Preprint
Article

This version is not peer-reviewed.

Formal Calculation

Ji Peng  *

Submitted:

03 May 2023

Posted:

05 May 2023

Read the latest preprint version here

Abstract
Formalized Calculation, using auxiliary form to calculate various nested sums, based on binary or Gaussian coefficients and providing three different expressions. In addition to computation, it introduces a large number of new concepts and methods for analysis. With just a little skill, it can easily obtain dozens of theorems. It has undergone three years of development. This article summarizes it and provides a large number of latest achievements, showcasing many analytical methods. This article includes various relationships between two types of Stirling numbers, associated Stirling numbers, generalized Euler numbers and polynomials, and provides a theorem of symmetry and extended Wolstenholme theorems.
Keywords: 
;  ;  ;  ;  ;  ;  

1. Introduction

To calculate all products of M distinct integers in [1,N-1], items needs to be divided into 2M-1 categories.
For example, calculate ∑3-products in [1,6]
1 × 2 × 4 + 1 × 2 + 2 × 3 × 5 + 1 × 2 + 2 × 3 + 3 × 4 × 6 = 1 × 2 × 4 7 5
1 × 3 × 4 + 1 × 4 + 2 × 4 × 5 + 1 × 5 + 2 × 5 + 3 × 5 × 6 = 1 × 3 × 4 7 5
1 × 3 × 5 + 1 × 3 + 1 × 4 + 2 × 4 × 6 = 1 × 3 × 5 7 6
An   item I 1 , I 2 , I 3 , I i + 1 = I i + 1   means   continuity A , I i + 1 < I i + 1   means   discontinuity B
So ①=AA,②=AB,③=BA,④=BB.Items of a category have the same discontinuities at the same positions.
Continuity means the distance between factors remains constant. Discontinuity assumes the distance between factors can be  arbitrarily expanded. As N increases, the number of items will also increase.In ②=AB:
N-1=6,products={1×2×6,2×3×6,3×4×6},1×2,2×3,3×4 keep  continuity. 2×6,3×6,4×6 keep discontinuity.
N-1=7,products={1×2×7,2×3×7,3×4×7,4×5×7}
  
Start here and going through several promotions, [1][2][3] introduced Formal Calculation:
M-series:Seriei={Ki,Ki+Di,Ki+  2Di…Ki+(N-1)Di}, i∈ [1,M], Ki,Di∈ ring with identity elements.
Use PS=[K1:D1, K2:D2...KM:DM]  to represent the M-series.
[K1:D, K2:D...KM:D]  is abbreviated as [K1, K2…KM]:D. [K1,K2…KM]:1  is abbreviated as [K1,K2…KM]
  
R e c u r s i v e   d e f i n i e   o p e r a t o r P , p :
0 f n = f n , n = 0 N 1 1 f n + 1 = f N , n = 0 N 1 f n + 1 = 1 f N
1 f n = f n = f n f n 1 , i t s   a   l i t t l e   d i f f e r e n t   f r o m   Differential   calculation .
I f   f n = A i N i M i   a n d   M i   i s   n o t   c h a n g e d   w i t h   N , t h e n p f N = A i N i p M i p
  
Use PT=[T1,T2...TM]  to indicate some products in M-series.By default,the following uses:
PS=[K1:D1,K2:D2…KM:DM],PT=[T1,T2...TM]
PS1=[K1:D1,K2:D2…KM:DM,KM+1:DM+1]=[PS,  KM+1:DM+1],PT1=[PT, TM+1= TM+2-p]
  
Recursive define SUN(N,PS,PT), abbreviated as  SUM(N):
S U M N , K 1 : D 1 , T 1 = 1 = n = 0 N 1 K 1 + n × D 1
S U M N , P S 1 , P T 1 = n = 0 N 1 K M + 1 + n × D M + 1 × p S U M n + 1 , P S , P T
This is actually nested summation. For example:
S U M N , P S , 1 , 2 M = n = 0 N 1 i = 1 M K i + n D i
S U M N , P S , 1 , 3 2 M 1 = n M = 0 N 1 K M + n M D M n 2 = 0 n 3 K 2 + n 2 D 2 n 1 = 0 n 2 K 1 + n 1 D 1
Preprints 72608 i012
S U M N , P S , 1 , 4 = n = 0 N 1 K 2 + n D 2 n 2 = 0 n n 1 = 0 n 2 K 1 + n 1 D 1
Formal  Computation was once named the shape of numbers because PS and PT specify the  shape of the product factors and extensively use the concepts of continuity,  discontinuity, and position. It has little to do with trigonometric numbers,  squares numbers, etc. To avoid confusion, it was renamed.
  
If Ti< Ti+1,Ti ∈ N,define PB(PT)=count of discontinuities of PT.  If compared to [1,2...M],PB(PT)=TM-M.
Also define PB(PS)=count of discontinuities of  PS,it’s  compared to a certain benchmark.
If PB (PT)=PB (PS) and their discontinuities are at  the same positions, then say them have the same shape.
  
The following use K to represent the  set{K1,K2...KM},  T to represent the set{T1,T2...TM}
U s e   t h e   a u x i l i a r y   F o r m : T 1 + K 1 T 2 + K 2 T M + K M = i = 1 M X i , X i = T i   o r   K i
X(T)=Count of {X1, X2...XM} ∈T , XT-1=Count  of {X1, X2...Xi-1} ∈ T,XK-1=Count of {X1, X2...Xi-1} ∈ K,XT-1+XK-1=i-1
Don't swap Xi,then each ∏ Xi corresponds to one expression in  the SUM(N).
1.1 ) g = X T ,   S U M N , P S , P T =
Preprints 72608 i001
U s e   H g   t o   r e p r e s e n t   t h e   t h r e e   p a r a m e t e r s   H 1 , 2 , 3 g .
  
D e f i n e   F M K = K 1 , K 2 K M = M   d i s t i n c t   p r o d u c t s , f a c t o r s   K , F M N   i s   s h o r t   f o r   F M 1 , 2 N , F 0 K = 0
D e f i n e   E M K = M   p r o d u c t s , f a c t o r s K , E M N   i s   s h o r t   f o r   E M 1 , 2 N , E 0 K = 0
E a s y   t o   o b t a i n :   F M 1 , 1 1 , c o u n t   o f   1 = N = N M , E M N = λ 1 + λ 2 + ... + λ N = M , λ i 0 1 λ 1 2 λ 2 ... N λ N
1.2 ) S U M N , P S , 1 , 2 M = i = 1 M K i + N 1 D i = i = 1 M K i + n D i  
1.3 ) S U M N , P S , T + 1 , T + 2 T + M , K i   c a n   e x c h a n g e   o r d e r .
1.4 ) S U M N , L 1 , L 2 L P , P S , L 1 , L 2 L P , P T = i = 1 P L i S U M N , P S , P T T 1   can   be   greater   than   1. T
  
1.5 ) S U M N , 1 , 1 1 , 1 , 2 M = S U M N , 1 , 1 1 , 2 , 3 M = 1 M + 2 M + + N M
1.6 ) S U M N , 1 , 1 1 , 1 , 3 2 M 1 = S U M N , 1 , 1 1 , 3 , 5 2 M 1 = S 2 N + M , N = E M N
1.7 ) S U M N , 1 , 2 M , 1 , 3 2 M 1 = S U M N , 2 , 3 M , 3 , 5 2 M 1 = S 1 N + M , N = F M N + M 1 S1(N,M) is unsigned stirling number of  the first kind. S2(N,M) is stirling number of the second kind.
  
1.8 ) S U M N ,   P T ,   P T = i = 1 M T i N + T M T M + 1 .
This is an important conclusion. It is the origin  of  Formal Computation and why ①②③④   came into being.
I t   g e n e r a l i z e s   t h e   f o r m u l a   n = 0 N 1 n M = N M + 1 = 1 M ! S U M N M , 1 , 2 M , 1 , 2 M   i n   n e s t e d   s u m m a t i o n .
SUM 4 , 1 , 2 , 3 , 1 , 2 , 3 =
SUM 4 1 , 1 , 2 , 4 , 1 , 2 , 4 = , SUM 4 1 , 1 , 3 , 4 , 1 , 3 , 4 =
SUM 4 2 , 1 , 3 , 5 , 1 , 3 , 5 =
SUM N P B P T , PT , PT = =   1.8 ) ,   PB PS   c o m p a r e s   w i t h   1 , 2 M  
SUM N , 1 , 2 , 3 , 1 , 3 , 5 = SUM N , 2 , 3 , 3 , 5 = + + + , n = 0 N 1 M Products =   1.7 )  
  
1.9 ) I f   P T = T 1 = 1 , T 2 T M , T 1 < T 2 < ... < T M , t h e n   C o u n t   o f   p r o d u c t s   i n   S U M N = N + P B P T P B P T + 1
  
SUM N , 2 , 3 , 3 , 5 F o r m 2 + T 1 3 + T 2 , T M M = 5 2 = 3 F o r m 1
= T 1 × T 2 N + 3 6 + K 1 × T 2 X K 1 + T 1 × K 2 + X T 1 N + 3 5 + K 1 × K 2 N + 3 4 X K 1 = X T 1 = 1
= 3 × 5 N + 3 6 + 2 × 4 + 3 × 4 N + 3 5 + 2 × 3 N + 3 4
SUM N , 1 , 2 , 3 , 1 , 3 , 5 F o r m 1 + T 1 2 + T 2 3 + T 3 , T M M = 5 3 = 2 F o r m 1
= 1 × 3 × 5 N + 2 6 + 35 N + 2 5 + 26 N + 2 4 + 1 × 2 × 3 N + 2 3
H e r e : H 1 1 = 1 × 2 × T 3 X K 1 + 1 × T 2 X K 1 × 3 + X T 1 + T 1 × 2 + X K 1 × 3 + X K 1
= 1 × 2 × 5 2 + 1 × 3 1 × 3 + 1 + 1 × 2 + 1 × 3 + 1 = 26
  
Formal Calculation can be calculated in the ring with identity elements.
Preprints 72608 i011
H 1 0 = 7 3 1 2 2 1 1 2 = 17 13 4 5
H 1 1 = 1 × 2 1 1 2 + 2 3 1 2 1 3 4 2 + 7 3 1 2 × 3 1 2 3 1 2 = 44 70 28 38
H 1 2 = 1 × 1 3 4 2 × 3 × 2 3 1 2 = 15 27 30 48
SUM N , PS , PT = 15 27 30 48   N + 1 4 + 44 70 28 38   N + 1 3 + 17 13 4 5   N + 1 2
F o r m 1   i s   o b t a i n e d   b y   g u e s s   a n d   p r o v e d   b y   i n d u c t i o n . T h e r e   h a v e   t h r e e   f o r m s   b e c a u s e : n = 0 N 1 n n + K M
= M + 1 N + K M + 2 + M K N + K M + 1 = M + 1 N + K + 1 M + 2 1 + K N + K M + 1 = M K N + K + 1 M + 2 + 1 + K N + K M + 2
Property of H(g)
2.1 ) H 1 g , P T , P T = i = 1 M T i M g , H 2 g < M , P T , P T = H 3 g > 0 , P T , P T = 0 1.8 )
  
The recursive relationship of H(g) can be obtained  by definition.
H 1 g , P S 1 , P T 1 = H 1 g 1 T M + 1 M g 1 D M + 1 + H 1 g K M + 1 + gD M + 1
H 2 g , P S 1 , P T 1 = H 2 g 1 T M + 1 M g 1 D M + 1 + H 2 g K M + 1 + T M + 1 + M g D M + 1
H 3 g , P S 1 , P T 1 = H 3 g 1 K M + 1 + T M + 1 g 1 D M + 1 + H 3 g K M + 1 + gD M + 1
Using the recursive relationships and induction to  prove →
2.2 ) H 1 g = k = g M H 2 k k g = k = 0 g H 3 k M k M g , I n v e r s i o n
2.3 ) H 2 g = k = g M 1 k + g H 1 k k g , H 3 g = k = 0 g 1 k + g H 1 k M k M g
  
Calculation with 2.2) →
2.4 ) g = 0 M H 1 g = g = 0 M H 2 g 2 g = g = 0 M H 3 g 2 M g
2.5 ) g = 0 M H 1 g A B g = g = 0 M H 2 g A + g B = g = 0 M H 3 g A + M g B g
It  indicates Form1=Form2=Form3. If  regardless of the actual meaning, PT’s domain can be extended to ℂ. A=B →
2.6 ) g = 0 M H 1 g A g = g = 0 M H 2 g A + g g = g = 0 M H 3 g A + M g M
  
2.7 ) I n d u c t i o n g = 0 M H 1 g g A + 1 B g = g = 0 M H 2 g g A + g B 1 = g = 0 M H 3 g g A + M g B g + M H 3 g A + M g B 1 g
2.8 ) H 1 g , A D : D , P S , A , P T = A D H 1 g + H 1 g 1 H 1 g , 1 , P S , 1 , P T = H 1 g + H 1 g 1
  
I n   1.1 ) , H g = B i = X i   T B i X i   K B i
D e f i n e   H g , T = H g , T , P S , P T = X i   T B i ; H g , T = H g , T , a l s o   d e f i n e   H g , K , H g , K
2.9 ) I f   D i = 1   a n d   T i + 1 T i = 1   t h e n   H 1 g , T = i = 1 g T i ; H 1 g , K , 1 , 1 1 , P T = E M g g + 1
  
