Submitted:
22 May 2023
Posted:
23 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Effect of periodontitis on SARS-CoV-2 entry molecules
3. Clinical studies associating periodontitis and COVID-19
3.1. Periodontitis associated with COVID-19 Severity
3.2. Effects of COVID-19 on periodontitis
4. Inflammatory biomarkers involved in COVID-19
5. Inflammatory biomarkers linked with periodontitis
6. Inflammatory biomarkers associating periodontitis and COVID-19
6.1. C-reactive protein
6.2. D-dimer
6.3. Ferritin
6.4. Procalcitonin
6.5. Pro-BNP
7. Herpesvirus reactivation linking periodontitis and COVID-19
8. Conclusion
References
- WHO. Coronavirus. (2021, June 14). https://www.who.int/health-topics/coronavirus#tab=tab_1 [Accessed on January 4, 2023].
- Ting, M.; Suzuki, J.B. SARS-CoV-2: Overview and Its Impact on Oral Health. Biomedicines. 2021, 9. [Google Scholar] [CrossRef] [PubMed]
- Ting, M.; Suzuki, J.B. COVID-19: Current Overview on SARS-CoV-2 and the Dental Implications. Oral health 2022, July https://www.oralhealthgroup.com/features/covid-19-current-overview-on-sars-cov-2-and-the-dental-implications/.
- Ting, M.; Suzuki, J.B. Is the COVID-19 Pandemic Over? The Current Status of Boosters, Immunosenescence, Long Haul COVID, and Systemic Complications. Int. J. Transl. Med. 2022, 2, 230–241. [Google Scholar] [CrossRef]
- Madi, M.; Abuohashish, H.M.; Attia, D.; AlQahtani, N.; Alrayes, N.; Pavlic, V.; Bhat, S.G. Association between Periodontal Disease and Comorbidities in Saudi’s Eastern Province. BioMed Res. Int. 2021, 2021, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, H.; Alsrhani, A.; Zafar, A.; Javed, H.; Junaid, K.; Abdalla, A.E.; Abosalif, K.O.; Ahmed, Z.; Younas, S. COVID-19 and comorbidities: Deleterious impact on infected patients. J. Infect. Public Health 2020, 13, 1833–1839. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, E.M.; Suvan, J.; Orlandi, M.; Catalina, Q.M.; Nart, J.; D’aiuto, F. Association Between Periodontitis and Blood Pressure Highlighted in Systemically Healthy Individuals. Hypertension 2021, 77, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Leong, X.-F.; Ng, C.-Y.; Badiah, B.; Das, S. Association between Hypertension and Periodontitis: Possible Mechanisms. Sci. World J. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R.; West, M. Increasing Evidence for an Association Between Periodontitis and Cardiovascular Disease. Circ. 2016, 133, 549–551. [Google Scholar] [CrossRef]
- Periodontitis. (n.d.). https://www.ada.org/resources/research/science-and-research-institute/oral-health-topics/periodontitis [Accessed on on January 4, 2023].
- Mehrotra N, Singh S. Periodontitis. [Updated 2022 May 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK541126/.
- Hajishengallis, G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 2015, 15, 30–44. [Google Scholar] [CrossRef]
- Ohnishi, T.; Nakamura, T.; Shima, K.; Noguchi, K.; Chiba, N.; Matsuguchi, T. Periodontitis promotes the expression of gingival transmembrane serine protease 2 (TMPRSS2), a priming protease for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). J. Oral Biosci. 2022, 64, 229–236. [Google Scholar] [CrossRef]
- Slots, J. Herpesviral-bacterial interactions in periodontal diseases. Periodontol 2000. 2010, 52, 117–40. [Google Scholar] [CrossRef]
- Ting, M.; Contreras, A.; Slots, J. Herpesviruses in localized juvenile periodontitis. J. Periodontal Res. 2000, 35, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, H.; Alsrhani, A.; Zafar, A.; Javed, H.; Junaid, K.; Abdalla, A.E.; Abosalif, K.O.; Ahmed, Z.; Younas, S. COVID-19 and comorbidities: Deleterious impact on infected patients. J. Infect. Public Heal. 2020, 13, 1833–1839. [Google Scholar] [CrossRef] [PubMed]
