Submitted:
18 May 2023
Posted:
19 May 2023
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Natural Forests in Lithuania
2.1. Climate and Forest Zone
2.2. Potential Natural Forest Communities
2.3. Natural Forest Dynamics
3. Successional Characteristics of Hemi-Boreal Forest Communities
4. Adaptive Strategies of Forest Tree Species
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuuluvainen, T.; Angelstam, P.; Frelich, L.; Jõgiste, K.; Koivula, M.; Kubota, Y.; Lafleur, B.; Macdonald, E. Natural Disturbance-Based Forest Management: Moving Beyond Retention and Continuous-Cover Forestry. Frontiers in Forests and Global Change 2021, 4. [Google Scholar] [CrossRef]
- Spies, T.A.; Hessburg, P.F.; Skinner, C.N.; Puettmann, K.J.; Reilly, M.J.; Davis, R.J.; Kertis, J.A.; Long, J.W.; Shaw, D.C. Chapter 3: Old Growth, Disturbance, Forest Succession, and Management in the Area of the Northwest Forest Plan. In: Spies, T.A.; Stine, P.A.; Gravenmier, R.; Long, J.W.; Reilly, M.J., tech. coords. 2018. Synthesis of science to inform land management within the Northwest Forest Plan area. Gen. Tech. Rep. PNW-GTR-966. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: 95-243. 2018, 966, 95–243.
- Turner, M.G. Landscape Ecology: The Effect of Pattern on Process. Annual Review of Ecology and Systematics 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Angelstam, P.; Asplund, B.; Bastian, O.; Engelmark, O.; Fedoriak, M.; Grunewald, K.; Ibisch, P.L.; Lindvall, P.; Manton, M.; Nilsson, M.; et al. Tradition as Asset or Burden for Transitions from Forests as Cropping Systems to Multifunctional Forest Landscapes: Sweden as a Case Study. Forest Ecology and Management 2022, 505, 119895. [Google Scholar] [CrossRef]
- Bengtsson, J.; Angelstam, P.; Elmqvist, T.; Emanuelsson, U.; Folke, C.; Ihse, M.; Moberg, F.; Nyström, M. Reserves, Resilience and Dynamic Landscapes. ambi 2003, 32, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Millán, J.A.A.; Segarra, J.C.; Gómez, J.P.S.; Calzada, V.R.V.; Carmona, A.V. Problemas y perspectivas de la utilización de leñosas autóctonas en la restauración forestal. In Proceedings of the Restauración de ecosistemas mediterráneos, ISBN 84-8138-549-2; Universidad de Alcalá: Madrid, Spain, 2003; pp. 11–42. [Google Scholar]
- Filotas, E.; Parrott, L.; Burton, P.J.; Chazdon, R.L.; Coates, K.D.; Coll, L.; Haeussler, S.; Martin, K.; Nocentini, S.; Puettmann, K.J.; et al. Viewing Forests through the Lens of Complex Systems Science. Ecosphere 2014, 5, art1. [Google Scholar] [CrossRef]
- Petrokas, R.; Baliuckas, V.; Manton, M. Successional Categorization of European Hemi-Boreal Forest Tree Species. Plants 2020, 9, 1381. [Google Scholar] [CrossRef]
- Whisenant, S. Managing and Directing Natural Succession. In Forest Restoration in Landscapes: Beyond Planting Trees; Mansourian, S., Vallauri, D., Dudley, N., Eds.; Springer: New York, NY, 2005; pp. 257–261 . ISBN 978-0-387-29112-3. [Google Scholar]
- Kotar, J. Approaches to Ecologically Based Forest Management on Private Lands; USDA Forest Service, Minnesota Extension Service, University of Minnesota: St. Paul, Minnesota, USA, 1997. [Google Scholar]
- Kuuluvainen, T. Conceptual Models of Forest Dynamics in Environmental Education and Management: Keep It as Simple as Possible, but No Simpler. Forest Ecosystems 2016, 3, 18. [Google Scholar] [CrossRef]
- Wilson, D.S.; Sober, E. Reviving the Superorganism. Journal of Theoretical Biology 1989, 136, 337–356. [Google Scholar] [CrossRef]
- Dercole, F.; Ferriere, R.; Rinaldi, S. Chaotic Red Queen Coevolution in Three-Species Food Chains. Proc Biol Sci 2010, 277, 2321–2330. [Google Scholar] [CrossRef]
- Darwin, C. On the Origin of Species, 1859; 1st ed.; Routledge: London, 2004; ISBN 978-0-203-50910-4.