Using induction to prove →
2.10 ) I f   D i = 1 ,   H 1 g , K = F M g K E 0 g + F M g 1 K E 1 g + ... + F 0 K E M g g
2.11 ) I f   D i = 1 ,   H 1 g , T = F g T E 0 M g F g 1 T E 1 M g + ... + 1 g F 0 T E g M g
2.12 ) I f   D i = 1   a n d   T i + 1 T i = K i + 1 K i = 1   t h e n   H 1 g = M N T 1 T g × K g + 1 ... K M
λ   i s   a   p r i m i t i v e   u n i t   r o o t ,   λ M = 1 , P S = λ 1 , λ 2 λ M F M K = 1 M + 1 , F 0 < x < M K = 0
S U M N , P S , 1 , 2 M 2.10 ) H 1 g > 0 , K = E M g g M ! N M + 1 E 0 M + + 1 ! N 2 E M 1 1 + 0 ! N 1 1 M + 1
S U M N = i = 1 M λ i + n = g = 1 M g ! S 2 M , g n g + 1 M + 1 D e f i n i t i o n   o f   S 2 M , g n M + 1 M + 1 i = 1 M λ i + n Vieta   theorem n M + 1 M + 1
  
D e f i n e   E p q T 1 , T 2 , C
= λ 1 + λ 2 + ... + λ q = p , λ i 0 1 λ 1 2 λ 2 q λ q × T 1 + λ 1 C T 2 + λ 1 C + λ 2 C T q 1 + λ 1 C + λ 2 C + + λ q 1 C
2.12 ) H 1 g , 1 , 1 1 , P T = T i = T 1 + i 1 C + 1 = E M g g + 1 P T , C
2.13 ) H 3 g , 1 , 1 1 , P T = T i = T 1 + i 1 C + 1 = E M g g + 1 T i = T 1 1 + i 1 C , C + 1
  
P B P S c o m p a r e s   w i t h   K 1 , K 2 K M
D e f i n e   M I N g P S = K 1 × P B P S = g i = 2 M K i + λ i D i , λ 1 = 0 , λ i = λ i + 1 , c o n t i n u i t y   λ i + 1 = λ i + 1 , d i s c o n t i n u i t y
M I N g = M I N g M , 0 g M 1 , i s   s h o r t   f o r   M I N g 1 , 2 M
It’s easy to understand MINg. Imagine  that discontinuity is a hole. Factors from small to large with a distance of 2  as an hole.MINg = ∑ products with  g holes.
For example M=3,MIN0=1×2×3,MIN1=1×2×4+1×3×4,MIN2=1×3×5,they  are used to calcute ∑3-proudcts.
Due to historical reasons, they are called MIN,  which is actually the first item of SUM().Di can be less than 0, at  this point, they are not the minimum terms.
2.14 ) K 1 × H 1 g , K 2 : D 2 , K 3 : D 3 K M : D M , K 2 D 2 + 1 , K 3 D 3 + 2 K M D M + M 1 = M I N g K 1 : D 1 K M : D M
P S = 1 , 1 1 , P T = 2 , 3 M g + 1 ! E M g 1 g + 1 = g + 1 ! S 2 M , g + 1 = M I N g 1 , 1 1
Table 2. 1:H(g) of special functions.
Table 2. 1:H(g) of special functions.
Preprints 72608 i002
M g   i s   E u l e r i a n   n u m b e r , d e f i n e d   a s   N M = g = 0 M 1 M g   N + g M ; M M 1 g = M g , *   i s   i t s   a n o t h e r   f o r m u l a [5].
S1,2(M+1+g,g+1) and S2,2(M+1+g,g+1) are described in the following section.

2. H(g) and Associated Stirling Numbers

3.1 )   By   definition : MIN g M = M + g ! i 1 i 2 i g   , 2 i 1 < i 2 < ... < i g M + g 1 , i j + 1 i j 2
Associated Stirling Numbers of the first kind S1,r(n,k) is defined as the number of permutations of a set of n elements having exactly k cycles, all length >= r .
1 S 1 , r n , k = n ! k ! i 1 + i 2 + ... + i k = n , i j r 1 i 1 i 2 i k  
2 S 1 , r n + 1 , k = n S 1 , r n , k + n r 1 S 1 , r n r + 1 , k 1 , n k r
3 S 1 , r n , k = n 1 ! i 1 i 2 i k 1   , r i 1 < i 2 < ... < i K 1 n r , i j + 1 i j r , 4  
  
Derived from (2) or (3)→
3.2 ) MIN g M = S 1 , 2 M + 1 + g , g + 1 = M + 1 + g ! g + 1 ! i 1 + i 2 + ... + i g + 1 = M + 1 + g 1 i 1 i 2 i g + 1 , i j 2
Table 3. 1:MINg(M)=S1,2(M+1+g,g+1).
Table 3. 1:MINg(M)=S1,2(M+1+g,g+1).
Preprints 72608 i003
M I N 0 = M ! ,   M I N 1 = M + 1 ! 1 2 + 1 3 + ... + 1 M , M I N M 1 = 2 M 1 ! !
  M I N M 2 = 2 M 1 3 2 M 1 ! !   , M 2 ; M I N M 3 = M 1 M 2 2 M 3 ! ! 4 M 3 9 , M 3
  
Associated Stirling Numbers of the second kind S2,r(n,k) is defined as the number of permutations of a set of n elements having exactly k blocks, all length >= r .
4 S 2 , r n , k = n ! k ! i 1 + i 2 + ... + i k = n , i j r 1 i 1 ! i 2 ! i k !  
5 S 2 , r n + 1 , k = k S 2 , r n , k + n r 1 S 2 , r n r + 1 , k 1 , n k r
  
Derived from (5)→
3.3 ) H 1 g , 1 , 1 1 , 3 , 5 2 M 1 = E M 1 g g + 1 P T , 1 = S 2 , 2 M + 1 + g , g + 1
Table 3. 2: H1(g,[1,1…1],[3,5…2M-1])=S2,2(M+1+g,g+1).
Table 3. 2: H1(g,[1,1…1],[3,5…2M-1])=S2,2(M+1+g,g+1).
Preprints 72608 i004
S U M N , 2 , 3 M , 3 , 5 2 M 1
= g = 0 M 1 S 1 , 2 M + 1 + g , g + 1 N + M M + 1 + g = g = 1 M S 1 , 2 M + g , g N + M M + g = S 1 N + M , N = S 1 , 1 N + M , N
= N + M ! N ! i 1 + i 2 + ... + i N = N + M , i j 1 1 i 1 i 2 i N   = N + M ! N ! g = 1 M i 1 + i 2 + + i N = N + M , i j 1 , ( c o u n t   o f   i j > 1 ) = g 1 i 1 i 2 i N  
N + M ! N ! i 1 + i 2 + ... + i N = N + M , i j 1 , ( c o u n t   o f   i j > 1 ) = g 1 i 1 i 2 i N N N g = s l e c c t   N g   q u a n t i t i e s   o f   1   f r o m   N
= N + M ! N ! N N g i 1 + i 2 + ... + i g = g + M , i j > 1 , 1 i 1 i 2 i g = N + M M + g S 1 , 2 M + g , g .  
  
Use the same way:
S 1 , r r N + M , N = r N + M ! N ! i 1 + i 2 + + i N = r N + M , i j r 1 i 1 i 2 i N
= r N + M ! N ! g = 1 M i 1 + i 2 + ... + i N = r N + M , i j r , g = c o u n t   o f   i j > r 1 i 1 i 2 i N  
= g = 1 M r N + M ! N ! N g 1 r N g i 1 + i 2 + ... + i g = r g + M , i j r + 1 1 i 1 i 2 i g = g = 1 M 1 r N g r N + M ! N ! N g g ! r g + M ! S 1 , r + 1 r g + M , g
3.4 ) S 1 , r r N + M , N = g = 1 M 1 r N g r N r g ! N g ! r N + M r g + M S 1 , r + 1 r g + M , g
3.5 ) S 2 , r r N + M , N = g = 1 M 1 r ! N g r N r g ! N g ! r N + M r g + M S 2 , r + 1 r g + M , g
  
P is a prime number.(1)(4)→
Max g + 1 , M g + 3 P M + g , S 1 , 2 M + g , g S 2 , 2 M + g , g 0 MOD   P , 2 g M
3.6 ) S 1 P , N S 2 P , N 0 MOD   P   , 2 N P 1
3.7 ) S 1 N + M , N S 2 N + M , N 1   M O D   P , N 1   M O D   P 0   M O D   P , N 1   M O D   P   , P = M + 2
  
Proof by induction and recurrence formula of S1(N,M) and S2(N,M)
3.8 ) S 1 P 1 , g 1   MOD   P , g ! S 2 P 1 ,   g 1 g + 1 MOD   P , 1 g P 1

3. Application of SUM(N) and H(g)

4.1 ) i = 1 M K i + n D i   c a n   b e   d e c o m p o s e d   i n t o   t h r e e   f o r m s   b y   1.2 )
4.2 ) S U M N , P S , P T = S U M N , 1 , 1 1 , P S , 1 , 1 1 , P T   , e x p a n d   g = 0 M t o   g = 0 M + c o u n t   o f   1   a d d e d  
  
P S = 1 , 1 1 , P T = 1 , 2 M 2.2 ) H 1 M = g = 0 M H 3 g , H 1 1 = g = 1 M H 2 g g
4.3 ) g = 0 M M g = M ! ; g = 1 M 1 M g g × g ! S 2 M , g = 2 M 1
P S = 1 , 1 1 , P T = 2 , 3 M 2.2 )
4.4 ) g ! S 2 M , g = k = g M 1 M K k ! S 2 M , k k 1 g 1 = k = 0 g 1 M k M 1 k M g , 1 g M
k = 0 M 1 M K k ! S 2 M , k = 1 ! S 2 M , 1 = 1
  
S U M g , 2 , 3 M , 3 , 5 2 M 1 , S U M g , 1 , 1 1 , 3 , 5 2 M 1 2.2 )
4.5 ) S 1 , 2 M + g , g = k = g M 1 M k S 2 , 2 M + k , k k 1 g 1 , S 2 , 2 M + g , g = k = g M 1 M k S 1 , 2 M + k , k k 1 g 1
  
S U M N , 1 , 1 1 , 2 , 3 M 2.4 )
4.6 ) g = 1 M g ! S 2 M , g = g = 1 M 1 M g g ! S 2 M , g 2 g 1 = g = 1 M M M g 2 M g
S U M N , 1 , 1 1 , 3 , 5 2 M 1 , S U M N , 2 , 3 M , 3 , 5 2 M 1 2.4 )
4.7 ) g = 1 M S 2 , 2 M + g , g = g = 1 M 1 M g S 1 , 2 M + g , g 2 g 1 ; g = 1 M S 1 , 2 M + g , g = g = 1 M 1 M g S 2 , 2 M + g , g 2 g 1
  
S U M N , 1 , 1 1 , 2 , 3 M 2.7 )
4.8 ) g = 1 M g ! S 2 M , g g 1 A + 1 g = g = 1 M 1 M g g ! S 2 M , g g 1 A + g 1 g
  
H 1 g , 1 , 2 M , 1 , 2 M = H 1 M g = M ! M g   2.10 ) g ! F M g M E 0 g + ... + F 0 M E M g g
4.9 ) M ! M g = g ! i = 0 M g S 1 M + 1 , g + 1 + i S 2 g + i , g = M g ! i = 0 g S 1 M + 1 , M + 1 i S 2 M i , M g
H 1 g , 1 , 1 1 , 1 , 2 M = g ! S 2 M + 1 , g + 1 2.10 ) g ! F M g 1 , 1...1 E 0 g + ... + F 0 1 , 1...1 E M g g
4.10 ) S 2 M + 1 , g + 1 = i = 0 M g M g + i S 2 g + i , g = i = 0 M g M i S 2 M i , g
  
H 1 g , 1 , 2 M , 1 , 2 M = H 1 g , M 2 , 1 , 1 , 2 M = M ! M g   2.11 ) M ! g !   F g M E 0 M g + ... + 1 g F 0 M E g M g
4.11 ) g ! M g = i = 0 g S 1 M + 1 , M + 1 g + i S 2 M g + i , M g 1 g
  
H 1 g , K + i , T + i 2.12 ) M g T 1 T g × K g + 1 K M 2.10 ) T 1 T g 2.11 ) K g + 1 K M
4.12 ) i = g + 1 M K + i M g = F M g K + i E 0 g + + F 0 K + i E M g g ; i = 1 g T + i M g = F g T + i E 0 M g + ... 1 g F 0 T + i E g M g
  
S U M 1 , 1 , 1 1 , 3 , 5 2 M 1 = 1 , S U M 1 , 2 , 3 M , 3 , 5 2 M 1 = M ! F o r m 2 g = 0 M 1 H 2 g 1 + M + g M + 1 + g
4.13 ) g = 0 M 1 1 M 1 g M I N g = g = 1 M 1 M g S 1 , 2 M + g , g   = 1 ; g = 1 M 1 M g S 2 , 2 M + g , g   = M !
PS 1 = D 2 : D 2 ... D M : D M , PT 1 = K 2 D 2 + 1 K M D M + M 1 K 1 × H 2 g = 1 M 1 g M I N g K 1 : D 1 , K 2 : D 2
4.14 ) g = 0 M 1 1 M 1 g M I N g P S = K 1 i = 2 M D i
  