- Mancini, L.; Quinzi, V.; Mummolo, S.; Marzo, G.; Marchetti, E. Angiotensin-Converting Enzyme 2 as a Possible Correlation between COVID-19 and Periodontal Disease. Appl. Sci. 2020, 10, 6224. [Google Scholar] [CrossRef]
- Takahashi, Y.; Watanabe, N.; Kamio, N.; Yokoe, S.; Suzuki, R.; Sato, S.; Iinuma, T.; Imai, K. Expression of the SARS-CoV-2 Receptor ACE2 and Proinflammatory Cytokines Induced by the Periodontopathic Bacterium Fusobacterium nucleatum in Human Respiratory Epithelial Cells. Int. J. Mol. Sci. 2021, 22, 1352. [Google Scholar] [CrossRef] [PubMed]
- To, K.K.-W.; Tsang, O.T.-Y.; Yip, C.C.-Y.; Chan, K.-H.; Wu, T.-C.; Chan, J.M.-C.; Leung, W.-S.; Chik, T.S.-H.; Choi, C.Y.-C.; Kandamby, D.H.; et al. Consistent Detection of 2019 Novel Coronavirus in Saliva. Clin. Infect. Dis. 2020, 71, 841–843. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.F.; Sun, Y.L.; Hamet, P.; Inagami, T. The angiotensin II type 1 receptor and receptor-associated proteins. Cell Res. 2001, 11, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Badran, Z.; Gaudin, A.; Struillou, X.; Amador, G.; Soueidan, A. Periodontal pockets: A potential reservoir for SARS-CoV-2? Med Hypotheses 2020, 143, 109907–109907. [Google Scholar] [CrossRef]
- Drozdzik, A. Covid-19 and SARS-CoV-2 infection in periodontology: A narrative review. J. Periodontal Res. 2022, 57, 933–941. [Google Scholar] [CrossRef]
- Takahashi, Y.; Watanabe, N.; Kamio, N.; Kobayashi, R.; Iinuma, T.; Imai, K. Aspiration of periodontopathic bacteria due to poor oral hygiene potentially contributes to the aggravation of COVID-19. J. Oral Sci. 2021, 63, 1–3. [Google Scholar] [CrossRef]
- Mahyuddin, A.P.; Kanneganti, A.; Wong, J.J.; Dimri, P.S.; Su, L.L.; Biswas, A.; Illanes, S.E.; Mattar, C.N.Z.; Huang, R.Y.; Choolani, M. Mechanisms and evidence of vertical transmission of infections in pregnancy including SARS-CoV-2s. Prenat. Diagn. 2020, 40, 1655–1670. [Google Scholar] [CrossRef]
- Bourgonje, A.R.; Abdulle, A.E.; Timens, W.; Hillebrands, J.L.; Navis, G.J.; Gordijn, S.J.; Bolling, M.C.; Dijkstra, G.; Voors, A.A.; Osterhaus, A.D.; et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV -2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J. Pathol. 2020, 251, 228–248. [Google Scholar] [CrossRef] [PubMed]
- Darbani, B. The Expression and Polymorphism of Entry Machinery for COVID-19 in Human: Juxtaposing Population Groups, Gender, and Different Tissues. Int. J. Environ. Res. Public Heal. 2020, 17, 3433. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Lin, B.; Pathak, J.L.; Gao, H.; Young, A.J.; Wang, X.; Liu, C.; Wu, K.; Liu, M.; Chen, J.-M.; et al. ACE2 and Furin Expressions in Oral Epithelial Cells Possibly Facilitate COVID-19 Infection via Respiratory and Fecal–Oral Routes. Front. Med. 2020, 7, 580796. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, W.; Kubota, N.; Shimizu, T.; Saruta, J.; Fuchida, S.; Kawata, A.; Yamamoto, Y.; Sugimoto, M.; Yakeishi, M.; Tsukinoki, K. Existence of SARS-CoV-2 Entry Molecules in the Oral Cavity. Int. J. Mol. Sci. 2020, 21, 6000. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Cheng, T.; Koohi-Moghadam, M.; Wu, M.; Yu, S.Y.; Ding, X.; Pelekos, G.; Yiu, K.H.; Jin, L. Salivary ACE2 and TMPRSS2 link to periodontal status and metabolic parameters. Clin. Transl. Discov. 2022, 2. [Google Scholar] [CrossRef]
- Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care 2020, 24, 1–10. [Google Scholar] [CrossRef]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef]
- PASTRIAN, S. G. Presence and expression of ACE2 receptor (Target of SARS-CoV-2) in human tissues and oral cavity. Possible routes infection in oral organs. Int. J. Odontostomat., 14(4):501-507, 2020.