- Hall, B.K.; Strickberger, M.W.; Hallgrímsson, B. Strickberger’s Evolution; 4th ed.; Jones & Bartlett Learning: Sudbury, MA, USA, 2008; ISBN 978-0-7637-0066-9. [Google Scholar]
- Mozgeris, G.; Kazanavičiūtė, V.; Juknelienė, D. Does Aiming for Long-Term Non-Decreasing Flow of Timber Secure Carbon Accumulation: A Lithuanian Forestry Case. Sustainability 2021, 13, 2778. [Google Scholar] [CrossRef]
- Manton, M.; Ruffner, C.; Kibirkštis, G.; Brazaitis, G.; Marozas, V.; Pukienė, R.; Makrickiene, E.; Angelstam, P. Fire Occurrence in Hemi-Boreal Forests: Exploring Natural and Cultural Scots Pine Fire Regimes Using Dendrochronology in Lithuania. Land 2022, 11, 260. [Google Scholar] [CrossRef]
- Bukantis, A.; Ignatavičius, G.; Satkūnas, J.; Sinkevičius, S.; Šulijienė, G.; Vasarevičius, S.; Veteikis, D. Lithuania’s Environment: State, Processes and Trends; Kopa: Vilnius, Lietuva, 2013; ISBN 978-9955-772-58-3. [Google Scholar]
- Navasaitis, M.; Ozolinčius, R.; Smaliukas, D.; Balevičienė, J., M. Lietuvos dendroflora: monografija; Lutute: Kaunas, 2003; ISBN 978-9955-575-35-1. Kaunas.
- Kuliešis, A.; Kulbokas, G.; Kasperavičius, A.; Kazanavičiūtė, V.; Kvalkauskienė, M. Lithuanian National Forest Inventory, 1998–2017. From Measurements to Decision Making; Lututė: Kaunas, 2021; ISBN 978-9955-37-234-9. [Google Scholar]
- Bartašius, L. A Message from the Forest - “We Each Own the Forest”. Live Stories - Labanoras. Available online: https://www.youtube.com/watch?v=LH-3I9D3J6M (accessed on 26 March 2023).
- Hutchinson, G.E. The Ecological Theater and the Evolutionary Play; Yale University Press: New Haven, London, USA, 1965; ISBN 0-300-00586-5. [Google Scholar]
- Richards, P.W. The Tropical Rain Forest: An Ecological Study.; University Press: Cambridge [Eng.], 1952. [Google Scholar]
- Johnson, P.S.; Shifley, S.R.; Rogers, R.; Dey, D.C.; Kabrick, J.M. The Ecology and Silviculture of Oaks; 3rd ed.; CABI, 2019; ISBN 978-1-78064-708-1.
- National Environmental Protection Strategy. Ministry of Environment of the Republic of Lithuania. JSC ARX Reklama, Kaunas, Lithuania, 2016. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC163665/ (accessed on 12 January 2023). :.