S U M 2 , 1 , 1 1 , 3 , 5 2 M 1 = S 2 M + 2 , 2 = 2 M + 1 1 = g = 0 M 1 H 2 g 2 + M + g 1 + M + g , c o m b i n a t i o n   4.13 )
4.15 ) g = 0 M 1 1 M 1 g g M I N g = 2 M + 1 M 3
  
S U M N , T , T T , T , T T 1.8 ) T M N + T T + 1 2.1 ) g = 0 M T M M g N + T M T M + 1 + g
4.16 ) g = 0 M M g N + T M T M + 1 + g = N + T T + 1
  
4.17 ) P   i s p r i m e , S U M P , : D , 1 , 2 M = g = 0 M H 1 g P 1 + g 0 M O D P , M < P 1 1 M O D P , M = P 1 , P , D = 1 Exclude products≡0 MOD P , then a series of congruence can be obtained.For Example:
1 M + 2 M + ... + P 1 M 0 M O D P , 0 < M < P 1 1 M O D P , M = P 1
1 A 2 B + 2 A 3 B + ... + P 2 A P 1 B 0 M O D P , 0 < A + B < P 1 , 0 A , B N 1 M O D P , A + B = P 1 , 0 A , B N
1 A 3 B + 2 A 4 B + ... + P 3 A P 1 B + P 1 A 1 B 0 M O D P , 0 < A + B < P 1 , 0 A , B N 1 M O D P , A + B = P 1 , 0 A , B N
1 A 3 B 5 C + 2 A 4 B 6 C + + P 5 A P 3 B P 1 C + P 3 A P 1 B 1 C + P 1 A 1 B 3 C
0 M O D P , 0 < A + B + C < P 1 , 0 A , B , C N 1 M O D P , A + B + C = P 1 , 0 A , B , C N
  
Derived   from   4.17 )
4.18 ) P   i s     p r i m e , , λ 1 + λ 2 + ... + λ k = q , 1 q P 2 , λ j 0 1 λ 1 2 λ 2 P 1 λ k   0 MOD   P
  
P S 1 = K 1 : D 1 K i : D i , K i + 1 + D i + 1 : D i + 1 , K i + 2 + D i + 2 : D i + 2 , P T 1 = T 1 T i , T i + 1 1 , T i + 2 1 T M 1
4.19 ) C l a s s i f i c a t i o n   p r i n c i p l e : S U M N = S U M N , P S , P T 1 + S U M N 1 , P S 1 , P T Simply put, PS and PS have the same shape.
S U M N , 1 , 2 , 3 , 1 , 3 , 5 = S U M N , 1 , 2 , 3 , 1 , 2 , 4 + S U M N 1 , 1 , 3 , 4 , 1 , 3 , 5
= S U M N , P T , 1 , 2 , 3 + S U M N 1 , P T , 1 , 2 , 4 + S U M N 1 , P T , 1 , 3 , 4 + S U M N 2 , P T , 1 , 3 , 5
If Ti= Ti+1, it is also established.
S U M N , 1 , 2 , 1 , 2 = 2 N + 2 3 = S U M N , 1 , 2 , 1 , 1 + S U M N 1 , 1 , 3 , 1 , 2
= S U M N , 2 , 1 + S U M N 1 , 3 , 2 = N 2 + 2 N 1 + 2 N 3 + 3 N 2
The classification principle also applies to the following Formal Calculation.
  
PT’s domain can be extended to ℂ. The Recursive Formula of H (g) can be used for.
4.20 ) S o l v i n g   t h e   E q u a t i o n : F M + 1 , g = F M , g a M + b g + c + F M , g 1 x M + b g + z , b 0
H 1 g , P S 1 , P T 1 = H 1 g 1 T M + 1 M g 1 D M + 1 + H 1 g K M + 1 + gD M + 1
a M + b g + c = K M + 1 + g D M + 1 x M + b g + z = T M + 1 M g 1 D M + 1 eliminate   g D M + 1 = b , K M + 1 = a M + c , P S = a i 1 + c : b T M + 1 = M + 1 + x M + z b , P T = x i 1 + z b + i
H 2 g , H 3 g a l s o   h a s   s i m i l a r   p r o p e r t i e s . This   way ,   we   can   use   the   attributes   of   H g   for   analysis .
e g : F M + 1 , g = g + 1 F M , g + g + 1 F M , g 1 P S = 1 , 1 1 , P T = 2 , 3 M + 1
I t s   g + 1 ! S 2 M + 1 , g + 1 = g + 1 g + 1 ! S 2 M , g + 1 + g + 1 g ! S 2 M , g
  
S U M N , P S 1 , P T 1 = S U M N 1 , P S 1 , P T 1 + K M + 1 + N 1 D M + 1 P S U M N   c a n   d o   t h e   s a m e .
S U M N , 1 , 2... M , 1 , 3 2 M 1 S 1 N + M , N = S 1 N + M 1 , N 1 + N + M 1 S 1 N + M 1 , N
  

4. Combinatorial identity of SUM(N)

R F O L D   S U M : r N f k = k r = 1 N k 2 = 1 k 3 k 1 = 1 k 2 f k 1 = k r = 0 N 1 k 2 = 0 k 3 k 1 = 0 k 2 f k 1 + 1
5.1 )   r N P S U M k , P S , P T = P r S U M N , P S , P T
  
5.2 )   k r = 1 N k 2 = 1 k 3 k 1 = 1 k 2 S U M k r , P S , 1 , 2 M = S U M N , P S , 1 + r 1 , 2 + r 1 M + r 1
[Proof]
P S 1 = 1 : 0 , 1 : 0 1 : 0 , P S , P T 1 = 1 , 3 2 r 3 ,   1 + 2 r 1 ,   2 + 2 r 1   M + 2 r 1
P T = 1 , 2 M , P T x =   1 + r 1 ,   2 + r 1   M + r 1
f N = k r = 1 N k 2 = 1 k 3 k 1 = 1 k 2 S U M k r , P S , P T = k r = 1 N S U M k r , P S , P T k 2 = 1 k 3 k 1 = 1 k 2 1
P T = 1 , 2 M . A c c o r d i n g   t o   d e f i n i t i o n   o f   S U M N
f N = S U M N , P S 1 , P T 1 M + 2 r 1 r 1 + M = r 1 g = 0 M + r 1 H 1 g , P S 1 , P T 1 N + r 1 r + g
I n   H 1 g > M , P S 1 , P T 1 , i < r , X i = T i X K 1 D i = 0 ; X i = T i K i + X T 1 D i = 1 ; X i = K i     = 0
I n   H 1 g M , P S 1 , P T 1 , i < r X i = 1 ; i r , X i = T i X K 1 D i ; X i = T i K i + X T 1 D i ; X i = K i     = H 1 g , P S , P T x
f N = g = 0 M H 1 g , P S 1 , P T 1 N + r 1 r + g = S U M N , P S , P T x
q.e.d.
5.3 )   k r = 1 N k 2 = 1 k 3 k 1 = 1 k 2 S U M k i , P S , 1 , 2 M = i r S U M N , P S , 1 + i 1 , 2 + i 1 M + i 1
k r = 0 N k 2 = 0 k 3 k 1 = 0 k 2 k i j = 1 j ! i r S U M N + 1 , 0 , 1 , 2 j + 1 , 1 + i 1 , 2 + i 1 j + i 1
H 1 g < j = 0 , T M M = i 1 1 j ! i r   j + i 1 ! i 1 !   N + 1 + i 1 i + j = j + i 1 i 1 N + i i r i + j i r = j + i 1 i 1 N + r r + j r e c o r d   a t   6 : L e m m a   1
  
P S = 1 , 2 T 1 P 1 , K 1 T 1 + 1 P 1 T 1 D 1 , 1 , 2 T 2 P 2 , K 2 T 2 + 1 P 2 T 2 D 2 , P T = 1 , 2 , 3 T 1 + T 2 + 2 P 1 P 2
5.4 )   n = 0 N 1 P 1 S U M n + 1 , K 1 : D 1 , T 1 P 2 S U M n + 1 , K 2 : D 2 , T 2 = T 1 T 2 D 1 D 2 T 1 + 1 P 1 ! T 2 + 1 P 2 ! S U M N , P S , P T
  
5.5 ) 0 n 1 n 2 ... n M N 1 K + n 1 + n 2 + + n M = M 2 S U M N , K , M + 1 2 = M + 1 2 N + M 1 M + 1 + K N + M 1 M   0 n 1 ... n p n n 1 + + n p = n p = 0 n n 1 = 0 n 2 n 1 + ... + n p = p + 1 2 n + p p + 1 = p n 2 n + p p r e c o r d   a t   6 : T h e o r e m   2
  
5.6 ) 0 n 1 ... n M N 1 K + n 1 D 1 + + n M D M = M 2 S U M N , K : D 1 + 2 D 2 + ... + M D M M + 1 2 1 , M + 1 2
= D 1 + 2 D 2 + ... + M D M M + 1 2 M + 1 2 N + M 1 M + 1 + K N + M 1 M
  
Use 1.2)-1.4) and properties of H(g) can be used to derive combinatorial identities.For Example:
n + A A n + M + B M = 1 A ! M ! S U M N , 1 , 2 A , B + 1 , B + 2 B + M , 1 , 2 A , A + 1 , A + 2 A + M
= 1 M ! S U M N , B + 1 B + 2 , B + M , A + 1 , A + 2 A + M 2.12 )
H 1 g = M g B + M M g A + 1 g = M g M g ! M + B M g g ! A + g g = M ! A + g g M + B M g
  
5.7 ) n + A A n + M + B M = g = 0 M A + g g M + B M g n + A A + g = g = 0 M 1 M g A B M g A + g g n + A + g A + g = g = 0 M A B g M + B M g n + A + M g A + M
  
5.8 ) n + X A n + Y M = q = 0 A M + q q M + X Y A q n + Y M + q , 0 Y M
[Proof]
= 1 A ! M ! S U M N , X , X 1 X A + 1 , Y , Y 1 Y M + 1 , 1 , 2 A + M
= 1 A ! M ! S U M N , 1 , 2.. Y , 0 , 1 M Y + 1 , X X A + 1 , 1 , 2 A + M
= Y ! A ! M ! S U M N , 0 , 1.. M Y + 1 , X X A + 1 , Y + 1 , Y + 2 A + M
I f   H 1 g 0 , X 1 , X 2 X M Y   m u s t   b e l o n g   t o   T .   l e t   C = A + M Y
H 1 g M Y , K 0 count   of   K = C M Y C g C M + Y C g X + M Y C g = A C g X + M Y C g
Y ! A ! M ! H 1 g M Y = Y ! A ! M ! A M + A Y g X + M Y A + M Y g Y + 1 g q M Y g
Y ! A ! M ! H 1 M Y + q = Y ! A ! M ! A A q X + M Y A q A q ! M + q M y + q M y + q ! = M + q q M + X Y A q
n + X A n + Y M = Y ! A ! M ! g = M Y C H 1 g N + A + M C A + M C + 1 + q = Y ! A ! M ! g = M Y A + M Y H 1 g n + Y Y + g
q.e.d.
C o m p a r e   w i t h   5.7 ) , t h e r e   h a s   n o   f o r m u l a   f o r   n + X A n + Y M , Y > M , X A
  
PS = 0 , 1 B 1 , A M B 1 : 1 A : 1 , PT = 1 , 2... M
5.9 ) n B A n M B = g = 0 M B 1 M B g A M + g g M g B n M g , n 0
  
PS = 0 , 1 A + 1 , 0 , 1 B + 1 , PT = 1 , 2... A + B
5.10 ) n A n B = g = 0 B B g A + B g B g n A + B g , record   at   7 : 6.44
  
5.11 ) i = 1 M A + 2 i + n = n + A A 1 g = 0 M 2 M g 1 ! ! 2 M g g A + 1 g n + A + g A + g , A   o r   A = 0
[Proof]
PS=[A+2,A+4…A+2M],PT=[A+1,A+2…A+M]
H 2 g , K = SUM g + 1 , 1 , 3 2 M g 1 , 1 , 3 2 M g 1 1.8 ) 2 M g 1 ! ! 2 M g g
H 2 g , T = A + 1 g
n + A A i = 1 M A + 2 i + n = 1 A ! SUM N , 1 , 2 A , PS , 1 , 2 A , PT = SUM N = g = 0 M H 2 g n + A + g A + g
q.e.d.
5.12 ) i = 1 M 2 i + n = g = 0 M 2 M g 1 ! ! 2 M g g g ! n + A + g A + g
  
SUM(N,[1,3…2M-1],[1,2…M])= SUM(N,[3,5…2M-1],[2,3…M])→
5.13 ) i = 1 M 2 i 1 + n = g = 0 M 1 2 M 1 g 1 ! ! 2 M 1 g g g + 1 ! n + 1 + g g + 1  
  