- Wu, C.; Zheng, M.; Yang, Y.; Gu, X.; Yang, K.; Li, M.; Liu, Y.; Zhang, Q.; Zhang, P.; Wang, Y.; et al. Furin: A Potential Therapeutic Target for COVID-19. iScience 2020, 23, 101642–101642. [Google Scholar] [CrossRef]
- Ma Y, Hung Y, Wang T, Xiang AP, Huang W. ACE2 shedding and furin abundance in target organs may influence the efficiency of SARS-CoV-2 entry. ChinaXiv. (2020) 202002.00082. [CrossRef]
- Xin L, GuangYou D, Wei Z, Jinsong S, JiaYuan C, Gao S, et al. A furin cleavage site was discovered in the S protein of the 2019 novel coronavirus. Chin J Bioinformatics. (2020) 18:103–08. [CrossRef]
- Mancini, L.; Americo, L.M.; Pizzolante, T.; Donati, R.; Marchetti, E. Impact of COVID-19 on Periodontitis and Peri-Implantitis: A Narrative Review. Front. Oral Heal. 2022, 3, 822824. [Google Scholar] [CrossRef]
- Wu, C.; Zheng, M.; Yang, Y.; Gu, X.; Yang, K.; Li, M.; Liu, Y.; Zhang, Q.; Zhang, P.; Wang, Y.; et al. Furin: A Potential Therapeutic Target for COVID-19. iScience 2020, 23, 101642–101642. [Google Scholar] [CrossRef]
- Bertolini, M.; Pita, A.; Koo, S.; Cardenas, A.; Meethil, A. Periodontal Disease in the COVID-19 Era: Potential Reservoir and Increased Risk for SARS-CoV-2. 2020, 20. 20. [CrossRef]
- Alnomay, N.; Alolayan, L.; Aljohani, R.; Almashouf, R.; Alharbi, G. Association between periodontitis and COVID-19 severity in a tertiary hospital: A retrospective cohort study. Saudi Dent. J. 2022, 34, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Said, K.N.; Al-Momani, A.M.; Almaseeh, J.A.; Marouf, N.; Shatta, A.; Al-Abdulla, J.; Alaji, S.; Daas, H.; Tharupeedikayil, S.S.; Chinta, V.R.; et al. Association of periodontal therapy, with inflammatory biomarkers and complications in COVID-19 patients: a case control study. Clin. Oral Investig. 2022, 26, 6721–6732. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.A.; Vilela, A.C.S.; Oliveira, S.A.; Gomes, T.D.; Andrade, A.A.C.; Leles, C.R.; Costa, N.L. Poor oral health status and adverse COVID-19 outcomes: A preliminary study in hospitalized patients. J. Periodontol. 2022, 93, 1889–1901. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Mohindra, R.; Singla, M.; Khera, S.; Sahni, V.; Kanta, P.; Soni, R.K.; Kumar, A.; Gauba, K.; Goyal, K.; et al. The clinical association between Periodontitis and COVID-19. Clin. Oral Investig. 2021, 26, 1361–1374. [Google Scholar] [CrossRef] [PubMed]
- Gambhir, R.; Kaur, A.; Sandhu, H.; Sarwal, A.; Bhagat, S.; Dodwad, R.; Singh, G. Assessment of correlation of COVID-19 infection and periodontitis- A comparative study. J. Fam. Med. Prim. Care 2022, 11, 1913–1917. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Gupta, V.; Rahman, W.; Gazala, M.P.; Anil, S. Association between Periodontitis and COVID-19 Based on Severity Scores of HRCT Chest Scans. Dent. J. 2022, 10, 106. [Google Scholar] [CrossRef] [PubMed]
- Baganet-Cobas Y, Chaple-Gil AM, Caballero-Guerra Y, Chávez-Valdez D. Self-reported periodontal disease, dental loss and COVID-19 in older adults. Revista Cubana de Medicina Militar, 2022 Retrieved , January 4, 2023, from https://pesquisa.bvsalud.org/portal/resource/pt/biblio-1408807.
- Marouf, N.; Cai, W.; Said, K.N.; Daas, H.; Diab, H.; Chinta, V.R.; Hssain, A.A.; Nicolau, B.; Sanz, M.; Tamimi, F. Association between periodontitis and severity of COVID-19 infection: A case–control study. J. Clin. Periodontol. 2021, 48, 483–491. [Google Scholar] [CrossRef]
- Larvin, H.; Wilmott, S.; Kang, J.; Aggarwal, V.; Pavitt, S.; Wu, J. Additive Effect of Periodontal Disease and Obesity on COVID-19 Outcomes. J. Dent. Res. 2021, 100, 1228–1235. [Google Scholar] [CrossRef]
- Larvin, H.; Wilmott, S.; Wu, J.; Kang, J. The Impact of Periodontal Disease on Hospital Admission and Mortality During COVID-19 Pandemic. Front. Med. 2020, 7, 604980. [Google Scholar] [CrossRef]