- Jõgiste, K.; Korjus, H.; Stanturf, J.A.; Frelich, L.E.; Baders, E.; Donis, J.; Jansons, A.; Kangur, A.; Köster, K.; Laarmann, D.; et al. Hemiboreal Forest: Natural Disturbances and the Importance of Ecosystem Legacies to Management. Ecosphere 2017, 8, e01706. [Google Scholar] [CrossRef]
- Bohn, U.; Gollub, G.; Hettwer, C.; Weber, H.; Neuhäuslová, Z.; Raus, T.; Schlüter, H. Karte Der Natürlichen Vegetation Europas / Map of the Natural Vegetation of Europe - Maßstab / Scale 1:2,500,000; Federal Agency for Nature Conservation: Bonn, Germany, 2000. [Google Scholar]
- Barbati, A.; Corona, P.; Marchetti, M. European Forest Types. Categories and Types for Sustainable Forest Management and Reporting; EEA Technical report; European Environment Agency: Copenhagen, Denmark, 2006; ISBN 92-9167-886-4. [Google Scholar]
- Seidl, R.; Rammer, W.; Spies, T.A. Disturbance Legacies Increase the Resilience of Forest Ecosystem Structure, Composition, and Functioning. Ecological Applications 2014, 24, 2063–2077. [Google Scholar] [CrossRef] [PubMed]
- Angelstam, P.; Kuuluvainen, T. Boreal Forest Disturbance Regimes, Successional Dynamics and Landscape Structures: A European Perspective. Ecological Bulletins 2004, 51. [Google Scholar]
- Petrokas, R.; Kavaliauskas, D. Concept for Genetic Monitoring of Hemiboreal Tree Dynamics in Lithuania. Land 2022, 11, 1249. [Google Scholar] [CrossRef]
- Petrokas, R.; Ibanga, D.-A.; Manton, M. Deep Ecology, Biodiversity and Assisted Natural Regeneration of European Hemiboreal Forests. Diversity 2022, 14, 892. [Google Scholar] [CrossRef]
- Walters, M.B.; Reich, P.B. Are Shade Tolerance, Survival, and Growth Linked? Low Light and Nitrogen Effects on Hardwood Seedlings. Ecology 1996, 77, 841–853. [Google Scholar] [CrossRef]
- Karazija, S. Forest types of Lithuania; Mokslas: Vilnius, 1988; ISBN 978-5-420-00421-0. [Google Scholar]
- Anand, M. Towards a Unifying Theory of Vegetation Dynamics, Faculty of Graduate Studies, University of Western Ontario: London, ON, Canada, 1997.
- Lamb, D. Restoring Tropical Moist Broad-Leaf Forests. In Forest Restoration in Landscapes: Beyond Planting Trees; Mansourian, S., Vallauri, D., Dudley, N., Eds.; Springer: New York, NY, 2005; pp. 291–297. ISBN 978-0-387-29112-3. [Google Scholar]
- Petrokas, R. Forest Climax Phenomenon: An Invariance of Scale. Forests 2020, 11, 56. [Google Scholar] [CrossRef]
- Whittaker, R.H. A Consideration of Climax Theory: The Climax as a Population and Pattern. Ecological Monographs 1953, 23, 41–78. [Google Scholar] [CrossRef]
- Stern, K.; Roche, L. Genetics of Forest Ecosystems; Chapman and Hall, 1974; ISBN 978-0-387-06095-8.
- Putz, F.E.; Redford, K.H.; Robinson, J.G.; Fimbel, R.; Blate, G.M. Biodiversity Conservation in the Context of Tropical Forest Management; World Bank: Washington, DC, 2000. [Google Scholar]
- Stewart, O.C. Fire as the First Great Force Employed by Man. In Man’s Role in Changing the Face of the Earth; Thomas, William L., Ed.; University of Chicago Press: Chicago, IL, USA, 1956; Vol. 2, pp. 115–133. [Google Scholar]
- Whitmore, T.C. Changes Over Twenty-One Years in the Kolombangara Rain Forests. Journal of Ecology 1989, 77, 469–483. [Google Scholar] [CrossRef]
- Grime, J.P. Evidence for the Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and Evolutionary Theory. The American Naturalist 1977, 111, 1169–1194. [Google Scholar] [CrossRef]
- Chai, Y.; Yue, M.; Wang, M.; Xu, J.; Liu, X.; Zhang, R.; Wan, P. Plant Functional Traits Suggest a Change in Novel Ecological Strategies for Dominant Species in the Stages of Forest Succession. Oecologia 2016, 180, 771–783. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Huang, J.; Xu, Y.; Ding, Y.; Zang, R. Plant Functional Niches in Forests Across Four Climatic Zones: Exploring the Periodic Table of Niches Based on Plant Functional Traits. Frontiers in Plant Science 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Anyomi, K.A.; Neary, B.; Chen, J.; Mayor, S.J. A Critical Review of Successional Dynamics in Boreal Forests of North America. Environ. Rev. 2022, 30, 563–594. [Google Scholar] [CrossRef]
- Evstigneev, O.I. Features of Undergrowth Development in Eastern European Forests. Russian Journal of Ecosystem Ecology 2019, 4, 1–23. [Google Scholar] [CrossRef]
- Král, K.; Shue, J.; Vrška, T.; Gonzalez-Akre, E.B.; Parker, G.G.; McShea, W.J.; McMahon, S.M. Fine-Scale Patch Mosaic of Developmental Stages in Northeast American Secondary Temperate Forests: The European Perspective. Eur J Forest Res 2016, 135, 981–996. [Google Scholar] [CrossRef]
- Grime, J.P. Plant Strategies, Vegetation Processes, and Ecosystem Properties; 2nd ed.; John Wiley & Sons, 2006; ISBN 978-0-470-85040-4.