5.14 ) S U M N , A + 1 , A + 3 A + 2 M 1 , 1 , 3 2 M 1 = g = 0 M A M g 2 g 1 ! ! M + g 2 g N + M 1 + g M + g
[Proof]
H 2 g , K = A M g , H 2 g , T = SUM M g + 1 , 1 , 3 2 g 1 , 1 , 3 2 g 1 1.8 ) 2 g 1 ! ! M + g 2 g
q.e.d.
5.15 ) n M = 0 N 1 2 M + n M n 2 = 0 n 3 4 + n 2 n 1 = 0 n 2 2 + n 1 = g = 0 M M + g ! g ! 2 g N + M 1 + g M + g = q = 0 M N 1 + g g   N + g M 2 g
5.16 ) S U M N , A , A + 1 A + M 1 : 2 , 1 , 3 2 M 1 = M + N 1 M A + M + N 2 M
[Proof]
H 1 g , K , A , A + 1 A + M 1 , 1 , 2 M
= S U M g + 1 , A , A + 1 A + M 1 g : 2 , 1 , 3 2 M g 1
= H 1 g , K , A + M 1 A + 1 , A , 1 , 2 M = M g A + M 1 M g
  
S U M g + 1 , A , A + 1 A + M 1 g : 2 , 1 , 3 2 M g 1 = M g A + M 1 M g M M g
S U M g + 1 = M + g g A + M + g 1 M N g + 1 S U M N = M + N 1 M A + M + N 2 M
q.e.d.
5.17 ) SUM N , 1 , 2 M : 2 , 1 , 3 2 M 1 = M ! N + M 1 M 2 M = 1 1 + 3 + + 2 N 1 = N 2
  
1 M ! S U M N , A + 1 , A + 2 A + M : 2 , 1 , 3 2 M 1 = g = 0 M H 1 g N + M 1 M + g = M + N 1 M A + M + N 1 M 5.7 ) , A = M , B = A
= S U M N , PS 1 = A + 1 , A + 2 A + M , PT 1 = M + 1 , M + 2 2 M = g = 0 M H 1 g , PS 1 , PT 1 N + M 1 M + g
5.18 ) 1 M ! H g , A + 1 , A + 2 A + M : 2 , 1 , 3 2 M 1 = H g , A + 1 , A + 2 A + M , M + 1 , M + 2 2 M
H 1 g , A + 1 , A + 2 A + M : 2 , 1 , 3 2 M 1 = M ! M + g g M + A M g .   T h e   d e f i n i t i o n   o f   H g i s   c o m p l e x . e g :
H 1 1 = 2 A + 1 A + M 1 M + A + 1 A + M 2 A + M + 2 M 1 + + A + 4 A + 5 A + M + 2 1
5.19 ) n = 0 M 1 M n k = 1 M 1 A + k + 3 k + n M = M + 1 ! 2 M + A M 1 , n   i s   t r u n c a t e s   i n t e g e r .
  
5.20 ) S U M N , A + 2 , A + 4 A + 2 M : 3 , 1 , 3 2 M 1 = y = 0 M A + N 1 + y y N + M 1 y M y M + N y M 2 M y
[Proof]
P S 1 = A + 2 , A + 4 A + 2 M , P T 1 = A + 1 , A + 2 A + M
H 1 g , T , P S 1 , PT 1 = A + 1 g
H 1 g , K , P S 1 , PT 1 = S U M g + 1 , A + 2 ,   A + 4 A + 2 M g : 3 , 1 , 3 2 M g 1
H 1 g , PS 1 , PT 1 2.2 ) x = g M H 2 x , PS 1 , PT 1 x g 5.11 ) x = g M 2 M x 1 ! ! 2 M x x A + 1 x x g
  
S U M ( g + 1 , A + 2 ,   A + 4 A + 2 M g : 3 , 1 , 3 2 M g 1
= x = g M 2 M x 1 ! ! 2 M x x A + 1 x x g A + 1 g
= x = g M 2 M x 1 ! ! 2 M x ! 2 m 2 x ! x ! A + x ! A ! x ! g ! x g ! A ! A + g ! = x = g M 2 M x ! m x ! 2 M x A + x ! A + g ! g ! x g !
y x g y = 0 M y 2 M g y ! M g y ! 2 M g y A + y + g ! A + g ! y ! g ! M M g
SUM g + 1 , A + 2 , A + 4 A + 2 M : 3 , 1 , 3 2 M 1 = y = 0 M 2 M + g y ! M y ! 2 M y A + y + g ! g ! y ! A + g ! N g + 1 c o n c l u s i o n
q.e.d.
The identity of PS=[K1,K2…KM]:D similar to 5.7)-5.20) can also be obtained.

5. Matrix of SUM(N)

Consider H(g) as variables,list SUM(N),SUM(N+1)…SUM(N+M),we can obtain a (M+1) ×(M+1) matrix
Let P=N+TM-M,Q=N-1,define A(P,Q,M), respectively corresponding to the three forms
Preprints 72608 i014
6.1 ) A 1 P , Q , M =   A 2 P , Q , M =   A 3 P , Q , M
6.2 )   A P , 0 , M = 1 , A P , 1 , M = P + M 1 + M , A P , Q > 0 , M = g = 0 Q 1 P + M g 1 + M 1 + M + g 1 + M
6.3 ) A P , Q , M =   A P , P Q , M
A 1 P , 0 , M = P 0 0 P + M M P + M 0 = 1 0 P + M M 1
A 3 P , 0 , M = P + M 0 0 P + 2 M M P + M 0 = 1 0 P + 2 M M 1
A 2 1 , 0 , M   can   be   changed   to 0 0 M 0 0 M M
If SUM(N) or ▽SUM(N) is easy to obtained,then H(g) can be calculated with the Cramer’s law.
Table 6. 1: Calculate H(g) with matrix,TM>=M.
Table 6. 1: Calculate H(g) with matrix,TM>=M.
Preprints 72608 i005
Many conclusions of [8] can be obtained through the matrix. Use 5.16)-5.18) we can get some new identities.

6. Formal Calculation of Gaussian Coefficients

Gaussian   Coefficients : G M N = N M q = q N 1 q N 1 1 q N M + 1 1 q M 1 q M 1 1 q 1 , q 0 , 1
1 G 0 N = 1 , G M 0   o r   M N N = 0 ,   G M N = G N M N
2 G M N = q M G M N 1 + G M 1 N 1 = G M N 1 + q N M G M 1 N 1
3 G M N = n = 0 N 1 q n G M n + K = q M K G M + 1 N + K
  
Formal Calculation of Gaussian Coefficients has been obtained by [3].
It   uses   q n K i + G 1 n   instead   of   K i + q n   a n d   n e s t e d   s u m m a t i o n   c a n   a l s o   b e   p e r f o r m e d .
q 0 f N = f N , n = 0 N 1 q n q 1 f n + 1 = f N , n = 0 N 1 q n f n + 1 = q 1 f N . R e c u r s i v e   d e f i n e   q P
  
SUM q N , K 1 : D 1 , T 1 = 1 = n = 0 N 1 q n K 1 + D 1 G 1 n
SUM q N , K 1 : D 1 , K 2 : D 2 , T 1 = 1 , T 2 = T 1 + 2 P = n = 0 N 1 q n K 2 + D 2 G 1 n q P SUM q n + 1 , K 1 : D 1 , 1
R e c u r s i v e   d e f i n e   SUM q N , P S , P T
  
T h e   F o r m : T 1 + K 1 T 2 + K 2 T M + K M = i = 1 M X i
7.1 )   H q g = H q g , PS , PT = X T = g i = 1 M B i , SUM q N =
Preprints 72608 i013
lim q 1 H q g = H g ,   lim q 1 S U M q N = S U M N
7.2 ) q 1 SUM q N , P S , 1 , 2 M = i = 1 M K i + D i G 1 n
7.3 ) S U M q N , P S , T + 1 , T + 2 T + M , K i   c a n   e x c h a n g e   o r d e r .
  
Derived from (3), Form2 is the simplest,Let X=TM-M-p:
7.4 ) q P S U M N Form 1 g = 0 M H 1 q g G X + 1 + g N + X q gp Form 2 g = 0 M H 2 q g G X + 1 + g N + X + g Form 3 g = 0 M H 3 q g G X + M + 1 N + X + M g q gp
  
PS = q T 1 G 1 T 1 , q T 2 G 1 T 2 q T M G 1 T M , H 2 q g < M = 0 S U M q N = i = 1 M q T i G 1 T i G T M + 1 N + T M
define   n q = q n G 1 n , n q + = q n G 1 n ,   n q   o r   q + ! = 1 q 2 q n q , 0 q ! = 0 q + ! = 1 , Form 2
7.5 ) S U M q N , L 1 q , L 2 q L p q , P S , L 1 , L 2 L P , P T = i = 1 P L i q S U M q N , P S , P T , s i m i l a r   t o   1.4 )
This indicates T1 can be greater than 1, T is defined in ℕ.
7.6 ) S U M q N , T 1 q , T 2 q T M q , PT = i = 1 M T i q G T M + 1 N + T M , s i m i l a r   t o   1.8 )
  
7.7 ) G M + 1 N + M = q M + 1 2 g = 0 M q g + 1 2 M + 1 M g 1 i 1 < i 2 < ... < i M g M q i 1 q i 2 q i M g G 1 + g N
[Proof]
It is difficult to derive directly from (2).
S U M N , 1 q , 2 q M q , 1 , 2 M 7.6 ) M q ! G M + 1 N + M = S U M N , M q 1 q , 1 , 2 M = g = 0 M H 1 q g G 1 + g N
B i F o r m 1 q X T 1 + 1 G 1 T i X K 1 = q X T 1 + 1 G 1 i X K 1 = q X T 1 + 1 G 1 X T 1 + 1 = q X T G 1 X T ; X i = T i K i + G 1 X T 1 = q M + 1 i G 1 M + 1 i + G 1 X T 1 = q M + 1 i + X T 1 1 q M + 1 i q 1 = q M X K 1 1 q M + 1 i q 1 ; X i = K i    
H 1 q g , T = g q + ! ; H 1 q g , K = G 1 M G 1 M 1 G 1 g + 1 q M + 1 M g 1 i 1 < i 2 < ... < i M g M q i 1 q i 2 q i M g
H 1 q g , M q 2 q , 1 q , 1 , 2 M M q ! = q 1 + 2 + g q 1 + 2 + M 1 i 1 < i 2 < ... < i M g M q i 1 q i 2 q i M g q M + 1 M g
q.e.d.
G M + 1 N + M = g = 0 M f g G 1 + g N   f 0 = 1 ,   f M = q M M + 1
G 3 N + 2 = q 6 G 3 N + q q 1 + q 2 G 2 N + G 1 N   G 4 N + 3 = q 12 G 4 N + q 5 q 1 + q 2 + q 3 G 3 N + q 1 q 1 q 2 + q 1 q 3 + q 2 q 3 G 2 N + G 1 N
= q 12 G 4 N + q 6 + q 7 + q 8 G 3 N + q 2 + q 3 + q 4 G 2 N + G 1 N = E q u a t i o n   d e r i v e d   f r o m   2
  
E M N = λ 1 + λ 2 + ... + λ N = M , λ i 0 1 λ 1 2 λ 2 .. N λ N = S 2 N + M , N
d e f i n e   E q M N = λ 1 + λ 2 + ... + λ N = M , λ i 0 G 1 1 λ 1 G 1 2 λ 2 G 1 N λ N = S 2 q N + M , N
d e f i n e   E q M N = λ 1 + λ 2 + ... + λ N = M , λ i 0 G 1 1 λ 1 G 1 2 λ 2 G 1 N λ N q λ 1 + 2 λ 2 + ... + N λ N
d e f i n e   E q M N T 1 , T 2 , K = λ 1 .. + λ N = M , λ i 0 G 1 1 λ 1 G 1 N λ N G 1 T 1 + λ 1 K G 1 T 2 + λ 1 K + λ 2 K G 1 T q 1 + λ 1 K + λ 2 K + .. + λ N 1 K
Table 7. 1: S 2 q (N, M).
Table 7. 1: S 2 q (N, M).
Preprints 72608 i006
7.8 )   G 1 N M = g = 1 M g q + ! S 2 q M , g G g N q g , similar   to   N M = g = 1 M g ! S 2 M , g N g
[Proof]
P S = 1 q , 1 q 1 q ,   P T = 2 , 3 M , D i = 1 , B i F o r m 1 q X T 1 + 1 G 1 T i X K 1 ; X i = T i 1 q + G 1 X T 1 = q 1 G 1 X T 1 + 1 ; X i = K i    
H 1 q g , T = g + 1 q + ! q g + 1 , H 1 q g , K = q M 1 g E q M 1 g g + 1 H 1 q g = q M g + 1 q + ! E q M 1 g g + 1
1 q + G 1 n = 1 q + q n 1 q 1 = q 1 G 1 n + 1
q 1 q 1 S U M q N , 1 q , 1 q 1 q , 2 , 3... M 7.5 ) q 1 S U M q N , 1 q , 1 q 1 q , 1 , 2 M = q 1 G 1 N M
= q 1 g = 0 M 1 H 1 q g G 1 + g N q g = g = 0 M 1 q M g + 1 q + ! S 2 q M , g + 1 G 1 + g N q g
G 1 N M = q M 1 g = 0 M 1 q M g + 1 q + ! S 2 q M , g + 1 G 1 + g N q g
q.e.d.
Table 7. 2 H(g) of PS=[1,1…1],PT=[1,2…M].
Table 7. 2 H(g) of PS=[1,1…1],PT=[1,2…M].
Preprints 72608 i007
[Proof of (*)]
H 3 q g B i F o r m 3 q q X T 1 G 1 T i q T i G 1 X T 1 1 q q T i ; X i = T i 1 q + G 1 X T 1 = q 1 G 1 X T 1 + 1 ; X i = K i
H 3 q g , K = q M g E q M g g + 1
H 3 q g , T = q q X T 1 G 1 i q i G 1 X T 1 q 1 q i = q 1 1 q q X T 1 q i 1 q i q X T 1 1 q i 1 q 1
= q i q 1 + X T 1 q 1 = q 1 + X T 1 q X K 1 1 q 1 = q X T q X K 1 1 q 1 = q 1 + 2 + g G 1 X K 1
G 1 X K 1 = G 1 λ 1 G 1 λ 1 + λ 2 G 1 λ 1 + λ 2 + ... + λ g 1
q.e.d.
7.9 ) Induction PT = 1 , 2 M , q g + 1 2 H 1 q g = q g + 1 2 k = 0 M H 2 q k G g k
7.10 ) Induction H 1 q 0 = k = 0 M H 2 q k
Other situations are relatively complex and no conclusions similar to 2.2) have been drawn.
  