- Anand, P.S.; Jadhav, P.; Kamath, K.P.; Kumar, S.R.; Vijayalaxmi, S.; Anil, S. A case-control study on the association between periodontitis and coronavirus disease (COVID-19). J. Periodontol. 2021, 93, 584–590. [Google Scholar] [CrossRef]
- Loukas, G.; Kosho, M.X.F.; Paraskevas, S.; Loos, B.G. Post-Operative Bleeding Complications in a Periodontitis Patient Testing Positive for COVID-19. Dent. J. 2022, 10, 110. [Google Scholar] [CrossRef] [PubMed]
- Manzalawi, R.; Alhmamey, K.; Abdelrasoul, M. Gingival bleeding associated with COVID-19 infection. Clin. Case Rep. 2020, 9, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Balta, S.; Balta, I. COVID-19 and Inflammatory Markers. Curr. Vasc. Pharmacol. 2022, 20, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Samprathi, M.; Jayashree, M. Biomarkers in COVID-19: An Up-To-Date Review. Front. Pediatr. 2021, 8, 607647. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Huang, Y.; Guo, Y.; Yin, M.; Chen, X.; Xiao, L.; Deng, G. Association of inflammatory markers with the severity of COVID-19: A meta-analysis. Int. J. Infect. Dis. 2020, 96, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Parimoo, A.; Biswas, A.; Baitha, U.; Gupta, G.; Pandey, S.; Ranjan, P.; Gupta, V.; Roy, D.B.; Prakash, B.; Wig, N. Dynamics of Inflammatory Markers in Predicting Mortality in COVID-19. Cureus 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Marimuthu, A.; Anandhan, M.; Sundararajan, L.; Chandrasekaran, J.; Ramakrishnan, B. Utility of various inflammatory markers in predicting outcomes of hospitalized patients with COVID-19 pneumonia: A single-center experience. Lung India 2021, 38, 448–453. [Google Scholar] [CrossRef]
- Gao, L.; Jiang, D.; Wen, X.-S.; Cheng, X.-C.; Sun, M.; He, B.; You, L.-N.; Lei, P.; Tan, X.-W.; Qin, S.; et al. Prognostic value of NT-proBNP in patients with severe COVID-19. Respir. Res. 2020, 21, 1–7. [Google Scholar] [CrossRef]
- Fazal, I.; Shetty, B.; Yadalam, U.; Khan, S.F.; Nambiar, M. Effectiveness of periodontal intervention on the levels of N-terminal pro-brain natriuretic peptide in chronic periodontitis patients. J. Circ. Biomarkers 2022, 11, 48–56. [Google Scholar] [CrossRef]
- Taba, M.; Kinney, J.; Kim, A.S.; Giannobile, W.V. Diagnostic Biomarkers for Oral and Periodontal Diseases. Dent. Clin. North Am. 2005, 49, 551–571. [Google Scholar] [CrossRef]
- Pavan Kumar, A.; Jagdish Reddy, G.; Raja babu, P. Biomarkers in periodontal disease. Dent. Oral Craniofacial Res. 2015, 1. [Google Scholar] [CrossRef]
- Kaneko, N.; Kurata, M.; Yamamoto, T.; Morikawa, S.; Masumoto, J. The role of interleukin-1 in general pathology. Inflamm. Regen. 2019, 39, 12. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. A clinical perspective of IL-1β as the gatekeeper of inflammation. Eur. J. Immunol. 2011, 41, 1203–1217. [Google Scholar] [CrossRef] [PubMed]
- Hönig, J.; Rordorf-Adam, C.; Siegmund, C.; Wiedemann, W.; Erard, F. Increased interleukin-1 beta (IL-1β) concentration in gingival tissue from periodontitis patients. J. Periodontal Res. 1989, 24, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Stathopoulou, P.G.; Buduneli, N.; Kinane, D.F. Systemic Biomarkers for Periodontitis. Curr. Oral Health Rep. 2015, 2, 218–226. [Google Scholar] [CrossRef]
- Cafiero, C.; Spagnuolo, G.; Marenzi, G.; Martuscelli, R.; Colamaio, M.; Leuci, S. Predictive Periodontitis: The Most Promising Salivary Biomarkers for Early Diagnosis of Periodontitis. J. Clin. Med. 2021, 10, 1488. [Google Scholar] [CrossRef]
- Gelzo, M.; Cacciapuoti, S.; Pinchera, B.; De Rosa, A.; Cernera, G.; Scialò, F.; Comegna, M.; Mormile, M.; Fabbrocini, G.; Parrella, R.; et al. Matrix metalloproteinases (MMP) 3 and 9 as biomarkers of severity in COVID-19 patients. Sci. Rep. 2022, 12, 1–7. [Google Scholar] [CrossRef]
- Al-Samkari H, Karp Leaf RS, Dzik WH, Carlson JCT, Fogerty AE, Waheed A, et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020;136(4):489-500.
