayanan G., Shekher V., Alsaedi A. and Ahmad B., Global Mittag–Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays, Commun. Nonlinear Sci. Numer. Simul., 83 (2020) Art. 105088. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