S U M q N , 1 q , 1 q 1 q , 1 , 3 2 M 1
= n M = 0 N 1 q n M 1 G 1 n M + 1 n 2 = 0 n 3 q n 2 1 G 1 n 2 + 1 n 1 = 0 n 2 q n 1 1 G 1 n 1 + 1
= q 2 M 1 I 1 I 2 ... I M N G 1 I 1 G 1 I 2 G 1 I M q I 1 + I 2 + ... + I M = q 2 M λ 1 + λ 2 + ... + λ N = M , λ i 0 G 1 1 λ 1 G 1 2 λ 2 G 1 N λ N q λ 1 + 2 λ 2 + ... + N λ N
  
S U M q N , 1 q , 2 q M q , 1 , 3 2 M 1
= n M = 0 N 1 q n M M G 1 n M + M n 2 = 0 n 3 q n 2 2 G 1 n 2 + 2 n 1 = 0 n 2 q n 1 1 G 1 n 1 + 1
= q M + 1 M 1 I 1 < I 2 < ... < I M N + M 1 G 1 I 1 G 1 I 2 G 1 I M q I 1 + I 2 + ... + I M
  
7.11 )   P 1 T 1 , P 2 T 2 , T 1 0 , T 2 0 , PT = 1 , 2 , 3 T 1 + T 2 + 2 P 1 P 2
PS = 1 q , 2 q T 1 P 1 q , K 1 G 1 T 1 + 1 P 1 q 1 P 1 G 1 T 1 D 1 , 1 q , 2 q T 2 P 2 q , K 2 G 1 T 2 + 1 P 2 q 1 P 2 G 1 T 2 D 2
n = 0 N 1 q n P 1 SUM q n + 1 , K 1 : D 1 , T 1 P 2 SUM q n + 1 , K 2 : D 2 , T 2
= 1 T 1 P 1 q ! q 1 P 1 G 1 T 1 D 1   G 1 T 1 P 1 + 1   1 T 2 P 2 q ! q 1 P 2 G 1 T 2 D 2 G 1 T 2 P 2 + 1   SUM q N , PS , PT
  
7.12 )   n = 0 N 1 q n i = 1 M K i + q n D i = g = 0 M H 1 q g G g + 1 N , B i = q X T q X T 1 D i ; X T K i + q X T D i ; X K    
7.13 )   Induction n = 0 N 1 i = 1 M K i + q n D i = g = 1 M f g G g N + N i = 1 M K i
f g = X T = g i = 1 M 1 ; X T , X T 1 = 0 q X T 1 q X T 1 1 D i ; X T , X T 1 > 0 K i ; X K , X T 1 = 0   K i + q X T 1 1 D i ; X K , X T 1 > 0  
  
Similar to Section 6, P=N+TM-M,Q=N-1,define Aq(P,Q,M)
A 1 q P , Q , M = G Q P G Q M P G Q + M P + M G Q P + M , A 2 q P , Q , M = G Q P G Q P + M G Q + M P + M G Q + M P + 2 M , A 3 q P , Q , M = G Q P + M G Q M P G Q + M P + 2 M G Q P + M
  
Turn it into an upper triangular matrix:
7.14 ) A 2 q P , Q , M = G Q P G 0 P G Q + 1 P + 2 G 1 P + 2 G Q + 2 P + 4 G 2 P + 4 G Q + M P + 2 M G M P + 2 M q P + 1 + 2 P + 2 + ... + M P + M = A 2 q P , P Q , M
7.15 ) A 2 q P , 0 , M = q P + 1 + 2 P + 2 + ... + M P + M ; A 2 q P , 1 , M = G 1 + M P + M q P + 1 + 2 P + 2 + ... + M P + M
  
A 2 q P , Q , M   Row i + 1 : =   Row i + 1   Row i   and   repeat Change   the   first   column   to   to   G Q P , q Q + 1 G Q + 1 P , q 2 Q + 2 G Q + 2 P T
q Q + 1 + 2 Q + 2 + M Q + M G Q P G Q P + M G Q + M P G Q + M P + M transpose q G Q P G Q + M P G Q P + M G Q + M P + M = q A 1 P , P Q , M
A 1 q P , P Q , M = G Q P G 0 P G Q + 1 P + 2 G 1 P + 2 G Q + 2 P + 4 G 2 P + 4 G Q + M P + 2 M G M P + 2 M q P Q + 2 P Q + ... + M P Q  
  
A 1 q P , Q , M = G Q P G Q M P G Q + M P + M G Q P + M   u s e   2 , c o l i = c o l i + q x c o l i + 1   and   repeat G Q P + M G Q M P G Q + M P + 2 M G Q P + M = A 3 q P , Q , M
7.16 ) A 1 , 3 q P , Q , M = G Q P G 0 P G Q + 1 P + 2 G 1 P + 2 G Q + 2 P + 4 G 2 P + 4 G Q + M P + 2 M G M P + 2 M q Q M + 1 2 ; A 1 , 3 q P , 0 , M = 1 ; A 1 , 3 q P , 1 , M = q M + 1 2 G 1 + M P + M
S o   H q g can   be   calculated   by   the   matrix   .

7. Application of SUMq(N) and Hq(g)

8.1 ) q M n = g = 0 M q M g M g q 1   i = 1 g q n q i = g = 0 M G g M i = 0 g 1 q n q i
= g = 0 M G g M 1 g q g 2 G M n + M g = q M + 1 2 g = 0 M q M g 2 G g M i = 0 g 1 q n + g i 1
[Proof]
q M n = S U M q N , 1 , 1 1 : q 1 , 1 , 2 M
= g = 0 M H 1 q g G g n q g = g = 0 M H 2 q g G g n + g = g = 0 M H 3 q g G M n + M g q g
H 2 q g , T = q 1 g g q !
H 2 q g , K = 1 q i X K 1 1 q i X K 1 q 1 q 1 = 1 q i X K 1 = 1 q 1 + X T 1 = q M g 1 q X T
MacMahon [9]   observes   G K M = w     Ω 0 M K , 1 K q i n v w , that   is ,   all   words   w   =   w 1 w 2 w M   with   M     K   zeroes   and   K   ones ,   and   inv ·   denotes   the   inversion   statistic   defined
  H 2 q g , K = q M g M M g q 1 = q M g M g q 1 The   first   equation .
H 1 q g , T = q 1 g g q + !   ; H 1 q g , K = 1 + q X T 1 1 q 1 q 1 = q X T 1 = q X T = G M g M = G g M
q M n = g = 0 M q 1 g g q + ! G g M q g G g n = g = 0 M q g G g M q g + 1 2 i = 0 g 1 q n i 1 T h e   sec ond   equation
H 3 q g , K = G g M , H 3 q g , T = 1 g q g + 1 2 , q M n = g = 0 M G g M 1 g q g + 1 2 q g G M n + M g T h e   t h i r d   equation
  
S U M q N , q 1 : q 1 q 1 , q 2 : q 1 q 2 q M : q 1 q M , 1 , 2 M = q n + 1 q n + 2 .. q n + M = q M n + M + 1 2
B i F o r m 2 q T i X K 1 q T i X K 1 1 q T i = q T i q X K 1 = q X K 1 q T i X K 1 1 ; X i = T i K i q T i X K 1 G 1 T i X K 1 D i = q X K 1 ; X i = K i    
H 2 q g , K = q 0 q 1 q M g 1 = q M g 2 ; H 2 q g , T = i = 0 g q i 1 G g M T h e   f o u t h   equation
  
B i F o r m 3 q 1 q X T 1 G 1 T i q T i G 1 X T 1 D i K i q T i = q i + X T ; X i = T i K i + G 1 X T 1 D i = q i + X T 1 = q i + X T ; X i = K i     , E v e r y   i t e m   o f   H 3 q g   h a s   q 1 + 2 + + M
X T   o f   H 3 q g q M + 1 2 = 1 g q 1 + 2 + ... + g , X K   o f   H 3 q g q M + 1 2 = q X T = G g M
q M n = q M + 1 2 g = 0 M 1 g q M + 1 2 q g + 1 2 G g M G M n + M g q g = g = 0 M G g M 1 g q g 2 G M n + M g = T h e   t h i r d   equation
q.e.d.
  
S U M q N , 1 , 1 1 : 0 , 1 , 3 2 M 1 F o r m 2 G M N + M 1 0 λ 1 ... λ M N q λ 1 + ... + λ M = G M N + M r e c o r d   a t [6]: 3.1
8.2 ) 0 λ 1 λ 2 ... λ N M N q λ 1 + λ 2 + ... + λ N = G M N M = G N M = w     Ω 0 N , 1 M N q i n v w
8.3 ) N + M 1 M q 2 = g = 0 M 1 g q g 2 M g q 2 G 2 M N + 2 M 1 g
[Proof]
S U M q N , q 1 : q 1 q 1 , q 3 : q 1 q 3 q T M : q 1 q T M , 1 , 3 2 M 1  
= n M = 0 N 1 q n M q n M + 2 M 1 n 1 = 0 n 2 q n 1 q n 1 + 1 = q M 2 n M = 0 N 1 q 2 n M n 1 = 0 n 2 q 2 n 1
= q M 2 0 λ 1 λ 2 ... λ M N 1 q 2 λ 1 + λ 2 + ... + λ M = q M 2 N + M 1 M q 2 = g = 0 M H 3 q g G 2 M N + 2 M 1 g
B i F o r m 3 q 1 + X T 1 q X T 1 G 1 T i q T i G 1 X T 1 D i K i q T i = q T i 1 + 2 X T ; X i = T i q X T 1 K i + G 1 X T 1 D i = q T i + 2 X T 1 = q T i + 2 X T ; X i = K i , E v e r y   i t e m   o f   H 3 q g   h a s   q 1 + 3 + + 2 M 1
H 3 q g = 1 g q 1 + 3 + + 2 M 1 g + 2 g + 1 2 X K q 2 X T = 1 g q M 2 + g 2 M g q 2
q.e.d.
  
8.4 ) 1 i 1 < i 2 < ... < i M N + M 1 q i 1 q i 2 q i M = q M M + 1 2 g = 0 M 1 g q g 2 2   M g q N + 2 M 1 g 2 M q 1 2
[Proof]
S U M q N , q 2 : q 1 q 2 , q 4 : q 1 q 4 q 2 M : q 1 q 2 M , 1 , 3 2 M 1  
= n M = 0 N 1 q n M q n M + 2 M n 2 = 0 n 3 q n 2 q n 2 + 4 n 1 = 0 n 2 q n 1 q n 1 + 2 = n M = 0 N 1 q 2 n M + M n 2 = 0 n 3 q 2 n 2 + 2 n 1 = 0 n 2 q 2 ( n 1 + 1 )
B i F o r m 3 q 2 i 1 + 2 X T ; X i = T i q 2 i + 2 X T ; X i = K i , E v e r y   i t e m   o f   H 3 q g   h a s   q 2 + 4 + + 2 M
H 3 q g = 1 g q 2 1 + 2 + ... + M g + 2 g + 1 2 X K q 2 X T = 1 g q M M + 1 + g 2 M g q 2
S U M q N = g = 0 M 1 g q M M + 1 + g 2 M g q 2 G 2 M N + 2 M 1 g = 1 i 1 < i 2 < ... < i M N + M 1 q 2 i 1 q 2 i 2 q 2 i M
q.e.d.
8.5 )   k r = 1 N k 2 = 1 k 3 k 1 = 1 k 2 q k 1 + k 2 + ... + k r S U M q k i , P S , 1 , 2 M = i r S U M q N , P S , T j = j + i 1
  
8.6 ) K + q D M = q 1 D g = 0 M 1 K + D g K + q D M 1 g + K + D M
[Proof]
P S = K + D , K + D K + D : q 1 D , P T = 1 , 2... M , B i   F o r m 1 q X T q X T 1 D ; X i = T i K + q X T 1 D ; X i = K i      
H 1 q 1 = q q 1 D a + b = M 1 , a , b 0 K + D a K + q D b
S U M q 2 S U M q 1 = q i = 1 M K + D + G 1 1 q 1 D = q i = 1 M K + q D = H 1 q 1 + H 1 q 0 G 1 2 H 1 q 0 G 1 1
= H 1 q 1 + q H 1 q 0 = H 1 q 1 + q K + D M
q.e.d.