- Taba, M.; Kinney, J.; Kim, A.S.; Giannobile, W.V. Diagnostic Biomarkers for Oral and Periodontal Diseases. Dent. Clin. North Am. 2005, 49, 551–571. [Google Scholar] [CrossRef]
- Battaglini, D.; Lopes-Pacheco, M.; Castro-Faria-Neto, H.C.; Pelosi, P.; Rocco, P.R.M. Laboratory Biomarkers for Diagnosis and Prognosis in COVID-19. Front. Immunol. 2022, 13, 857573. [Google Scholar] [CrossRef]
- Popa, C.; Netea, M.G.; van Riel, P.L.C.M.; van der Meer, J.W.M.; Stalenhoef, A.F.H. The role of TNF-α in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J. Lipid Res. 2007, 48, 751–762. [Google Scholar] [CrossRef]
- Jang, D.-I.; Lee, A.-H.; Shin, H.-Y.; Song, H.-R.; Park, J.-H.; Kang, T.-B.; Lee, S.-R.; Yang, S.-H. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef] [PubMed]
- Cicha, I.; Urschel, K. TNF-α in the cardiovascular system: from physiology to therapy. Int. J. Interf. Cytokine Mediat. Res. 2015, ume 7, 9–25. [Google Scholar] [CrossRef]
- Sarhat, E.R.; Zbaar, S.A.; Ahmed, S.E.; Ahmed, T.S.; Sarhat, T.R. Salivary biochemical variables of Liver Function in among Individuals with COVID-19 in Thi-Qar Province. Egypt. J. Chem. 2021, 65, 305–310. [Google Scholar] [CrossRef]
- Chen, W.; Zheng, K.I.; Liu, S.; Yan, Z.; Xu, C.; Qiao, Z. Plasma CRP level is positively associated with the severity of COVID-19. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Stringer, D.; Braude, P.; Myint, P.K.; Evans, L.; Collins, J.T.; Verduri, A.; Quinn, T.J.; Vilches-Moraga, A.; Stechman, M.J.; Pearce, L.; et al. The role of C-reactive protein as a prognostic marker in COVID-19. Int. J. Epidemiol. 2021, 50, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Cao, J.; Wang, Q.; Shi, Q.; Liu, K.; Luo, Z.; Chen, X.; Chen, S.; Yu, K.; Huang, Z.; et al. D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: a case control study. J. Intensiv. Care 2020, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dikshit, S. Fibrinogen Degradation Products and Periodontitis: Deciphering the Connection. J. Clin. Diagn. Res. 2015, 9, ZC10–2. [Google Scholar] [CrossRef]
- Bo Zhou, Jianqing She, Yadan Wang et al. Utility of Ferritin, Procalcitonin, and C-reactive Protein in Severe Patients with 2019 Novel Coronavirus Disease, 19 March 2020, PREPRINT (Version 1) available at Research Square. 19 March. [CrossRef]
- Cleland DA, Eranki AP. Procalcitonin. [Updated 2022 Aug 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539794/.
- Hu, R.; Han, C.; Pei, S.; Yin, M.; Chen, X. Procalcitonin levels in COVID-19 patients. International Journal of Antimicrobial Agents. 2020, 56, 106051. [Google Scholar] [CrossRef]
- Tong-Minh, K.; van der Does, Y.; Engelen, S.; de Jong, E.; Ramakers, C.; Gommers, D.; van Gorp, E.; Endeman, H. High procalcitonin levels associated with increased intensive care unit admission and mortality in patients with a COVID-19 infection in the emergency department. BMC Infect. Dis. 2022, 22, 1–9. [Google Scholar] [CrossRef]
- Gao L, Jiang D, Wen X-s, Cheng X-c, Sun M, He B, et al. Prognostic value of NT-proBNP in patients with severe COVID-19. Respiratory Research 2020, 21, 83. [CrossRef]
- Wang L, Chen F, Bai L, Bai L, Huang Z, Peng Y. Association between NT-proBNP Level and the Severity of COVID-19 Pneumonia. Cardiology Research and Practice 2021, 2021, 5537275.
- Leira, Y.; Blanco, J. Brain natriuretic peptide serum levels in periodontitis. J. Periodontal Res. 2018, 53, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Leira, Y.; Blanco, J. Brain natriuretic peptide serum levels in periodontitis. J. Periodontal Res. 2018, 53, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraj, S. , Ari, G., Rajendran, S., Mahendra, J., & Namasivayam, A. Comparison of the Serum and Salivary Levels of NT-proBNP in Systemically Healthy Subjects with Mild, Moderate and Severe Chronic Periodontitis. International Journal Of Drug Research And Dental Science 2022, 4, 40–48. [Google Scholar] [CrossRef]
- Molinsky RL, Yuzefpolskaya M, Norby FL, Yu B, Shah AM, Pankow JS, et al. Periodontal Status, C-Reactive Protein, NT-proBNP, and Incident Heart Failure: The ARIC Study. JACC: Heart Failure. 2022, 10, 731–41. [Google Scholar]
- Contreras, A.; Slots, J. Herpesviruses in human periodontal disease. J. Periodontal Res. 2000, 35, 3–16. [Google Scholar] [CrossRef]
- Simonnet, A.; Engelmann, I.; Moreau, A.-S.; Garcia, B.; Six, S.; El Kalioubie, A.; Robriquet, L.; Hober, D.; Jourdain, M. High incidence of Epstein–Barr virus, cytomegalovirus, and human-herpes virus-6 reactivations in critically ill patients with COVID-19. Infect. Dis. Now 2021, 51, 296–299. [Google Scholar] [CrossRef]
- Saade, A.; Moratelli, G.; Azoulay, E.; Darmon, M. Herpesvirus reactivation during severe COVID-19 and high rate of immune defect. Infect. Dis. Now 2021, 51, 676–679. [Google Scholar] [CrossRef]
- Zubchenko, S.; Kril, I.; Nadizhko, O.; Matsyura, O.; Chopyak, V. Herpesvirus infections and post-COVID-19 manifestations: a pilot observational study. Rheumatol. Int. 2022, 42, 1523–1530. [Google Scholar] [CrossRef]
