Submitted:
02 May 2023
Posted:
03 May 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methods
3. Results and Discussion
3.1. Simulation
3.2. Estimation of the air-sea exchange processes parameters
3.3. Implementation of new drag coefficient parameterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- WAVEWATCH III R© Development Group. User manual and system documentation of WAVEWATCH III (R) version 5.16. Technical note, NOAA/NWS/NCEP/MMAB, 2016, 326 pp. + Appendices.
- Swan Team. SWAN User Manual version 40.51. Department of Civil Engineering, University of Technology, Environmental Fluid Mechanics Section, 2006, 129 p.
- Günter, H.; Hasselmann, S.; Janssen, P. A. E. M. The Wam Model. Cycle 4. Technical Report No. 4, 1992. 101 p.
- Roland, A.; Ardhuin, F. On the developments of spectral wave models: numerics and parameterizations for the coastal ocean // Ocean Dynamics. 2014, v. 64, №6, pp. 833-846.
- Vincent, E. M.; Emanuel, K. A.; Lengaigne, M.; Vialard, J.; Madec, G. Influence of upper ocean stratification interannual variability on tropical cyclones // Journal of Advances in Modeling Earth Systems. 2014, v. 6, №3, 680-699.
- Lewis, E. R.; Schwartz, S. E. Sea salt aerosol production: mechanisms, methods, measurements and models—A Critical Review, Geophys. Monogr. Ser. 2004, vol. 152, 413 pp., AGU,Washington, D. C.
- de Leeuw, G.; Andreas, E.L.; Anguelova, M.D.; Fairall, C.W.; Lewis, E.R.; O'Dowd, C.; Schulz, M.; Schwartz, S.E. Production flux of sea spray aerosol. Rev. Geophys. 2011, 49. [Google Scholar] [CrossRef]
- Andreas, E. L. Spray stress revisited, J. Phys. Oceanogr. 2004, 34, 1429–1440. [Google Scholar] [CrossRef]
- Troitskaya, Y. I.; Ermakova, O.; Kandaurov, A.; Kozlov, D.; Sergeev, D.; Zilitinkevich, S. Fragmentation of the “bag-breakup” type as a mechanism of the generation of sea spray at strong and hurricane winds Doklady Earth Sciences 2017,1330-1335.
- Troitskaya, Y.; Kandaurov, A.; Ermakova, O.; Kozlov, D.; Sergeev, D.; Zilitinkevich, S. Bag-breakup fragmentation as the dominant mechanism of sea-spray production in high winds. Sci. Rep. 2017, 7, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Troitskaya, Y.; Druzhinin, O.; Kozlov, D.; Zilitinkevich, S. The “Bag Breakup” Spume Droplet Generation Mechanism at High Winds. Part II: Contribution to Momentum and Enthalpy Transfer. Journal of Physical Oceanography 2018, v. 48, №9, pp. 2189-2207.
- Miles, J. W. On the generation of surface waves by shear flows. Journal of Fluid Mechanics 1957, v. 3, 185 – 204.
- Sutton, G. MICROMETEOROLOGY Scientific American 1964, v. 211, №4, 62-77.
- Snyder, R.L.; Dobson, F.W.; Elliott, J.A.; Long, R.B. Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech. 1981, 102, 1–59. [Google Scholar] [CrossRef]
- Wu, J. Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res. Ocean. 1982, 87, 9704–9706. [Google Scholar] [CrossRef]
- Rogers, W.E.; Babanin, A.V.; Wang, D.W. Observation-Consistent Input and Whitecapping Dissipation in a Model for Wind-Generated Surface Waves: Description and Simple Calculations. J. Atmos. Ocean. Tech. 2012, 29, 1329–1346. [Google Scholar] [CrossRef]
- Zieger, S.; Babanin, A.V.; Erick Rogers, W.; Young, I.R. Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Model. 2015, 96, 2–25. [Google Scholar] [CrossRef]
- Komen, G.J.; Hasselmann, K. On the Existence of a Fully Developed Wind-Sea Spectrum. J. Phys. Oceanogr. 1984, 14, 1271–1285. [Google Scholar] [CrossRef]
- Hwang, P. A. A note on the ocean surface roughness spectrum. Journal of Atmospheric and Oceanic Technology 2011, 28(3), 436–443. [Google Scholar] [CrossRef]
- Donelan, M. A. Wind-induced growth and attenuation of laboratory waves. Institute of mathematics and its applications conference series 1999, Vol. 69. Oxford; Clarendon.
- Ardhuin, F.; Rogers, E.; Babanin, A.V.; Filipot, J.-F.; Magne, R.; Roland, A.; Van Der Westhuysen, A.; Queffeulou, P.; Lefevre, J.-M.; Aouf, L.; et al. Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. J. Phys. Oceanogr. 2010, 40, 1917–1941. [Google Scholar] [CrossRef]
- Cangialosi, J.P.; Latto, A.S.; Berg, R. Hurricane Irma National hurricane center tropical cyclone report, al112017, 2018.
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-Y.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Zhao, D.; Toba, Y.; Sugioka, K.-I.; Komori, S. New sea spray generation function for spume droplets. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Troitskaya, Y. I.; Ermakova, O.; Kandaurov, A.; Kozlov, D.; Sergeev, D.; Zilitinkevich, S. Non-monotonous dependence of the ocean surface drag coefficient on the hurricane wind speed due to the fragmentation of the ocean-atmosphere interface Doklady Earth Sciences, 2017, 1373-1378.
- Powell, M.D.; Vickery, P.J.; Reinhold, T.A. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 2003, 422, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Holthuijsen, L. H.; Powell, M. D.; Pietrzak, J. D. Wind and waves in extreme hurricanes. Journal of Geophysical Research: Oceans 2012, v. 117, №C9.
- Jarosz, E.; Mitchell, D.A.; Wang, D.W.; Teague, W.J. Bottom-Up Determination of Air-Sea Momentum Exchange Under a Major Tropical Cyclone. Science 2007, 315, 1707–1709. [Google Scholar] [CrossRef]
- Richter, D.H.; Bohac, R.; Stern, D.P. An Assessment of the Flux Profile Method for Determining Air–Sea Momentum and Enthalpy Fluxes from Dropsonde Data in Tropical Cyclones. J. Atmospheric Sci. 2016, 73, 2665–2682. [Google Scholar] [CrossRef]
- Troitskaya, Y.; Druzhinin, O.; Gladskikh, D.; Ermakova, O.; Soustova, I. Simulation of Inertial Droplet Dispersion and the Spray Mediated Fluxes in the Atmospheric Boundary Layer Above Waved Water Surface: A Lagrangian Stochastic Model Versus Direct Numerical Simulation. Boundary-Layer Meteorol. 2023, 188, 135–158. [Google Scholar] [CrossRef]
- Chen, S.; Qiao, F.; Zhang, J.A.; Xue, Y.; Ma, H.; Chen, S. Observed Drag Coefficient Asymmetry in a Tropical Cyclone. J. Geophys. Res. Oceans 2022, 127. [Google Scholar] [CrossRef]
- Steele, K.; Lau, J. ; Hsu,Y.-H. Theory and application of calibration techniques for an NDBC directional wave measurements buoy IEEE Journal of Oceanic Engineering 1985, v. 10, №4, 382-396.








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