8. Multiparameter Formal Calcution

2 parameters   Formal   Calculation   calculate   n e s t e d   s u m m a t i o n   o f   K i + n 1 D 1 , i + n 2 D 2 , i
SUM(N, PS, PT) changed to
SUM(N, [K1,K2...KM], [T1,1:D1,1...T1,M:D1,M], [T2,1: D2,1...T2,M: D2,M])=SUM(N,PS,PT1,PT2), always Ti=T1,i=T2,i
U s e   t h e   F o r m   K 1 + T 1 , 1 + T 2 , 1 K 2 + T 1 , 2 + T 2 , 2 K M + T 1 , M + T 2 , M = i = 1 M X i
X P T 1 = c o u n t   o f   X P T 1 , X P T 2 = c o u n t   o f   X P T 2 ; X P T = X P T 1 + 2 X P T 2  
X P T 1 = c o u n t   o f   X 1 , X 2 X i P T 1 , X P T 2 = c o u n t   o f   X 1 , X 2 X i P T 2 , X P T = X P T 1 + 2 X P T 2  
9.1 ) g = X T , H g = X i   w i t h   X T = g i = 1 M B i ,   S U M N , P S , P T 1 , P T 2 =
Form 1 g = 0 2 M H 1 g N + T M M T M M + 1 + g , B i =   K i + X PT D 1 , i + X PT 2 D 2 , i ; X i = K i   T i i + X PT D 1 , i + T i i + X PT X PT 1 D 2. i ; X i = PT 1. i   T i i + X PT 2 D 2 , i ; X i = PT 2. i
Form 2 g = 0 2 M H 2 g N + T M M + g T M M + 1 + g , B i =   K i T i i + X PT + 1 D 1 , i + T i i + X PT + 2 2 D 2 , i ; X i = K i   T i i + X PT D 1 , i T i i + X PT T i i + X PT + 1 D 2. i ; X i = PT 1. i   T i i + X PT 2 D 2 , i ; X i = PT 2. i
Form 3 g = 0 2 M H 3 g N + T M + M g T M + M + 1 B i =   K i + X PT 1 D 1 , i + X PT 1 2 D 2 , i ; X i = K i   2 K i + T i + i 1 2 X PT 1 D 1 , i + T i + i X PT 1 X PT 1 D 2 , i ; X i = PT 1. i K i T i + i 1 X PT 1 D 1 , i + T i + i X PT 1 2 D 2 , i ; X i = PT 2. i
[Proof]
[3] has obtained Form1 and ignores Form2,3. All that remains is some technical work.Here proves Form2.
* n = 0 N 1 n n + K M = M + 1 N + K + 1 M + 2 K + 1 N + K M + 1
* * n = 0 N 1 n 2 n + K M = M + 2 2 N + K + 2 M + 3 M + 1 K + 2 N + K + 1 M + 2 + K + 2 2 N + K M + 1 M > K
P S 1 = P S , K M + 1 , P T 1 1 = P T 1 , T M + 1 = T M + 2 p : D 1 , M + 1 , P T 1 2 = P T 2 , T M + 1 = T M + 2 p : D 2 , M + 1
U s e   i n d u c t i o n , it   c a n   b e   v e r i f i e d   w h e n   M = 1 , s u p p o s e   S U M N = g = 0 2 M H 2 g N + T M M + g T M M + 1 + g
L e t   A = T M M + 1 p = T M + 1 M + 1
S U M N , P S 1 , P T 1 1 , P T 1 2
= n = 0 N 1 K M + 1 + n D 1 , M + 1 + n 2 D 2 , M + 1 p g = 0 2 M H 2 g n + 1 + T M M + g T M M + 1 + g   = n = 0 N 1 g = 0 2 M K M + 1 + n D 1 , M + 1 + n 2 D 2 , M + 1 H 2 g n + A + g A + g
= g = 0 2 M K M + 1 A + g + 1 D 1 , M + 1 + A + g + 2 2 D M + 1 , 2 H 2 g N + A + g A + g + 1
+ g = 0 2 M A + g + 1 D 1 , M + 1 A + g + 1 A + g + 2 D 2 , M + 1 H 2 g N + A + g + 1 A + g + 2
+ g = 0 2 M A + g + 2 2 D 2 , M + 1 H 2 g N + A + g + 2 A + g + 3
N + A + g A + g + 1 = N + T M + 1 M + 1 + g T M + 1 M + 1 + 1 + g , X i = K i , X P T   u n c h a n g e d , X P T = g , T M + 1 = T i , M + 1 = i
N + A + g + 1 A + g + 2 = N + T M + 1 M + 1 + g + 1 T M + 1 M + 1 + 1 + g + 1 , X i = T 1 , i , X P T = g + 1 , T M + 1 = T i , M + 1 = i
N + A + g + 2 A + g + 3 = N + T M + 1 M + 1 + g + 2 T M + 1 M + 1 + 1 + g + 2 , X i = T 2 , i , X P T = g + 2 , T M + 1 = T i , M + 1 = i
Form2 has been proved. Use the following two formulas to prove Form3.
n = 0 N 1 n n + K M = K M N + K + 2 M + 3 + 2 K M + 1 N + K + 1 M + 3 K + 1 N + K M + 3
n = 0 N 1 n 2 n + K M = M K 2 N + K + 2 M + 3 + K + 2 M K N + K + 1 M + 3 + K + 2 2 N + K M + 3
q.e.d.
According to this method, it can be extended to multiparameter SUM(N) and multiparameter SUMq(N).
1. S e r i e i : K i + n 1 D 1 , i + n 2 D 2 , i + n 3 D 3 , i + o r   K i + G 1 n D 1 , i + G 2 n D 2 , i + G 3 n D 3 , i + ; T 1 , i = T 2 , i = T 3 , i
2. X P T = X P T 1 + 2 X P T 2 + 3 X P T 3 ; X P T = X P T 1 + 2 X P T 2 + 3 X P T 3
3. U s e   X P T   o r   X P T 1   I n d i c a t e   t h e   p o s i t i o n s .

9. A theorem of symmetry

T h e r e   h a v e   2.1 ) H 1 g , P T , PT = i = 1 M T i M g = i = 1 M T i M g , M g
P r o m o t e   i t , t h e   S e t T 1 , T 2 T M   c o m e   f o r m   p   s o u r c e   S 1 , S 2 S P , T i S j   m e a n s   T i   c o m e   f r o m   s o u r c e   j
d e f i n e   D i f f S x , S y = Z x , y , x y ; D i f f S y , S x = D i f f S x , S y ; D i f f S x , S x = 0
d e f i n e   D i f f T i , T j = D i f f S x , S y , T i S x , T j S y
d e f i n e   W g 1 , g 2 g p , T 1 , T 2 T M = g 1 + g 2 + ... + g p = M , g i 0 i = 1 M { T i + j < i D i f f ( T j , T i ) }
O b v i o u s : H 1 g , P T , PT = W g , M g , T 1 , T 2 T M , Z x , y =   1 , x < y
T 1 , T 2 T M   c a n   b e   a r r a n g e d   a r b i t r a r i l y , Z x , y x y     c a n   b e   a r b i t r a r i l y   t o o .  
10.1 ) I n d u c t i o n W g 1 , g 2 g p , T 1 , T 2 T M = i = 1 M T i M g 1 , g 2 g p . A   c o n c l u s i o n   o f   10 .
  
P r o m o t e   t o   G a u s s i a n   c o e f f i c i e n t : G g > 0 0 = 0 ; G g M < 0   i s   s t i l l   d e f i n e d
d e f i n e D i f f q S x , S y =   1 , x < y ; D i f f q S y , S x = D i f f q S x , S y ; D i f f q S x , S x = 0
d e f i n e   W q g 1 , g 2 g p , T 1 , T 2 T M = g 1 + g 2 + ... + g p = M , g i 0 i = 1 M G 1 T i + j < i D i f f q T j , T i q j < i , D i f f q T j , T i = 1 1
10.2 ) W q g 1 , g 2 , T 1 , T 2 T M = i = 1 M G 1 T i G g 1 M
[Proof]
O b v i o u s : I t   h o l d s   w h e n   M = 1   o r   g 1 = 0   o r   g 1 = M ;
V e r i f i e d   b y   c a l c u l a t i o n : I t   h o l d s   w h e n   M = 2 : G 1 T 1 G 1 T 2 + 1 + q G 1 T 1 G 1 T 2 1 = G 1 T 1 G 1 T 2 G 1 2
W h e n   M + 1 ,   p r o v e   b y   i n d u c t i o n : P T = T 1 , T 2 T M , P T 1 = T 1 , T 2 T M , T M + 1
W q g 1 , g 2 + 1 , P T 1 = W q g 1 , g 2 , P T G 1 T M + 1 + g 1 + W q g 1 1 , g 2 + 1 , P T G 1 T M + 1 g 2 + 1 q g 2 + 1
= i = 1 M G 1 T i G g 1 M G 1 T M + 1 + g 1 + i = 1 M G 1 T i G g 1 1 M G 1 T M + 1 g 2 + 1 q g 2 + 1
= i = 1 M G 1 T i G g 1 M G 1 T M + 1 + g 1 + G g 1 1 M G 1 T M + 1 M + 1 g 1 q M + 1 g 1
i = 1 M + 1 G 1 T i G g 1 M + 1 = i = 1 M G 1 T i G 1 T M + 1 q g 1 G g 1 M + G g 1 1 M
J u s t   n e e d   t o   p r o v e G 1 T M + 1 q g 1 G g 1 M + G g 1 1 M = G g 1 M G 1 T M + 1 + g 1 + G g 1 1 M G 1 T M + 1 M + 1 g 1 q M + 1 g 1
B o t h   s i d e s   m u l t i p l y   q g 1 1 q g 1 1 1 q 1   a n d   d i v i d e   q M 1 q M 1 1 q M g 1 + 2 1
L e f t = q T M + 1 + g 1 + ... + q g q M g 1 + 1 1 + q T M + 1 1 + ... + q 0 q g 1
R i g h t = q T M + 1 + g 1 + ... + q 0 q M g 1 + 1 1 + q T M + 1 1 + ... + q M + 1 g 1 q g 1
L e f t R i g h t = q g 1 q M g + + 1 q M g 1 + 1 1 q g 1 + + 1
= q M + ... + q g q M g + ... + 1 + q g 1 + ... + 1 q M + ... + q M g 1 + 1 = 0
q.e.d.
d e f i n e   M g 1 g p q = q M 1 q M 1 1 q 1 1 i = 1 g 1 q i 1 i = 1 g 2 q i 1 i = 1 g p q i 1 , g 1 + g 2 + ... + g p = M
10.3 ) W q g 1 , g 2 g p , T 1 , T 2 T M = i = 1 M G 1 T i M g 1 , g 2 g p q
[Proof]
Only   needs   to   prove   that   it   holds   when   p = 3  
W q g 1 , g 2 + g 3 , T 1 , T 2 T M = i = 1 M G 1 T i g 1 + g 2 + g 3 g 1 , g 2 + g 3 q
Every   item   has   g 2 + g 3   f a c t o r s   c o m e   f r o m   S o u r c e 2 , d i v i d e   t h e m   t o   g 2 S o u r c e 2 + g 3 S o u r c e 3
g 1 f a c t o r s   are   invariant , g 2 + g 3 f a c t o r s   are   variant .
variant   f a c t o r s = W q g 2 , g 3 , X 1 , X 2 X g 2 + g 3   i = 1 g 2 + g 3 G 1 X i g 2 + g 3 g 2 , g 3 q  
W q g 1 , g 2 , g 3 = i = 1 M G 1 T i g 1 + g 2 + g 3 g 1 , g 2 + g 3 q g 2 + g 3 g 2 , g 3 q = i = 1 M G 1 T i g 1 + g 2 + g 3 g 1 , g 2 , g 3 q
The   rest   is   to   prove   that   the   change   of   D i f f q T j , T i   m e e t s   t h e   d e f i n i t i o n .
Obvious   :   g 1 invariant   f a c t o r s   m e e t   t h e   d e f i n i t i o n .
W h e n   W q g 2 , g 3   i s   e m b e d d e d   i n   W q g 1 , g 2 , g 3 , a l l   D i f f q T j S o u r c e 1 , T i S o u r c e 2 , 3   w i l l   a d d   1.
q.e.d.