- Paolucci, S.; Cassaniti, I.; Novazzi, F.; Fiorina, L.; Piralla, A.; Comolli, G.; Bruno, R.; Maserati, R.; Gulminetti, R.; Novati, S.; et al. EBV DNA increase in COVID-19 patients with impaired lymphocyte subpopulation count. Int. J. Infect. Dis. 2020, 104, 315–319. [Google Scholar] [CrossRef]
- Im, J.H.; Nahm, C.H.; Je, Y.S.; Lee, J.-S.; Baek, J.H.; Kwon, H.Y.; Chung, M.-H.; Jang, J.-H.; Kim, J.S.; Lim, J.H.; et al. The effect of Epstein–Barr virus viremia on the progression to severe COVID-19. Medicine 2022, 101, e29027. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.; Kehl, V.; Erber, J.; Wagner, K.I.; Jetzlsperger, A.-M.; Burrell, T.; Schober, K.; Schommers, P.; Augustin, M.; Crowell, C.S.; et al. CMV seropositivity is a potential novel risk factor for severe COVID-19 in non-geriatric patients. PLOS ONE 2022, 17, e0268530. [Google Scholar] [CrossRef] [PubMed]
- Larvin, H.; Wilmott, S.; Wu, J.; Kang, J. The Impact of Periodontal Disease on Hospital Admission and Mortality During COVID-19 Pandemic. Front. Med. 2020, 7, 604980. [Google Scholar] [CrossRef] [PubMed]
- Guardado-Luevanos, I.; Bologna-Molina, R.; Zepeda-Nuño, J.S.; Isiordia-Espinoza, M.; Molina-Frechero, N.; González-González, R.; Pérez-Pérez, M.; López-Verdín, S. Self-Reported Periodontal Disease and Its Association with SARS-CoV-2 Infection. Int. J. Environ. Res. Public Heal. 2022, 19, 10306. [Google Scholar] [CrossRef]
| Study | Type | Time period | Location | Aim | COVID-19 patients | Comorbidities | Blood parameters | No. of patients | Periodontal diagnosis | Statistical significance | Conclusion |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Alnomay et al. 2022 [39] | Retrospective cohort study | Jan 2020-Jul 2021 | Saudi Arabia | To investigate the association between periodontitis and COVID-19 severity in the central region of Saudi Arabia | COVID-19 with periodontitis COVID-19 without periodontitis |
Diabetes, Hypertension, Obesity and other comorbidities including respiratory disorders, endocrine disorders, cardiovascular disorders, cancer, kidney dialysis or organ transplant | C- reactive protein (CRP) | COVID patients: 188 Periodontitis: 99 No periodontitis: 89 |
Periodontitis | Periodontitis associated with covid-19 complications: Statistically significant |
Periodontitis is significantly associated with a higher risk of developing COVID-19 complications, including the need for assisted ventilation, ICU admission, and death |
| Cobas et al. 2022 [45] | Descriptive cross-sectional study | Mar 11, 2020- Mar 11, 2021 | Cuba | To determine the relationship between self-reported periodontal disease, dental loss and COVID-19 activity | Patients infected with COVID-19 and survived | Hypertension, diabetes mellitus, heart disease, chronic respiratory disease, and morbid obesity | - | COVID infected and survived patients: 238 |
Periodontal disease and advanced periodontal disease (self-reported) | Periodontal disease and advanced periodontal disease associated with the severity of COVID-19: Not statistically significant |
Periodontal disease and the severity of COVID-19 cannot be established |
| Costa et al. 2022 [41] | Short-term prospective study | Aug 2020- Mar 2021 | Brazil | To assess the oral health conditions in COVID-19 patients and determine the association between oral health and disease outcomes, including the incidence of severe/critical symptoms, ICU admission | Hospitalized, infected COVID-19 patients with at least one typical COVID-19 symptoms | Hypertension, Obesity, Diabetes, COPD, Asthma, Cardiovascular diseases, Liver diseases, Cancer, Osteoporosis, Thyroid disease, Arthritis, HIV or other STD | - | 128 patients | Periodontitis | Periodontitis and ICU admission, severe critical symptoms and invasive ventilation: Statistically significant | Periodontitis was associated with a higher occurrence of critical COVID-19 symptoms and the need for intensive medical care and death, even when adjusted for age and presence of comorbidities |
| Gupta et al. 2021 [42] | Cross-sectional analytical study | 15 Jan 2021- 20 Feb 2021 | India | To assess the association of periodontal health on the complications of COVID-19 | COVID-19 patients | Diabetes, hypertension, pulmonary disease, chronic kidney disease, cancer, coronary artery disease, obesity and any other comorbidities |
CRP, D-dimer, platelet count, ferritin, glycosylated hemoglobin (HbA1c), haemoglobin (Hb), vitamin D3, neutrophil/ lymphocyte ratio (N/L), troponin, procalcitonin and N-terminal-pro-brain natriuretic peptide (NT-proBNP) |
82 patients | Stages of periodontitis I- IV | Stages of periodontitis and eventual survival, hospital admission, oxygen requirement, COVID-19 pneumonia, D-dimer, troponin and pro-BNP: Statistically significant | There is a direct association between periodontal disease and COVID-19-related outcomes |
| Larvin et al. 2020 [95] | National, longitudinal cohort study | Study recruitment: 2006- 2010 Data extraction: till August 2020 |
UK | To quantify the impact of periodontal disease on COVID-19 infection and related outcomes utilizing the UK Biobank data | COVID-19 tested participants with self-reported history of periodontal disease COVID-19 tested participants with no self-reported history of periodontal disease |
