Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

DNA Deamination Is Required for Human APOBEC3A-Driven Hepatocellular Carcinoma In Vivo

Version 1 : Received: 28 April 2023 / Approved: 2 May 2023 / Online: 2 May 2023 (08:12:34 CEST)

A peer-reviewed article of this Preprint also exists.

Naumann, J.A.; Argyris, P.P.; Carpenter, M.A.; Gupta, H.B.; Chen, Y.; Temiz, N.A.; Zhou, Y.; Durfee, C.; Proehl, J.; Koniar, B.L.; Conticello, S.G.; Largaespada, D.A.; Brown, W.L.; Aihara, H.; Vogel, R.I.; Harris, R.S. DNA Deamination Is Required for Human APOBEC3A-Driven Hepatocellular Carcinoma In Vivo. Int. J. Mol. Sci. 2023, 24, 9305. Naumann, J.A.; Argyris, P.P.; Carpenter, M.A.; Gupta, H.B.; Chen, Y.; Temiz, N.A.; Zhou, Y.; Durfee, C.; Proehl, J.; Koniar, B.L.; Conticello, S.G.; Largaespada, D.A.; Brown, W.L.; Aihara, H.; Vogel, R.I.; Harris, R.S. DNA Deamination Is Required for Human APOBEC3A-Driven Hepatocellular Carcinoma In Vivo. Int. J. Mol. Sci. 2023, 24, 9305.

Abstract

Although the APOBEC3 family of single-stranded DNA cytosine deaminases are well-known as antiviral factors, these enzymes are rapidly gaining attention as prominent sources of mutation in cancer. APOBEC3 signature single base substitutions, C-to-T and C-to-G in TCA and TCT motifs, are evident in over 70% of human malignancies and dominate the mutational landscape of numerous individual tumors. Recent murine studies have established cause-and-effect relationships, with both human APOBEC3A and APOBEC3B proving capable of promoting tumor formation in vivo. Here, we investigate the molecular mechanism of APOBEC3A-driven tumor development using the murine Fah liver complementation and regeneration system. First, we show that APOBEC3A alone is capable of driving tumor development (without Tp53 knockdown as in prior studies). Second, we show that the catalytic glutamic acid residue of APOBEC3A (E72) is required for tumor formation. Third, we show that an APOBEC3A separation-of-function mutant with compromised DNA deamination activity and wildtype RNA editing activity is defective in promoting tumor formation. Collectively, these results indicate that APOBEC3A is a “master driver” that fuels tumor formation through a DNA deamination-dependent mechanism.

Keywords

APOBEC3A; carcinogenesis; DNA deamination; DNA mutation, hepatocellular carcinoma; molecular mechanism; RNA editing; tumorigenesis

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.