10. Eulerian polynomials and Beyond

The main proof method of n = 0 N 1 q n nM comes from [2]. Extensive promotion here.
11.1 ) n = 0 N 1 q n n + M M = q N g = 0 M 1 g N + M 1 g M g q 1 g + 1 + 1 M + 1 q 1 M + 1
[Proof]
M = 0 , n = 0 N 1 q n n 0 = q N 1 q 1 = q N N 1 0 q 1 1 q 1 , holds
M = 1 , n = 0 N 1 q n n + 1 1 = n = 0 N 1 q n n + 1 = n = 0 N 1 q n + n = 1 N 1 q n + ... + n = N 1 N 1 q n
= N n = 0 N 1 q n n = 0 0 q n + n = 0 1 q n + ... + n = 0 N 2 q n
= N q N 1 q 1 q 1 q 1 + q 2 1 q 1 + ... + q N 1 1 q 1 = N q N 1 q 1 1 + q + q 2 + ... + q N 1 N q 1 = q N N 1 q 1 q N N 1 0 q 1 2 + 1 q 1 2 , holds
  
When   N = 1 , right = g = 0 M 1 g 1 q 1 g + 1 + 1 M + 1 q 1 M + 1 = q q 1 g = 0 M 1 g q 1 g + 1 M + 1 q 1 M + 1 = 1 = l e f t
U s e   n + M M = n + M 1 M + n + M 1 M 1 , i n d u c t i v e   p r o o f .
q.e.d.
11.2 ) n = 0 N 1 q n n + K M = q N g = 0 M 1 g N + K 1 g M g q 1 g + 1 + 1 M + 1 q M K q 1 M + 1
  
Define   A q M = k = 0 M 1 q M k q k S 2 M , k k ! , q 0 , 1 ,   M , A q 0 = 1 , A q 1 = q
Table 11. 1: A q M .
Table 11. 1: A q M .
Preprints 72608 i008
11.3 ) A q M = q k = 0 M q 1 M k S 2 M , k k !  
[Proof]
A q M 4.4 ) k = 0 M 1 q M k q k g = 0 M 1 M g g ! S 2 M , g g 1 k 1
= g = 0 M 1 M g g ! S 2 M , g k = 0 M 1 q M k q k g 1 k 1
= g = 0 M 1 M g g ! S 2 M , g 1 q M g q k = 0 g 1 q g k q k 1 g 1 k 1 k = 0 g 1 q g k q k 1 g 1 k 1 = 1 11.3 )
q.e.d.
  
n M = S U M n , 1 1 , 2 M = g = 0 M S 2 M , g g ! n g = g = 0 M 1 M g S 2 M , g g ! n + g 1 g = g = 0 M M g n + g M   n = 0 N 1 q n n M = g = 0 M S 2 M , g g ! n = 0 N 1 q n n g = g = 0 M S 2 M , g g ! q N k = 0 g 1 k N 1 k g k q 1 k + 1 + 1 g + 1 q g q 1 g + 1
= q N q 1 M + 1 g = 0 M S 2 M , g g ! k = 0 M 1 k N 1 k g k q 1 M k + 1 M + 1 g = 0 M S 2 M , g g ! 1 q M g q g q 1 M + 1
= q N q 1 M + 1 k = 0 M q 1 M k 1 k g = 0 M S 2 M , g g ! N 1 k g k + 1 M + 1 A q M q 1 M + 1
= q N q 1 M + 1 k = 0 M q 1 M k 1 k k ( N 1 ) M + 1 M + 1 A q M q 1 M + 1     *
  
n = 0 N 1 q n n M = g = 0 M 1 M g S 2 M , g g ! n = 0 N 1 q n n + g 1 g
= q N q 1 M + 1 g = 0 M 1 M g S 2 M , g g ! k = 0 g 1 k N + g 2 k g k q 1 M k + 1 M + 1 g = 0 M S 2 M , g g ! 1 q M g q q 1 M + 1
= q N q 1 M + 1 k = 0 M q 1 M k 1 k k N 1 ) M + 1 M + 1 q 1 M + 1 c o m p a r e   w i t h   * 11.3
  
n = 0 N 1 q n n M = g = 0 M M g n = 0 N 1 q n n + g M
11.4 ) A q M = g = 0 M M g q M g = g = 0 M M g q 1 + g
  
n M = S U M n , 1 , 1 1 , 1 , 2 M = g = 0 M S 2 M , g + 1 g + 1 ! n 1 g
11.5 ) A q M = k = 0 M 1 q M k q K + 1 S 2 M + 1 , k + 1 k ! , M > 0
  
S 2 M + 1 , k + 1 = 1 k + 1 ! j = 0 k + 1 1 j + k + 1 k + 1 j j M = 1 k ! j = 0 k 1 j + k k j j + 1 M 1
k N 1 M B y   d e f i n i t i o n j = 0 k 1 j k j N 1 j M = j = 0 k 1 j k j g = 0 M M g N g j + 1 M g 1 M g = g = 0 M 1 M g M g N g j = 0 k 1 j k j j + 1 M g = g = 0 M 1 M g k M g N g j = 0 k 1 j + k k j j + 1 M g = g = 0 M 1 M g k M g N g S 2 M g + 1 , k + 1 k !
  
f N = n = 0 N 1 q n n M = * = q N q 1 M + 1 k = 0 M q 1 M k 1 k k ( N 1 ) M + 1 M + 1 A q M q 1 M + 1 Gf = q N q 1 M + 1 k = 0 M q 1 M k 1 k g = 0 M 1 M g k M g N g S 2 M g + 1 , k + 1 k ! + 1 M + 1 A q M q 1 M + 1
= q N q 1 M + 1 g = 0 M q 1 g 1 M g M g N g k = 0 M q 1 M k g S 2 M g + 1 , k + 1 k ! + 1 M + 1 A q M q 1 M + 1 * *
f 0 = 0 g = 0 1 M + 1 A q M q 1 M + 1 = 1 M q 1 M + 1 k = 0 M q 1 M k S 2 M + 1 , k + 1 k !
11.6 ) A q M = k = 0 M q 1 M k S 2 M + 1 , k + 1 k !
  
A q M g = k = 0 M q 1 M k g S 2 M g + 1 , k + 1 k ! F r o m   * *
11.7 ) n = 0 N 1 q n n M = q N q 1 M + 1 g = 0 M q 1 g 1 M g M g A q M g N g + 1 M + 1 A q M q 1 M + 1
Table 11. 1: n = 0 N 1 q n n M .
Table 11. 1: n = 0 N 1 q n n M .
Preprints 72608 i009
A q M = k = 0 M 1 q M k q k S 2 M , k k ! = q k = 0 M q 1 M k S 2 M , k k !   = g = 0 M M g q 1 + g =
k = 0 M 1 q M k q K + 1 S 2 M + 1 , k + 1 k ! , M > 0 = k = 0 M q 1 M k S 2 M + 1 , k + 1 k !
  
A 2 M = k = 0 M 1 M k 2 k S 2 M , k k ! = 2 k = 0 M S 2 M , k k !   = g = 0 M M g 2 1 + g =
k = 0 M 1 M k 2 K + 1 S 2 M + 1 , k + 1 k ! , M > 0 = k = 0 M S 2 M + 1 , k + 1 k !
These expressions can validate 2.2).2.3).2.4).2.8)
  
W e   k n o w   t h a t   E u l e r i a n   p o l y n o m i a l s   A M t : i = 0 t i i M = t A M t 1 t M + 1 ; A M t = g = 0 M 1 M g t g
0 < q < 1 , lim N n = 0 N 1 q n n M = A q M 1 q M + 1
11.8 ) A t M = t A M t
S o t h e r e   a r e   f i v e   e x p r e s s i o n s   f o r   A M t . T h i s   c a n   a l s o   b e   o b t a i n e d   f r o m   11.4 ) .
  
T o   c a l c u l a t e n = 0 N 1 q n a + n 1 d M ,   i n v e s t i g a t i o n   a + n 1 d M = S U M n , a , a a : d , 1 , 2 M
= g = 0 M H 1 g n 1 g = g = 0 M H 2 g n + g 1 g = g = 0 M H 3 g n + M g 1 M = g = 0 M H 3 M g n + g 1 M
  
n = 0 N 1 q n a + n 1 d M = g = 0 M H 1 g n = 0 N 1 q n n 1 g = g = 0 M H 1 g q N k = 0 g 1 k N 2 k g k q 1 k + 1 + 1 g + 1 q g + 1 q 1 g + 1
= q N q 1 M + 1 g = 0 M H 1 g k = 0 M 1 k N 2 k g k q 1 M k + 1 M + 1 g = 0 M H 1 g 1 q M g q g + 1 q 1 M + 1
= q N q 1 M + 1 k = 0 M q 1 M k 1 k g = 0 M H 1 g N 2 k g k + 1 M + 1 A q M a , d q 1 M + 1
= q N q 1 M + 1 k = 0 M q 1 M k 1 k k ( a + N 2 d ) M + 1 M + 1 A q M a , d q 1 M + 1 *
A q M a , d   i s   d e f i n e d   a s   g = 0 M H 1 g , a , a a : d , 1 , 2 M 1 q M g q g + 1 . S i m i l a r l y :
11.9 )   A q M a , d = g = 0 M H 1 g 1 q M g q g + 1 = g = 0 M H 2 g 1 q M g q = g = 0 M H 3 g q g + 1
  
S U M n , d , d d : d , 1 , 2 M = n d M = g = 0 M H 1 g , d , d d : d , 1 , 2 M n 1 g
H 1 g , d , d d : d , 1 , 2 M = g ! d g f M , g M a t r i x   r u l e j = 1 g + 1 1 g + 1 + j g j 1 SUM j
= j = 1 g + 1 1 g + 1 + j g j 1 j d M = j = 0 g 1 g + j g j j + 1 d M
f M , g   c a n   b e   d e f i n e d   a s   s o m e   k i n d   o f   G e n e r a l   S t i r l i n g   N u m b e r s   o f   t h e   s e c o n d   k i n d .
  
k a + N 2 d M B y   d e f i n i t i o n j = 0 k 1 j k j a + N 2 j d M
= j = 0 k 1 j k j g = 0 M M g a + N 1 d g j + 1 d M g 1 M g
= g = 0 M 1 M g k M g a + N 1 d g j = 0 k 1 j + k k j j + 1 d M g
= g = 0 M 1 M g k M g a + N 1 d g H 1 k , d , d d : d , 1 , 2 M g
  
11.10 ) n = 0 N 1 q n a + n 1 d M = q N q 1 M + 1 g = 0 M 1 M g M g a + N 1 d g { k = 0 M q 1 M k H 1 k , d , d d : d , 1 , 2 M g } + 1 M + 1 A q M a , d q 1 M + 1
11.11 ) i = 1 t i a + i 1 d M = A t M a , d 1 t M + 1
  
11.12 ) A q M d , d = k = 0 M q 1 M k H 1 k , d , d d : d , 1 , 2 M = d M A q M
11.13 ) n = 0 N 1 q n n d M = q N q 1 M + 1 g = 0 M q 1 g 1 M g M g A q M g d , d N d g + 1 M + 1 A q M d , d q 1 M + 1
G e n e r a l   E u l e r i a n   N u m b e r s   a n d   P o l y n o m i a l s [11]   a r e   s i m i l a r   t o   H 3 g   a n d   A q M a , d   of   H 3 g
  
We   can   handle   n = 0 N 1 q n p S U M n + Y , PS , PT , X = T M M P
= g = 0 M H 1 g n = 0 N 1 q n n + Y + X X + 1 + g = g = 0 M H 1 g q N k = 0 X + 1 + g 1 k n + Y + X 1 k X + 1 + g k q 1 k + 1 + q 1 + g Y 1 q X + 2 + g
= g = 0 M H 2 g n = 0 N 1 q n n + Y + X + g X + 1 + g = g = 0 M H 2 g q N k = 0 X + 1 + g 1 k n + Y + X + g 1 k X + 1 + g k q 1 k + 1 + q 1 Y 1 q X + 2 + g
= g = 0 M H 3 g n = 0 N 1 q n n + Y + X + M g X + 1 + M = g = 0 M H 3 g q N k = 0 X + 1 + M 1 k n + Y + X + M g 1 k X + 1 + M k q 1 k + 1 + q 1 + g Y 1 q X + 2 + M
11.14 ) Y = 0 g = 0 M H 1 g 1 q M g q g + 1 = q g = 0 M H 2 g 1 q M g = g = 0 M H 3 g q g + 1 = def A q P S , P T
Here   q   can   take   any   value ,   which   is   magical .   q = 0.5 2.4 )   ; q = 2 4.7 )
  
11.15 ) n = 0 N 1 q n SUM n , PS , 1 , 2 M = q N q 1 M + 1 k = 0 M q 1 M k 1 k k SUM N 1 + 1 M + 1 A q P S , P T q 1 M + 1
11.16 ) i = 0 t i P SUM i + Y , PS , PT = A q P S , P T t Y 1 t T M P + 2
  
i = 0 t i P SUM i + Y , 1 , 1 = i = 0 t i i + Y + 1 p 2 p = t t Y 1 t 3 P M = 2 p
11.17 ) i = 0 t i i + Y + M 1 M = t t Y 1 t M + 1 i = 0 t i i + K M = t M K 1 t M + 1 , m a t c h   11.2 )
1 M ! i = 0 t i 1 SUM i + Y , 1 , 2 M , 1 , 2 M = i = 0 t i i + Y + M 1 M + 1 1   c a n   a l s o   r e a c h   t h e   s a m e   c o n c l u s i o n .
n = 0 q n 1 SUM i , 1 , 1 1 , 2 , 2 2 , k , k k , 1 , 2 . kM = n = 0 q n n + 1 M n + 2 M ... n + k M
H 3 g   s o l v e d   w i t h   m a t r i x i s   t h e   G e n e r a l   E u l e r i a n   N u m b e r s   o f [12] , A q P S , P T 1 q k M + 1   i s   i t s   l i m i t   v a l u e .