Cancer, hypertension, angina, cardiac arrest, diabetes, myocardial infarction, stroke, peripheral artery disease, atrial fibrillation, respiratory disease | Systolic and diastolic blood pressure and resting heart rate (biomarkers) | 13,253 patients | Painful/ bleeding gums and loose teeth | Painful/ bleeding gums and mortality for participants with COVID-19 infection: Suggestive of risk (OR= 1.71) | There was a suggestive risk of mortality for COVID-19 positive participants with periodontal disease |
| Larvin et al. 2021 [47] | National, longitudinal cohort study | Study recruitment: 2006- 2010 Data extraction: till August 2020 |
UK | To examine the impact of periodontal disease in obesity on COVID-19 infection and associated outcomes | Participants with records of COVID-19 test result and oral health status and body mass index (BMI) ≥18.5 kg/m2 | Cancer, CVD, diabetes, hypertension, inflammatory disease and respiratory disease | Systolic and diastolic blood pressure and CRP | 58,897 patients | Periodontal disease | The COVID-19 infection in individuals with periodontal disease in participants who were overweight: Suggestive of risk (OR= 1.21) The COVID-19 infection in individuals with periodontal disease in participants who were obese: Suggestive of risk (OR= 1.37) |
Periodontal disease may exacerbate the effect of obesity on hospitalization and mortality following COVID-19 infection |
| Guardado-Luevanos I et al. 2022 [96] | Blinded case-control study | Dec 2020- Jan 2021 | Mexico | To measure periodontal status through a previously validated test in individuals who were tested for SARS-CoV-2 infection | COVID-19 positive COVID-19 negative patients |
- | - | COVID positive: 117 COVID negative: 117 |
Periodontal disease | Periodontal disease and SARS-CoV-2 positive individuals: Medium risk (OR= 3.3) |
Self-reported periodontal disease can be an adjuvant marker to assume the risk of SARS-CoV-2 infection These individuals present more symptoms at the onset of the disease |
| Marouf et al. 2021[46] | Case-control study | 27 Feb 2020- 31 Jul 2020 | Qatar | To estimate the extent to which periodontitis is associated with COVID-19 complications | COVID-19 positive patients with and without complications | Diabetes and comorbidities | HbA1C, Vit-D, lymphocyte, D-dimer, CRP, WBC | COVID-19 patients with complications: 40 (cases) COVID-19 patients without complications: 528 (controls) |
Periodontitis | Periodontitis and risk of having COVID-19 complications: Medium risk (OR= 6.34) Periodontitis and risk of having eventual death: High risk (OR=17.5) Periodontitis and risk of having ICU admission: Medium risk (OR= 5.57) Periodontitis and risk of needing assisted ventilation: Medium risk (OR=7.31) |
Periodontitis was significantly associated with a higher risk of complications from COVID-19, including ICU admission, need for assisted ventilation and death Increased blood levels of markers linked with worse COVID-19 outcome were D-dimer, WBC and CRP |
| Mishra et al. 2022 [44] | Cross-sectional study | Apr 2021- Aug 2021 | India | To determine whether an association exists between periodontitis and COVID-19 | COVID-19 positive patients | Diabetes and Hypertension | 294 patients | Stage I-IV periodontitis | Periodontitis and COVID-19 pneumonia: Statistically significant | Periodontitis is associated with severe COVID-19 | |
| Said et al. 2022 [40] | Case control study | Mar 1, 2020- Dec 31, 2020 | Qatar | To test the hypothesis that a history of periodontal therapy could be associated with lower risk of COVID-19 complications | Patients that experienced COVID- 19-related complications such as ICU admission, mechanical ventilation and/or death and COVID-19 patients that recovered without major complications |
Asthma, chronic respiratory diseases, chronic heart disease, diabetes, dermatitis, chronic liver disease, autoimmune diseases, solid organ transplant, peptic ulcer, immunosuppressive conditions, cancer, chronic kidney disease, hypertension, cerebrovascular accidents and deep vein thrombosis |
D-dimer, C-reactive protein (CRP), urea, creatinine, ferritin, interleukin-6 (IL-6), HbA1c, vitamin D, white blood cells (WBC) and lymphocytes |
1325 patients (71 suffered severe COVID-19 complications) |
Periodontitis (non-treated and treated) | Non-treated periodontitis and assisted ventilation: Statistically significant Non-treated periodontitis and D-dimer and ferritin: Statistically significant |
COVID-19 patients with non-treated periodontitis (stages 2–4) were significantly more likely to need mechanical ventilation Increased blood levels of D-dimer and ferritin in patients with non-treated periodontitis compared to periodontally healthy and treated periodontitis patients could imply that periodontitis increases the risk of COVID-19 complications |
| Study | Type | Time period | Location | Aim | COVID-19 patients | Comorbidities | No. of patients | Periodontal diagnosis | Results | Conclusion | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Anand et al. 2021 [49] | Case control study | Aug 2020- Feb 2021 | India | To determine whether periodontitis and poor oral hygiene are associated with COVID-19 | COVID-19 patients | Diabetes, hypertension, neoplasia | COVID-19 positive patients: 79 COVID-19 negative patients: 71 |
Periodontitis | COVID-19 associated with periodontitis severity: Statistically significant COVID-19 and increased gingival inflammation: Statistically significant |
SARS-CoV-2 infection may increase the prevalence and severity of periodontitis, as well as increase gingival inflammation, and is associated with poor oral hygiene | ||
| Kaur et al. 2022 [43] | Comparative study | Mar 2021 | India | To assess the correlation of COVID-19 infection and severity of periodontitis in subjects who had a mild form of the disease as compared to subjects having a moderate form of the disease and requiring hospitalization | Moderate COVID-19 patients recovering in COVID ward of the hospital Mild COVID-19 patients recovering at home |
Diabetes | COVID-19 (moderate form of COVID) patients in the COVID ward of the hospital: 58 COVID-19 (mild form of COVID) patients at home: 58 |
Stages 0- 4 periodontal condition | The odds of getting severe periodontal disease were 6.32 times more in subjects with moderate COVID-19 compared to mild COVID-19 Moderate form of COVID-19 and periodontal disease severity: Statistically significant Stages 0-1 periodontal condition: The increased in HbA1C, lymphocyte and CRP of moderate compared to mild COVID-19: Statistically significant Stages 2-4 periodontal condition: The increased in HbA1C, lymphocyte, WBC and CRP of moderate compared to mild COVID-19: Statistically significant |
Subjects with moderate form of COVID had more severe periodontitis |
||
| Loukas et al. 2022 [50] | Case report | Jul 2020 | Netherlands | To present a 38-year-old woman with generalized stage III, grade C periodontitis with a distorted post-operative blood clot formation who tested positive for COVID-19 after a periodontal surgery | - | No known prior comorbidities | 1 | Generalized stage III, grade C periodontitis with an abnormal post-operative blood clot formation | Initial phase: Uneventful 6 months follow-up: periodontal tissues responded favorably Surgical phase (1-4): 1.Upper right sextant: Healing uneventful 2. Lower right sextant: Healing uneventful 3.Upper anterior sextant: Day 1: No complaints (COVID-19 diagnosis) Day 2: Patient reported intraoral bleeding, fever, loss of taste, and abnormal blood clots Day 3: Bleeding noted, further suturing done Day 4: Patient reported no further bleeding 4.Lower left posterior: Healing uneventful 6 months follow-up: Healing uneventful |
Abnormal postoperative bleeding tendency was associated with an active phase of COVID-19 |
||
| Manzalawi et al. 2020 [51] | Case series | Apr 2020- May 2020 | Saudi Arabia | Three patients from three different Saudi cities who reported extensive gingival bleeding and pain preceding or coincidental with the confirmation of their COVID-19 infection |
COVID-19 patients in hospital quarantine | No medical history | 3 | Gingival bleeding | The cases reported unprecedented profuse gingival bleeding that was not present before active signs of COVID-19 After COVID-19 infection subsided, gingival bleeding markedly declined |
COVID-19 infection is associated with a heightened inflammatory reaction and clinical signs of profuse gingival bleeding |
| Biomarkers | Area affected | Clinical significance |
|---|---|---|
| COVID biomarkers associated with periodontal disease progression [69] | ||
| CRP | Pulmonary function | Reduced extubation survival |
| Neurological manifestation | Ischemic stroke occurrence | |
| D-dimer | Pulmonary function | Reduced extubation survival |
| Cardiovascular function | Poorer prognosis | |
| Coagulation and hemostasis | Risk of mortality | |
| Neurological manifestation | Ischemic stroke occurrence | |
| Ferritin | Pulmonary function | ARDS development |
| PCT | Inflammation and infection | Severity and risk of mortality |
| Neurological manifestation | Ischemic stroke occurrence | |
| Kidney and liver function | Acute kidney injury | |
| Pro-BNP | Cardiovascular function | Poorer prognosis |
| Periodontitis biomarkers increased by COVID-19 infections | ||
| AST [68] | Periodontium | Increased probing depths Clinical attachment loss |
| IL-1β [61,62] | Periodontium | Increased probing depths Clinical attachment loss |
| Immune system | Autoimmune disorder Osteoarthritis |
|
| Glucose metabolism | Insulin resistance | |
| Cardiovascular function | Acute ischemic events | |
| TNF-α [70,71,72] | Periodontium | Increased probing depths Clinical attachment loss |
| Immune system | Autoimmune disorder Rheumatoid arthritis Inflammatory bowel disease Noninfectious uveitis |
|
| Cardiovascular function | Atherosclerotic lesions Vascular dysfunction Hypertension |
|
| Glucose metabolism | Insulin resistance | |
| Lipid metabolism | Formation of atherogenic plaque | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