- Cequinel, A.; Capellesso, E.S.; Marcilio-Silva, V.; Cardoso, F.C.G.; Marques, M.C.M. Determinism in Tree Turnover during the Succession of a Tropical Forest. Perspectives in Plant Ecology, Evolution and Systematics 2018, 34, 120–128. [Google Scholar] [CrossRef]
- Petrokas, R. Appropriate Measures for Retention Forestry. Baltic Forestry 2016, 22, 382–389. [Google Scholar]
- Holmberg, T.J. 4.2.3: Life Histories and Natural Selection. Available online: https://bio.libretexts.org/Sandboxes/tholmberg_at_nwcc.edu/BIOL_1213/04%3A_Unit_4%3A_-_Ecology/4.02%3A_Population_Ecology/4.2.03%3A_Life_Histories_and_Natural_Selection (accessed on 2 May 2023).
- Grime, J.P.; Pierce, S. The Evolutionary Strategies That Shape Ecosystems; John Wiley & Sons: Chichester, West Sussex, England, 2012; ISBN 978-0-470-67481-9. [Google Scholar]
- Lefèvre, F.; Boivin, T.; Bontemps, A.; Courbet, F.; Davi, H.; Durand-Gillmann, M.; Fady, B.; Gauzere, J.; Gidoin, C.; Karam, M.-J.; et al. Considering Evolutionary Processes in Adaptive Forestry. Annals of Forest Science 2014, 71, 723–739. [Google Scholar] [CrossRef]
- Metz, J.A.J.; Nisbet, R.M.; Geritz, S.A.H. How Should We Define ‘Fitness’ for General Ecological Scenarios? Trends in Ecology & Evolution 1992, 7, 198–202. [Google Scholar] [CrossRef]
- Tinner, W.; Ammann, B. Long-Term Responses of Mountain Ecosystems to Environmental Changes: Resilience, Adjustment, and Vulnerability. In Global Change and Mountain Regions: An Overview of Current Knowledge; Huber, U.M., Bugmann, H.K.M., Reasoner, M.A., Eds.; Advances in Global Change Research; Springer Netherlands: Dordrecht, 2005; pp. 133–143; ISBN 978-1-4020-3508-1. [Google Scholar]
- Yamamoto, S. Gap Regeneration of Major Tree Species in Different Forest Types of Japan. Vegetatio 1996, 127, 203–213. [Google Scholar] [CrossRef]
- Evstigneev, O.I. Ontogenetic Scales of Relation of Trees to Light (on the Example of Eastern European Forests). Russian Journal of Ecosystem Ecology 2018, 3, 1–18. [Google Scholar] [CrossRef]
- McVean, D.N. Alnus Glutinosa (L.) Gaertn. Journal of Ecology 1953, 41, 447–466. [Google Scholar] [CrossRef]
- Dickson, J.H. Pleistocene History of Betula with Special Reference to the British Isles. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences 1984, 85, 1–11. [Google Scholar] [CrossRef]
- Steijlen, I.; Zackrisson, O. Long-Term Regeneration Dynamics and Successional Trends in a Northern Swedish Coniferous Forest Stand. Can. J. Bot. 1987, 65, 839–848. [Google Scholar] [CrossRef]
- Rogers, P.C.; Pinno, B.D.; Šebesta, J.; Albrectsen, B.R.; Li, G.; Ivanova, N.; Kusbach, A.; Kuuluvainen, T.; Landhäusser, S.M.; Liu, H.; et al. A Global View of Aspen: Conservation Science for Widespread Keystone Systems. Global Ecology and Conservation 2020, 21, e00828. [Google Scholar] [CrossRef]
- Savill, P.S. The Silviculture of Trees Used in British Forestry, 3rd Edition; CABI, 2019; ISBN 978-1-78639-392-0.
- Kuehne, C.; Nosko, P.; Horwath, T.; Bauhus, J. A Comparative Study of Physiological and Morphological Seedling Traits Associated with Shade Tolerance in Introduced Red Oak (Quercus Rubra) and Native Hardwood Tree Species in Southwestern Germany. Tree Physiology 2014, 34, 184–193. [Google Scholar] [CrossRef]
- Kuliesis, A.; Kasperavicius, A.; Kulbokas, G.; Kvalkauskiene, M. Lithuanian National Forest Inventory, 2003-2007. Forest Resources and Their Dynamic; Lututė: Kaunas, 2009. [Google Scholar]
- Boratyńska, K.; Dolatowski, J. Systematics and geographical distribution. In Limes–Tilia cordata Mill., Tilia platyphyllos Scop.; Białobok, S., Ed.; Monografie popularnonaukowe; PAN, Instytut Dendrologii: Poznań, Poland, 1991. [Google Scholar]
- Walter, H. Vegetation of the Earth and Ecological Systems of the Geo-Biosphere; Heidelberg Science Library; 2nd ed.; Springer: New York, NY, USA, 2012; ISBN 978-1-4684-0468-5.
- Wagner, S.; Collet, C.; Madsen, P.; Nakashizuka, T.; Nyland, R.D.; Sagheb-Talebi, K. Beech Regeneration Research: From Ecological to Silvicultural Aspects. Forest Ecology and Management 2010, 259, 2172–2182. [Google Scholar] [CrossRef]
- Franklin, J. Regeneration and Growth of Pioneer and Shade-tolerant Rain Forest Trees in Tonga. New Zealand Journal of Botany 2003, 41, 669–684. [Google Scholar] [CrossRef]
- Holbrook, M. Adventures in Complexity: An Essay on Dynamic Open Complex Adaptive Systems, Butterfly Effects, Self-Organizing Order, Coevolution, the Ecological Perspective, Fitness Landscapes, Market Spaces, Emergent Beauty at the Edge of Chaos, and All That Jazz. Academy of Marketing Science Review 2003, 2003, 1–181. [Google Scholar]
- Hillebrand, H.; Kunze, C. Meta-Analysis on Pulse Disturbances Reveals Differences in Functional and Compositional Recovery across Ecosystems. Ecology Letters 2020, 23, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Myking, T.; Bøhler, F.; Austrheim, G.; Solberg, E.J. Life History Strategies of Aspen (Populus Tremula L.) and Browsing Effects: A Literature Review. Forestry: An International Journal of Forest Research 2011, 84, 61–71. [Google Scholar] [CrossRef]
- Aakala, T.; Kuuluvainen, T.; Wallenius, T.; Kauhanen, H. Tree Mortality Episodes in the Intact Picea Abies-Dominated Taiga in the Arkhangelsk Region of Northern European Russia. Journal of Vegetation Science 2011, 22, 322–333. [Google Scholar] [CrossRef]
- Stobbe, A.; Gumnior, M. Palaeoecology as a Tool for the Future Management of Forest Ecosystems in Hesse (Central Germany): Beech (Fagus Sylvatica L.) versus Lime (Tilia Cordata Mill.). Forests 2021, 12, 924. [Google Scholar] [CrossRef]
- Plesa, I.M.; González-Orenga, S.; Al Hassan, M.; Sestras, A.F.; Vicente, O.; Prohens, J.; Sestras, R.E.; Boscaiu, M. Effects of Drought and Salinity on European Larch (Larix Decidua Mill.) Seedlings. Forests 2018, 9, 320. [Google Scholar] [CrossRef]
- Gabrilavičius, R.; Petrokas, R.; Danusevičius, J. Rare tree species in Lithuanian forests; Baltic Printing House: Klaipėda, 2013; ISBN 978-609-460-072-2. [Google Scholar]
- Taylor, A.R.J. Concepts, Theories and Models of Succession in the Boreal Forest of Central Canada. Thesis, 2009.
- Chang, C.; HilleRisLambers, J. Integrating Succession and Community Assembly Perspectives. F1000Res 2016, 5, F1000. [Google Scholar] [CrossRef]
- Bader, M.K.-F.; Leuzinger, S. Hydraulic Coupling of a Leafless Kauri Tree Remnant to Conspecific Hosts. iScience 2019, 19, 1238–1247. [Google Scholar] [CrossRef]
- Simard, S.W.; Perry, D.A.; Jones, M.D.; Myrold, D.D.; Durall, D.M.; Molina, R. Net Transfer of Carbon between Ectomycorrhizal Tree Species in the Field. Nature 1997, 388, 579–582. [Google Scholar] [CrossRef]
- Klein, T.; Siegwolf, R.T.W.; Körner, C. Belowground Carbon Trade among Tall Trees in a Temperate Forest. Science 2016, 352, 342–344. [Google Scholar] [CrossRef]
- Rosenau, J. Natural Selection / Survival of the Fittest. Available online: https://ncse.ngo/natural-selection-survival-fittest (accessed on 6 April 2023).
- Ibanga, D.-A. Is Deep Ecology Inapplicable in African Context: A Conversation with Fainos Mangena. Filosofia Theoretica: Journal of African Philosophy, Culture and Religions 2017, 6, 101–119. [Google Scholar] [CrossRef]

| Forest Site Types | Dominant Ground Vegetation Types | Forest Stand Types | Forest Dynamics Types |
|---|---|---|---|
| Temporarily over moist eutrophic | Oxalido-nemorosa | Piceetum, Quercetum, Fraxinetum, Populetum, Betuletum pendulae, Alnetum | Successional development |
| Normally moist mesotrophic | Oxalidosa | Piceetum, Pinetum, Populetum, Betuletum pendulae, Quercetum | Successional development |
| Temporarily over moist mesotrophic | Myrtillo-oxalidosa | Piceetum, Betuletum pendulae, Populetum, Pinetum | Successional development |
| Temporarily over moist oligotrophic | Myrtillosa | Pinetum, Piceetum, Betuletum pendulae, Populetum | Multi-cohort succession |
| Normally moist oligotrophic | Vaccinio-myrtillosa | Pinetum, Betuletum pendulae, Populetum, Piceetum | Multi-cohort succession |
| Normally moist (very) oligotrophic | Vacciniosa | Pinetum, Betuletum pendulae | Multi-cohort succession |
| Normally moist very oligotrophic (sands) | Cladoniosa | Pinetum | Multi-cohort succession |
| Over moist oligotrophic | Myrtillo-sphagnosa | Pinetum, Betuletum pubescentis, Piceetum | Multi-cohort succession |
| Peatland oligotrophic | Carico-sphagnosa | Pinetum, Betuletum pubescentis | Multi-cohort succession |
| Peatland very oligotrophic | Ledo-sphagnosa | Pinetum | Multi-cohort succession |
| Normally moist eutrophic | Hepatico-oxalidosa | Quercetum, Piceetum, Carpinetum, Fagetum, Populetum, Betuletum pendulae | Gap dynamics |
| Normally moist very eutrophic | Aegopodiosa | Quercetum, Fraxinetum, Tilietum, Ulmetum, Populetum, Betuletum | Gap dynamics |
| Temporarily over moist very eutrophic | Carico-mixtoherbosa | Fraxinetum, Quercetum, Populetum, Betuletum, Alnetum | Gap dynamics |
| Over moist very eutrophic | Urticosa | Alnetum glutinosae, Fraxinetum, Betuletum | Gap dynamics |
| Over moist eutrophic | Filipendulo-mixtoherbosa | Alnetum glutinosae, Fraxinetum, Betuletum | Gap dynamics |
| Peatland eutrophic | Carico-iridosa | Alnetum glutinosae, Betuletum pubescentis | Gap dynamics |
| Peatland mesotrophic | Caricosa | Betuletum pubescentis, Alnetum glutinosae | Gap dynamics |
| Over moist mesotrophic | Calamagrostidosa | Betuletum pubescentis, Alnetum glutinosae | Gap dynamics |
| End Communities | Forest Dynamics | Plant Functional Groups |
|---|---|---|
| Biotic climax | Multi-cohort succession | Ruderals |
| Edaphic climax | Successional development | Stress tolerators |
| Climatic climax | Gap dynamics | Competitors |
| Development | Establishment | |
|---|---|---|
| Forest | Gaps | |
| Forest | Stress-resistant competitors:Tilia cordata, Fagus sylvatica *. | Competitive stress-sensitive ruderals:Acer platanoides, Carpinus betulus, Picea abies, Ulmus glabra, Ulmus laevis. |
| Gaps | Ruderal stress-sensitive competitors:Fraxinus excelsior, Quercus robur. | Stress-resistant ruderals:Alnus glutinosa, Alnus incana, Betula pendula, Betula pubescens, Pinus sylvestris, Populus tremula. |
| Forest Site Type | Canopy Tree Species * | Potential End Community | |||
|---|---|---|---|---|---|
| Stress-Resistant Ruderals | Competitive Stress-Sensitive Ruderals | Ruderal Stress-Sensitive Competitors | Stress-Resistant Competitors | ||
| Hemi-boreal spruce forests with broadleaved trees (D8) | |||||
| Temporarily over moist eutrophic | Be Bu Pt Ai Ag | Pa Ug Ap | Fe Qr | Tc | Climatic climax |
| Normally moist mesotrophic | Ps Be Pt | Pa | Qr | - | Edaphic climax |
| Temporarily over moist mesotrophic | Be Bu Pt Ps | Pa | Qr | - | Edaphic climax |
| Boreal and hemi-boreal pine forests, partly with birch and spruce (D11) | |||||
| Temporarily over moist oligotrophic | Ps Be Pt | Pa | - | - | Edaphic climax |
| Normally moist oligotrophic | Ps Be Pt | Pa | - | - | Edaphic climax |
| Hemi-boreal pine forests, partly with birch (D12) | |||||
| Normally moist (very) oligotrophic | Ps Be | - | - | - | Fire climax |
| Normally moist very oligotrophic (sands) | Ps | - | - | - | Edaphic climax |
| Pine bog forests (S12) | |||||
| Over moist oligotrophic | Ps Bu | Pa | - | - | Edaphic climax |
| Peatland oligotrophic | Ps Bu | - | - | - | Edaphic climax |
| Peatland very oligotrophic | Ps | - | - | - | Fire climax |
| Oak-hornbeam forests (F3) | |||||
| Normally moist eutrophic | Be Pt Ai | Pa Cb Ug Ul Ap | Qr | Tc Fs | Climatic climax |
| Lime-oak forests (F4) | |||||
| Normally moist very eutrophic | Pt Ai Be Bu Ag | Ug Ul Ap | Qr Fe | Tc | Climatic climax |
| Temporarily over moist very eutrophic | Be Bu Pt Ai Ag | Pa Ug | Fe Qr | - | Climatic climax |
| Swamp and fen forests (T) | |||||
| Over moist very eutrophic | Ag Bu Be | Pa | Fe | - | Climatic climax |
| Over moist eutrophic | Ag Bu Be Ai | Pa | Fe | - | Climatic climax |
| Peatland eutrophic | Ag Bu | Pa | - | - | Edaphic climax |
| Peatland mesotrophic | Bu Ag | Pa | - | - | Edaphic climax |
| Over moist mesotrophic | Bu Ag Be | Pa | - | - | Edaphic climax |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