11. Generalization of Wolstenholme Theorem

In this section, p is a prime number,p>3.
* W o l s t e n h o l m e   T h e o r e m : p 1 ! n = 1 p 1 1 n 0 M O D   p 2
  p 1 p 2 p p + 1 = p p 1 A 1 p p 2 + + A p 3 p 2 A p 2 p 1 + A p 1 = p 1 !
A p 1 = p 1 ! p p 2 A 1 p p 3 + ... + A p 3 p 1 A p 2 = 0 p | A 1 , p | A 2 p | A p 3   a n d   A p 2 = p 1 ! n = 1 p 1 1 n   * [13]
  
12.1 ) n = 1 p 1 n p 2 0   MOD   p 2
[Proof]
p p 2 + n = 1 p 1 n p 2 = n = 1 p n p 2 = SUM P , 1 , 1 1 , 1 , 2 p 2 = g = 0 p 2 g ! S 2 p 1 , g + 1 p g + 1
= g = 1 p 1 g 1 ! S 2 p 1 , g P g = p g = 1 p 1 g ! S 2 p 1 , g g 2 p 1 g 1 g ! S 2 p 1 , g g 2 p 1 g 1   i s   a n   i n t e g e r
n = 1 p n p 2 p = g = 1 p 1 g ! S 2 p 1 , g g 2 p 1 g 1 3.8 ) g = 1 p 1 1 g + 1 g 2 p 1 g 1 p 1 g 1 1 g 1 g = 1 p 1 1 g 2 g = 1 p 1 g 2 0 MODp
q.e.d.
(*)=SUM(2,[1,2…p-2],[1,3…2(p-2)-1]); 12.1)=SUM(p-1,[1,1…1],[1,2…p-2])
They are two extremes and their proof methods are special.Reconsidering shape:
PS   starts   from   1 , 1 1 , ends   at   1 , 2 p 2 , K 1 = 1 , K i = K i + 1 , c o n t i n u i t y K i + 1 = K i + 1 , d i s c o n t i n u i t y
PT   starts   from   1 , 2 p 2 , ends   at   1 , 3 2 p 5 , T 1 = 1 , T i + 1 = T i + 1 , c o n t i n u i t y T i + 2 = T i + 1 , d i s c o n t i n u i t y
12.2 ) c 1 + c 2 + + c q = P 2 , c i > 0 k 1 c 1 k 2 c 2 k q c q 0   MOD   p 2 , K i K j 1 K i P 1
[Proof]
If   A 0 MOD   p 2   a n d   A + B 0 MOD   p 2 , t h e n   B 0 MOD   p 2 .
T h e   S u m   h a s   s y m m e t r y . F o r   A 1 B P 3 , pair   each   product   A 1 B P 3   with   another   p A 1 B P 3   to   p B P 3  
p A 1 B P 3 A 1 B P 3   o r   B P 2   s y m m e t r y Paired   products = x A 1 B P 3 + y B P 2 = p B P 3
B P 3 0 MOD   p p B P 3 0 MOD   p 2 o b v i o u s l y : 0 < x , y < p A 1 B P 3 0 MOD   p 2   F o r   A 2 B P 4 , pair   A 2 B P 4   with   p A 1 A B P 4   to   p AB P 4   , p A 1 A B P 4 A 2 B P 4   o r   AB P 3  
Paired   products = x A 2 B P 4 + y A B P 3 = p A B P 4 0 MOD   p 2 A 2 B P 4 0 MOD   p 2
U s e   t h e   s a m e   w a y a + b = P 2 , A B , 1 A , B P 1 A a B b 0 MOD   p 2
  
A 1 B b C c , pair   with   p A 1 B b C c   to   p B b C c , p A 1 B b C c A 1 B b C c   o r   B b + 1 C c   o r   B b C c + 1
U s e   t h e   s a m e   w a y c o n c l u s i o n
q.e.d.
  
12.3 )   s a m e   s h a p e , M = p 2 S U M p 1 P B P T , P S , P T 0   MOD   p 2 , 0 P B p 3
SUM(3,[1,1,2],[1,2,4])+SUM(3,[1,2,2],[1,3,4])
=2(12)+3(12+22)+4(12+22+32 )+ 22 (1)+ 32 (1+2)+ 42 (1+2+3)=200≡0MOD25
  
(#) SUM(5,[1,1,1,1,2],[1,2,3,4,6]) + SUM(5,[1,2,2,2,2],[1,3,4,5,6])=
2(14)+3(14+24)+4(14+24+34)+ 5(14+24+34+44)+6(14+24+34+44+54)+
24(1)+ 34 (1+2)+ 44 (1+2+3)+ 54 (1+2+3+4)+ 64 (1+2+3+4+5)= 35574≡0MOD49
  
(##) SUM(5,[ 1,1,1,2,2],[ 1,2,3,5,6]) + SUM(5,[ 1,1,2,2,2],[ 1,2,4,5,6]) =
22(13)+ 32 (13+23)+ 42 (13+23+33)+ 52 (13+23+33+43)+ 62 (13+23+33+43+53)
23(12)+ 33 (12+22)+ 43 (12+22+32)+ 53 (12+22+32+42)+ 63 (12+22+32+42+52) =27930≡0MOD49
(#)+(##)=12.3)
  
12.4 ) E P 2 P 1 = S 2 2 p 3 , p 1 0   MOD   p 2 ; E p 2 p = S 2 2 p 2 , p 0   MOD   p 2
S 2 7 , 4 = 350   and   S 2 8 , 5 = 1050 0   MOD   5 2 ; S 2 11 , 6 = 179487   and   S 2 12 , 7 = 627396 0   MOD   7 2
  
Generally , PS   starts   from   K 2 , K 3 K M , ends   at   K 2 + 1 , K 3 + 2 K M + M 1 , K i
PS = K 2 + I 2 , K 3 + I 3 K M + I M , I 1 = 0 , I i = I i + 1 , c o n t i n u i t y I i + 1 = I i + 1 , d i s c o n t i n u i t y
PT   starts   from   K 2 + 1 , K 3 + 2 K M + M 1 , ends   at   K 2 + 2 , K 3 + 4 K M + 2 M 1
PT = K 2 + J 2 , K 3 + J K M + J M , J 1 = 0 , J i + 1 = J i + 1 , c o n t i n u i t y J i + 2 = J i + 1 , d i s c o n t i n u i t y
F P B = def s a m e   s h a p e , P B P T x = P B , 0 P B M 1 S U M N , P S x , P T x = s a m e   s h a p e g = 0 M 1 H 1 g , P S x , P T x N + X X + 1 + g
= g = 0 M 1 s a m e   s h a p e H 1 g , P S x , P T x N + X X + 1 + g = def g = 0 M 1 H 1 g , P B N + X X + 1 + g
12.5 ) H 1 g , P B = H 1 P B , g
[Proof]
K 1 × H 1 g , 0 2.14 )   MIN g K 1 , K 2 K M def K 1 × H 1 0 , g
K 1 × H 1 g , M 1 2.14 ) MIN g K 1 , K 2 + 1 K M + M 1 def K 1 × H 1 M 1 , g
K 1 × H 1 g , P B = K 1 × H 1 g , 0 = M I N P B K 1 , K 2 K M H 1 g = K 1 × H 1 g , 0 = M I N P B K 1 , K 2 K M M I N g P S
K 1 × H 1 P B , g = K 1 × H 1 g , 0 = M I N g K 1 , K 2 K M M I N P B P S
T h e i r   q u a n t i t y   i s   M 1 P B M 1 g   a n d   t h e y   a r e   p a i r e d   o n e   b y   o n e
q.e.d.
  
g from M-1 to 0, list H1(PB,g) of F(M-1),F(M-2)…F(0) row by row, the matrix will be symmetrical diagonally.
Table 12. 1:H1(PB,g) of PS=[1,1,1],PT=[2,3,4].
Table 12. 1:H1(PB,g) of PS=[1,1,1],PT=[2,3,4].
Preprints 72608 i010

12. Possible future research directions

The proof process of formal calculation needs to meet f(a+b)=f(a)f(b), so it cannot be further generalized through the method of this article.
1 )   C a n   F o r m a l   C a l c u l a t i o n   b e   e x t e n d e d   t o   o t h e r   f u n c t i o n s   ?
  
Examining various products,SUM(3,[1,1],[1,4])=1×1+2×{(1+2)+1} +3×{(1+2+3)+(1+2)+1}
2 ) P T = 1 , 4 , 7 . , P T = 1 , 5 , 9   a r e   r a r e l y   s t u d i e d .
3 ) F i n d   s o m e   c a l c u l a t i o n s   t o   e x t e n d   P T   t o   ,   e s p e c i a l l y   t o   r a t i o n a l   f r a c t i o n s .
4 ) O t h e r   e x p r e s s i o n s   f o r   E p q T 1 , T 2 , C .
  
F r o m   2.2 )   a n d   2.3 ) ,   t h e r e   e x i s t s   f o r m u l a s   b e t w e e n   S 1 , 2 M , g   a n d   S 2 , 2 M , g
5 ) A r e   t h e r e   a n y   f o r m u l a s   b e t w e e n   S 1 , r M , g   a n d   S 2 , r M , g
F r o m   3.4 )   a n d   3.5 ) ,   t h e r e   i s   r N + M r g + M i n   t h e   f o r m u l a s   , b u t   t h e r e   i s   a l s o 1 r N g r N r g ! N g !   o r   1 r ! N g r N r g ! N g !  
6 )   C a n   F o r m a l   C a l c u l a t i o n   b e   e x t e n d e d   t o   r N + Y X   ?
7 )   F i n d   a   r e l a t i o n s h i p   s i m i l a r   t o   2.2 )   i n   g e n e r a l   H q g
  
F r o m   10.1 ) , W g 1 , g 2 g p , T 1 , T 2 T M = i = 1 M T i M g 1 , g 2 g p .
W e   w a n t   t o   u s e   i t   ,   w h i c h   l e a d s   t o   t h e   g e n e r a t i o n   o f   M u l t i p a r a m e t e r   F o r m a l   C a l c u t i o n . B u t   i t   w a s   s t i l l   n o t   u s e d .
8 ) F i n d   s o m e   c a l c u l a t i o n s   t o   u s e   W g 1 , g 2 g p , T 1 , T 2 T M  
  
Even 2-parameters Formal Calcution are complex.
9 ) U s i n g   M u l t i p a r a m e t e r   F o r m a l   C a l c u t i o n   f o r   a n a l y s i s  

References

  1. Peng Ji. Redefining the Shape of Numbers and Three Forms of Calculation, Open Access Library Journal 2021, 8, 1-22. [CrossRef]
  2. Peng Ji. Further Study of the Shape of the Numbers and More Calculation Formulas, Open Access Library Journal 2021, 8, 1-27. [CrossRef]
  3. Peng Ji. Application and Popularization of Formal Calculation, Open Access Library Journal 2022, 9, 1-21. [CrossRef]
  4. QI Deng-Ji. Associated Stirling number of the first kind, Journal of Qingdao University of Science and Technology: Natural Science Edition 36.5 (2015).
  5. QI Deng-ji. A New Explicit Expression for the Eulerian Numbers. Journal of Qingdao University of Science and Technology(Natural Science Edition),33(4), 439-440 (2012).
  6. Butler.S,P. Karasik. A note on nested sums.Journal of Integer Sequences 13.4(2010):8.
  7. H.W. Gould. Combinatorial Identites. From the seven unpublished manuscript of H.W. Gould.Edited by Jocelyn Quaintance(2010).
  8. H. W. Gould, Harris Kwong, Jocelyn Quaintance. On Certain Sums of Stirling Numbers with Binomial Coefficients, Journal of Integer Sequences, Vol. 18 (2015) Article 15.9.6.
  9. MacMahon, P.A. The Indices of Permutations and the Derivation Therefrom of Functions of a Single Variable Associated with the Permutations of Any Assemblage of Objects. American Journal of Mathematics 1913, 35, 281-322. https://doi.org/10.2307/2370312.
  10. Peng Ji. Subdivide the Shape of Numbers and a Theorem of Ring. Open Access Library Journal 2020, 7, 1-14. [CrossRef]
  11. Tingyao Xiong, Hung-Ping Tsao, and Jonathan I. Hall. General Eulerian Numbers and Eulerian Polynomials. Hindawi Publishing Corporation Journal of Mathematics 2013, 2013. [CrossRef]
  12. Alfred Wünsche. Generalized Eulerian Numbers. Advances in Pure Mathematics 2018, 2018, 8, 335-361.
  13. G.H.Hardy. An Introduction to the Theory of Numbers(Sixth Edition), People's post and Telecommunications Press, Beijing (2010).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated