Submitted:
28 April 2023
Posted:
29 April 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Malaria Cases and Population Data
2.3. Land use – land cover (LULC)
2.4. Environmental variables
2.5. Biological Diversity variables
2.6. Model building
3. Results
3.1. Malaria cases
3.2. Spatial clusters
3.3. LULC change
3.4. Diversity variables
3.5. Covariate significance
3.6. Interactions models and effect maps
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Malaria Report 2021; World Health Organization: Geneva, 2021.
- Ayala, M. J. C.; Bastos, L. S.; Villela, D. A. M. On Multifactorial Drivers for Malaria Rebound in Brazil: A Spatio-Temporal Analysis. Malar J, 2022, 21 (1), 52. [CrossRef]
- Hiwat, H.; Bretas, G. Ecology of Anopheles Darlingi Root with Respect to Vector Importance: A Review. Parasites Vectors, 2011, 4 (1), 177. [CrossRef]
- Carlos, B. C.; Rona, L. D. P.; Christophides, G. K.; Souza-Neto, J. A. A Comprehensive Analysis of Malaria Transmission in Brazil. Pathogens and Global Health, 2019, 113 (1), 1–13. [CrossRef]
- Ferreira, M. U.; Castro, M. C. Challenges for Malaria Elimination in Brazil. Malar J, 2016, 15 (1), 284. [CrossRef]
- Pimenta, P. F.; Orfano, A. S.; Bahia, A. C.; Duarte, A. P.; Ríos-Velásquez, C. M.; Melo, F. F.; Pessoa, F. A.; Oliveira, G. A.; Campos, K. M.; Villegas, L. M.; et al. An Overview of Malaria Transmission from the Perspective of Amazon Anopheles Vectors. Mem. Inst. Oswaldo Cruz, 2015, 110 (1), 23–47. [CrossRef]
- Sánchez-Ribas, J.; Oliveira-Ferreira, J.; Gimnig, J. E.; Pereira-Ribeiro, C.; Santos-Neves, M. S. A.; Silva-do-Nascimento, T. F. Environmental Variables Associated with Anopheline Larvae Distribution and Abundance in Yanomami Villages within Unaltered Areas of the Brazilian Amazon. Parasites Vectors, 2017, 10 (1), 571. [CrossRef]
- Burkett-Cadena, N. D.; Vittor, A. Y. Deforestation and Vector-Borne Disease: Forest Conversion Favors Important Mosquito Vectors of Human Pathogens. Basic and Applied Ecology, 2018, 26, 101–110. [CrossRef]
- Hahn, M. B.; Gangnon, R. E.; Barcellos, C.; Asner, G. P.; Patz, J. A. Influence of Deforestation, Logging, and Fire on Malaria in the Brazilian Amazon. PLoS ONE, 2014, 9 (1), e85725. [CrossRef]
- Lima, J. M. T.; Vittor, A.; Rifai, S.; Valle, D. Does Deforestation Promote or Inhibit Malaria Transmission in the Amazon? A Systematic Literature Review and Critical Appraisal of Current Evidence. 2017, 11.
- MacDonald, A. J.; Mordecai, E. A. Amazon Deforestation Drives Malaria Transmission, and Malaria Burden Reduces Forest Clearing. Proc. Natl. Acad. Sci. U.S.A., 2019, 116 (44), 22212–22218. [CrossRef]
- Barros, F. S. M.; Honório, N. A. Deforestation and Malaria on the Amazon Frontier: Larval Clustering of Anopheles Darlingi (Diptera: Culicidae) Determines Focal Distribution of Malaria. The American Journal of Tropical Medicine and Hygiene, 2015, 93 (5), 939–953. [CrossRef]
- Vittor, A. Y.; Pan, W.; Gilman, R. H.; Tielsch, J.; Glass, G.; Shields, T.; Sánchez-Lozano, W.; Pinedo, V. V.; Salas-Cobos, E.; Flores, S.; et al. Linking Deforestation to Malaria in the Amazon: Characterization of the Breeding Habitat of the Principal Malaria Vector,. 2013, 16.
- Barbosa, L. M. C.; Scarpassa, V. M. Blood-Feeding Behavior of Anopheles Species (Diptera: Culicidae) in the District of Ilha de Santana, State of Amapá, Eastern Brazilian Amazon. Rev. Bras. entomol., 2021, 65 (4), e20200048. [CrossRef]
- Chaves, L. S. M.; Bergo, E. S.; Conn, J. E.; Laporta, G. Z.; Prist, P. R.; Sallum, M. A. M. Anthropogenic Landscape Decreases Mosquito Biodiversity and Drives Malaria Vector Proliferation in the Amazon Rainforest. PLoS ONE, 2021, 16 (1), e0245087. [CrossRef]
- Conn, J. E.; Segura, M. N. O.; Wilkerson, R. C.; Schlichting, C. D.; Póvoa, M. M.; Wirtz, R. A.; de Souza, R. T. L. Emergence of a New Neotropical Malaria Vector Facilitated by Human Migration and Changes in Land Use. The American Journal of Tropical Medicine and Hygiene, 2002, 66 (1), 18–22. [CrossRef]
- dos Reis, I. C.; Codeço, C. T.; Degener, C. M.; Keppeler, E. C.; Muniz, M. M.; de Oliveira, F. G. S.; Cortês, J. J. C.; de Freitas Monteiro, A.; de Souza, C. A. A.; Rodrigues, F. C. M.; et al. Contribution of Fish Farming Ponds to the Production of Immature Anopheles Spp. in a Malaria-Endemic Amazonian Town. Malar J, 2015, 14 (1), 452. [CrossRef]
- Rejmánková, E.; Grieco, J.; Achee, N.; Roberts, D. R. Ecology of Larval Habitats. In Anopheles mosquitoes - New insights into malaria vectors; Manguin, S., Ed.; InTech, 2013. [CrossRef]
- Roux, O.; Robert, V. Larval Predation in Malaria Vectors and Its Potential Implication in Malaria Transmission: An Overlooked Ecosystem Service? Parasites Vectors, 2019, 12 (1), 217. [CrossRef]
- Baeza, A.; Santos-Vega, M.; Dobson, A. P.; Pascual, M. The Rise and Fall of Malaria under Land-Use Change in Frontier Regions. Nat Ecol Evol, 2017, 1 (5), 0108. [CrossRef]
- Cheong, Y. L.; Leitão, P. J.; Lakes, T. Assessment of Land Use Factors Associated with Dengue Cases in Malaysia Using Boosted Regression Trees. Spatial and Spatio-temporal Epidemiology, 2014, 10, 75–84. [CrossRef]
- Kalbus, A.; de Souza Sampaio, V.; Boenecke, J.; Reintjes, R. Exploring the Influence of Deforestation on Dengue Fever Incidence in the Brazilian Amazonas State. PLoS ONE, 2021, 16 (1), e0242685. [CrossRef]
- Laurance, S. G. W.; Meyer Steiger, D. B.; Ritchie, S. A. Land Use Influences Mosquito Communities and Disease Risk on Remote Tropical Islands: A Case Study Using a Novel Sampling Technique. The American Journal of Tropical Medicine and Hygiene, 2016, 94 (2), 314–321. [CrossRef]
- Nava, A.; Shimabukuro, J. S.; Chmura, A. A.; Luz, S. L. B. The Impact of Global Environmental Changes on Infectious Disease Emergence with a Focus on Risks for Brazil. ILAR Journal, 2017, 58 (3), 393–400. [CrossRef]
- Vanwambeke, S. O.; Lambin, E. F.; Eichhorn, M. P.; Flasse, S. P.; Harbach, R. E.; Oskam, L.; Somboon, P.; van Beers, S.; van Benthem, B. H. B.; Walton, C.; et al. Impact of Land-Use Change on Dengue and Malaria in Northern Thailand. EcoHealth, 2007, 4 (1), 37–51. [CrossRef]
- Ostfeld, R.; Glass, G.; Keesing, F. Spatial Epidemiology: An Emerging (or Re-Emerging) Discipline. Trends in Ecology & Evolution, 2005, 20 (6), 328–336. [CrossRef]
- Pepey, A.; Souris, M.; Vantaux, A.; Morand, S.; Lek, D.; Mueller, I.; Witkowski, B.; Herbreteau, V. Studying Land Cover Changes in a Malaria-Endemic Cambodian District: Considerations and Constraints. Remote Sensing, 2020, 12 (18), 2972. [CrossRef]
- Muylaert, R.; Sabino-Santos, G.; Prist, P.; Oshima, J.; Niebuhr, B.; Sobral-Souza, T.; Oliveira, S.; Bovendorp, R.; Marshall, J.; Hayman, D.; et al. Spatiotemporal Dynamics of Hantavirus Cardiopulmonary Syndrome Transmission Risk in Brazil. Viruses, 2019, 11 (11), 1008. [CrossRef]
- Suzán, G.; Marcé, E.; Giermakowski, J. T.; Mills, J. N.; Ceballos, G.; Ostfeld, R. S.; Armién, B.; Pascale, J. M.; Yates, T. L. Experimental Evidence for Reduced Rodent Diversity Causing Increased Hantavirus Prevalence. PLoS ONE, 2009, 4 (5), e5461. [CrossRef]
- Keesing, F.; Brunner, J.; Duerr, S.; Killilea, M.; LoGiudice, K.; Schmidt, K.; Vuong, H.; Ostfeld, R. S. Hosts as Ecological Traps for the Vector of Lyme Disease. Proc. R. Soc. B., 2009, 276 (1675), 3911–3919. [CrossRef]
- Johnson, P. T. J.; Lund, P. J.; Hartson, R. B.; Yoshino, T. P. Community Diversity Reduces Schistosoma Mansoni Transmission, Host Pathology and Human Infection Risk. Proc. R. Soc. B., 2009, 276 (1662), 1657–1663. [CrossRef]
- Civitello, D. J.; Cohen, J.; Fatima, H.; Halstead, N. T.; Liriano, J.; McMahon, T. A.; Ortega, C. N.; Sauer, E. L.; Sehgal, T.; Young, S.; et al. Biodiversity Inhibits Parasites: Broad Evidence for the Dilution Effect. Proc. Natl. Acad. Sci. U.S.A., 2015, 112 (28), 8667–8671. [CrossRef]
- Swaddle, J. P.; Calos, S. E. Increased Avian Diversity Is Associated with Lower Incidence of Human West Nile Infection: Observation of the Dilution Effect. PLoS ONE, 2008, 3 (6), e2488. [CrossRef]
- Louca, V.; Lucas, M. C.; Green, C.; Majambere, S.; Fillinger, U.; Lindsay, S. W. Role of Fish as Predators of Mosquito Larvae on the Floodplain of the Gambia River. J Med Entomol, 2009, 46 (3), 546–556. [CrossRef]
- Collins, C. M.; Bonds, J. A. S.; Quinlan, M. M.; Mumford, J. D. Effects of the Removal or Reduction in Density of the Malaria Mosquito, ANOPHELES GAMBIAE s.l ., on Interacting Predators and Competitors in Local Ecosystems. Med Vet Entomol, 2019, 33 (1), 1–15. [CrossRef]
- Kweka, E. J.; Zhou, G.; Gilbreath, T. M.; Afrane, Y.; Nyindo, M.; Githeko, A. K.; Yan, G. Predation Efficiency of Anopheles Gambiae Larvae by Aquatic Predators in Western Kenya Highlands. Parasites Vectors, 2011, 4 (1), 128. [CrossRef]
- Russell, M. C.; Herzog, C. M.; Gajewski, Z.; Ramsay, C.; El Moustaid, F.; Evans, M. V.; Desai, T.; Gottdenker, N. L.; Hermann, S. L.; Power, A. G.; et al. Both Consumptive and Non-Consumptive Effects of Predators Impact Mosquito Populations and Have Implications for Disease Transmission. eLife, 2022, 11, e71503. [CrossRef]
- S.P. Singh. Biological Control of Mosquitoes by Insectivorous Flycatcher Birds. Journal of entomological research, 2013, v. 37 (4), 359–364.
- Tadei, W. P.; Scarpassa, V. M.; Thatcher, B. D.; Santos, J. M.; Rafael, M. S.; Rodrigues, I. B. Ecologic Observations on Anopheline Vectors of Malaria in the Brazilian Amazon. The American Journal of Tropical Medicine and Hygiene, 1998, 59 (2), 325–335. [CrossRef]
- Achee, N. L.; Grieco, J. P.; Masuoka, P.; Andre, R. G.; Roberts, D. R.; Thomas, J.; Briceno, I.; King, R.; Rejmankova, E. Use of Remote Sensing and Geographic Information Systems to Predict Locations of Anopheles Darlingi-Positive Breeding Sites Within the Sibun River in Belize, Central America. 2006, 12.
- Kohara Melchior, L. A.; Chiaravalloti Neto, F. Spatial and Spatio-Temporal Analysis of Malaria in the State of Acre, Western Amazon, Brazil. Geospat Health, 2016, 11 (3). [CrossRef]
- Malha Municipal | IBGE https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais/15774-malhas.html?=&t=acesso-ao-produto (accessed Apr 12, 2023).
- Dados para cidadão a partir da fonte de dados do Sivep-Malária e do Sinan, para notificações do Brasil de 2007 a 2023. Dados do Sivep-Malária atualizados em 29/03/2023. Dados do Sinan atualizados em: 14/03/2023. https://public.tableau.com/views/Dadosparacidado_201925_03_2020/Incio?%3Adisplay_static_image=y&%3AbootstrapWhenNotified=true&%3Aembed=true&%3Alanguage=en-US&:embed=y&:showVizHome=n&:apiID=host0#navType=0&navSrc=Parse (accessed Apr 12, 2023).
- População | IBGE https://www.ibge.gov.br/estatisticas/sociais/populacao.html (accessed Apr 12, 2023).
- Souza, C. M.; Z. Shimbo, J.; Rosa, M. R.; Parente, L. L.; A. Alencar, A.; Rudorff, B. F. T.; Hasenack, H.; Matsumoto, M.; G. Ferreira, L.; Souza-Filho, P. W. M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sensing, 2020, 12 (17), 2735. [CrossRef]
- Gwitira, I.; Murwira, A.; Zengeya, F. M.; Masocha, M.; Mutambu, S. Modelled Habitat Suitability of a Malaria Causing Vector (Anopheles Arabiensis) Relates Well with Human Malaria Incidences in Zimbabwe. Applied Geography, 2015, 60, 130–138. [CrossRef]
- Parham, P. E.; Michael, E. Modeling the Effects of Weather and Climate Change on Malaria Transmission. Environmental Health Perspectives, 2010, 118 (5), 620–626. [CrossRef]
- Harris, I.; Jones, P. D.; Osborn, T. J.; Lister, D. H. Updated High-Resolution Grids of Monthly Climatic Observations - the CRU TS3.10 Dataset: UPDATED HIGH-RESOLUTION GRIDS OF MONTHLY CLIMATIC OBSERVATIONS. Int. J. Climatol., 2014, 34 (3), 623–642. [CrossRef]
- Satyamurty, P.; de Castro, A. A.; Tota, J.; da Silva Gularte, L. E.; Manzi, A. O. Rainfall Trends in the Brazilian Amazon Basin in the Past Eight Decades. Theor Appl Climatol, 2010, 99 (1–2), 139–148. [CrossRef]
- Amatulli, G.; Domisch, S.; Tuanmu, M.-N.; Parmentier, B.; Ranipeta, A.; Malczyk, J.; Jetz, W. A Suite of Global, Cross-Scale Topographic Variables for Environmental and Biodiversity Modeling. Sci Data, 2018, 5 (1), 180040. [CrossRef]
- Marini, M. A.; Garcia, F. I. Bird Conservation in Brazil. Conservation Biology, 2005, 19 (3), 665–671. [CrossRef]
- Costa, L. P.; Leite, Y. L. R.; Mendes, S. L.; Ditchfield, A. D. Mammal Conservation in Brazil. Conservation Biology, 2005, 19 (3), 672–679. [CrossRef]
- Guerra, V.; Jardim, L.; Llusia, D.; Márquez, R.; Bastos, R. P. Knowledge Status and Trends in Description of Amphibian Species in Brazil. Ecological Indicators, 2020, 118, 106754. [CrossRef]
- Jenkins, C. N.; Alves, M. A. S.; Uezu, A.; Vale, M. M. Patterns of Vertebrate Diversity and Protection in Brazil. PLoS ONE, 2015, 10 (12), e0145064. [CrossRef]
- Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2009, 71 (2), 319–392. [CrossRef]
- Moraga, P.; Dean, C.; Inoue, J.; Morawiecki, P.; Noureen, S. R.; Wang, F. Bayesian Spatial Modelling of Geostatistical Data Using INLA and SPDE Methods: A Case Study Predicting Malaria Risk in Mozambique. Spatial and Spatio-temporal Epidemiology, 2021, 39, 100440. [CrossRef]
- Gómez-Rubio, V. Bayesian Inference with INLA; Chapman & Hall/CRC Press: Boca Raton, FL, 2021.
- Besag, J.; York, J.; Mollié, A. Bayesian Image Restoration, with Two Applications in Spatial Statistics. Ann Inst Stat Math, 1991, 43 (1), 1–20. [CrossRef]
- Held, L.; Schrödle, B.; Rue, H. Posterior and Cross-Validatory Predictive Checks: A Comparison of MCMC and INLA. In Statistical Modelling and Regression Structures; Kneib, T., Tutz, G., Eds.; Physica-Verlag HD: Heidelberg, 2010; pp 91–110. [CrossRef]
- Wang, X.; Yue, Y. R.; Faraway, J. J. Bayesian Regression Modeling with INLA; CRC Press, 2018.
- Oksanen, J.; Simpson, G. L.; Blanchet, F. G.; Kindt, R.; Legendre, P.; Minchin, P. R.; O’Hara, R. B.; Solymos, P.; Stevens, M. H. H.; Szoecs, E.; et al. Vegan: Community Ecology Package, 2022.
- Lindgren, F.; Rue, H. Bayesian Spatial Modelling with R - INLA. J. Stat. Soft., 2015, 63 (19). [CrossRef]
- Hess, C. CoefINLA, 2020.
- Langhi, D. M.; Orlando Bordin, J. Duffy Blood Group and Malaria. Hematology, 2006, 11 (5–6), 389–398. [CrossRef]
- Escalante, A. A.; Cepeda, A. S.; Pacheco, M. A. Why Plasmodium Vivax and Plasmodium Falciparum Are so Different? A Tale of Two Clades and Their Species Diversities. Malar J, 2022, 21 (1), 139. [CrossRef]
- White, M. T.; Karl, S.; Koepfli, C.; Longley, R. J.; Hofmann, N. E.; Wampfler, R.; Felger, I.; Smith, T.; Nguitragool, W.; Sattabongkot, J.; et al. Plasmodium Vivax and Plasmodium Falciparum Infection Dynamics: Re-Infections, Recrudescences and Relapses. Malar J, 2018, 17 (1), 170. [CrossRef]
- Programa Nacional de Prevenção e Controle da Malária https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/m/malaria/pncm/programa-nacional-de-prevencao-e-controle-da-malaria-pncm (accessed Apr 12, 2023).
- Jackson, H. B.; Fahrig, L. Are Ecologists Conducting Research at the Optimal Scale?: Is Research Conducted at Optimal Scales? Global Ecology and Biogeography, 2015, 24 (1), 52–63. [CrossRef]
- Lucas, T. C. D.; Nandi, A.; Nguyen, M.; Rumisha, S.; E. Battle, K.; E. Howes, R.; Hendriks, C.; Python, A.; Hancock, P.; Cameron, E.; et al. Model Ensembles with Different Response Variables for Base and Meta Models: Malaria Disaggregation Regression Combining Prevalence and Incidence Data; preprint; Epidemiology, 2019. [CrossRef]
- Eigenbrod, F.; Hecnar, S. J.; Fahrig, L. Sub-Optimal Study Design Has Major Impacts on Landscape-Scale Inference. Biological Conservation, 2011, 144 (1), 298–305. [CrossRef]
- Lambin, E. F.; Tran, A.; Vanwambeke, S. O.; Linard, C.; Soti, V. Pathogenic Landscapes: Interactions between Land, People, Disease Vectors, and Their Animal Hosts. Int J Health Geogr, 2010, 9 (1), 54. [CrossRef]
- McGarigal, K.; Wan, H. Y.; Zeller, K. A.; Timm, B. C.; Cushman, S. A. Multi-Scale Habitat Selection Modeling: A Review and Outlook. Landscape Ecol, 2016, 31 (6), 1161–1175. [CrossRef]
- Oliveira, T. M. P.; Laporta, G. Z.; Bergo, E. S.; Chaves, L. S. M.; Antunes, J. L. F.; Bickersmith, S. A.; Conn, J. E.; Massad, E.; Sallum, M. A. M. Vector Role and Human Biting Activity of Anophelinae Mosquitoes in Different Landscapes in the Brazilian Amazon. Parasites Vectors, 2021, 14 (1), 236. [CrossRef]
- Tangena, J.-A. A.; Thammavong, P.; Wilson, A. L.; Brey, P. T.; Lindsay, S. W. Risk and Control of Mosquito-Borne Diseases in Southeast Asian Rubber Plantations. Trends in Parasitology, 2016, 32 (5), 402–415. [CrossRef]
- Fornace, K. M.; Diaz, A. V.; Lines, J.; Drakeley, C. J. Achieving Global Malaria Eradication in Changing Landscapes. Malar J, 2021, 20 (1), 69. [CrossRef]
- Alimi, T. O.; Fuller, D. O.; Qualls, W. A.; Herrera, S. V.; Arevalo-Herrera, M.; Quinones, M. L.; Lacerda, M. V. G.; Beier, J. C. Predicting Potential Ranges of Primary Malaria Vectors and Malaria in Northern South America Based on Projected Changes in Climate, Land Cover and Human Population. Parasites Vectors, 2015, 8 (1), 431. [CrossRef]
- Loaiza, J. R.; Dutari, L. C.; Rovira, J. R.; Sanjur, O. I.; Laporta, G. Z.; Pecor, J.; Foley, D. H.; Eastwood, G.; Kramer, L. D.; Radtke, M.; et al. Disturbance and Mosquito Diversity in the Lowland Tropical Rainforest of Central Panama. Sci Rep, 2017, 7 (1), 7248. [CrossRef]
- Estrada-Peña, A.; Ostfeld, R. S.; Peterson, A. T.; Poulin, R.; de la Fuente, J. Effects of Environmental Change on Zoonotic Disease Risk: An Ecological Primer. Trends in Parasitology, 2014, 30 (4), 205–214. [CrossRef]
- Schrama, M.; Hunting, E. R.; Beechler, B. R.; Guarido, M. M.; Govender, D.; Nijland, W.; van ‘t Zelfde, M.; Venter, M.; van Bodegom, P. M.; Gorsich, E. E. Human Practices Promote Presence and Abundance of Disease-Transmitting Mosquito Species. Sci Rep, 2020, 10 (1), 13543. [CrossRef]
- Vinod, S. DEFORASTATION AND WATER POLLUTION IMPACT ON MOSQUITOE RELATED EPIDEMIC DISEASES IN NANDED REGION. 2011, 8.
- Svensson, J. R.; Lindegarth, M.; Jonsson, P. R.; Pavia, H. Disturbance–Diversity Models: What Do They Really Predict and How Are They Tested? Proc. R. Soc. B., 2012, 279 (1736), 2163–2170. [CrossRef]
- Springborn, M. R.; Weill, J. A.; Lips, K. R.; Ibáñez, R.; Ghosh, A. Amphibian Collapses Increased Malaria Incidence in Central America *. Environ. Res. Lett., 2022, 17 (10), 104012. [CrossRef]
- Ferraguti, M.; Martínez-de la Puente, J.; Jiménez–Clavero, M. Á.; Llorente, F.; Roiz, D.; Ruiz, S.; Soriguer, R.; Figuerola, J. A Field Test of the Dilution Effect Hypothesis in Four Avian Multi-Host Pathogens. PLoS Pathog, 2021, 17 (6), e1009637. [CrossRef]
- Laporta, G. Z.; Prado, P. I. K. L. de; Kraenkel, R. A.; Coutinho, R. M.; Sallum, M. A. M. Biodiversity Can Help Prevent Malaria Outbreaks in Tropical Forests. PLoS Negl Trop Dis, 2013, 7 (3), e2139. [CrossRef]
- Ferraguti, M.; Martínez-de la Puente, J.; Bensch, S.; Roiz, D.; Ruiz, S.; Viana, D. S.; Soriguer, R. C.; Figuerola, J. Ecological Determinants of Avian Malaria Infections: An Integrative Analysis at Landscape, Mosquito and Vertebrate Community Levels. J Anim Ecol, 2018, 87 (3), 727–740. [CrossRef]
- Halliday, F. W.; Rohr, J. R. Measuring the Shape of the Biodiversity-Disease Relationship across Systems Reveals New Findings and Key Gaps. Nat Commun, 2019, 10 (1), 5032. [CrossRef]
- Mihaljevic, J. R.; Joseph, M. B.; Orlofske, S. A.; Paull, S. H. The Scaling of Host Density with Richness Affects the Direction, Shape, and Detectability of Diversity-Disease Relationships. PLoS ONE, 2014, 9 (5), e97812. [CrossRef]



| Variable | Variable type | Description |
|---|---|---|
| Altitude | Climatic | Municipality mean altitude, M.A.M.S.L. (static variable). |
| Precipitation wet season | Climatic | Total mean precipitation in the wet season (mm). |
| Precipitation dry season | Climatic | Total mean precipitation in the dry season (mm). |
| Temperature wet season | Climatic | Mean maximum temperature (°C) in the wet season. |
| Temperature dry season | Climatic | Mean maximum temperature (°C) in the dry season. |
| Forest Formation | Land use land cover | Dense rainforest, evergreen seasonal forest, open rainforest, semi deciduous seasonal forest, deciduous seasonal forest, wooded savanna, alluvial open rainforest (floodplain forests and Igapó forests) (% of municipality). |
| Grassland | Land use land cover | Regions within the Amazonia/Cerrado/Orinoco ecotone with predominance of herbaceous strata (% of municipality). |
| Pasture | Land use land cover | Area of pasture, predominantly planted, linked to agricultural activity. Areas of natural pasture are predominantly classified as Grassland which may or may not be grazed (% of municipality). |
| Temporary crops | Land use land cover | Areas occupied with agricultural crops of short or medium duration, generally with a vegetative cycle of less than one year, which after harvest require new planting to produce (% of municipality). |
| Urban Infrastructure | Land use land cover | Urbanized areas with a predominance of non-vegetated surfaces, including trails, roads and buildings (% of municipality). |
| River, lakes and ocean | Land use land cover | As the name denotes, rivers, reservoirs, dams, ocean in the East coast zone in the Amazon region, lakes and other water bodies (% of municipality). |
| Endemic amphibians* | Diversity | Mean endemic amphibians species number (static variable). |
| Endemic birds* | Diversity | Mean endemic bird number species (static variable). |
| Bird richness* | Diversity | Mean bird number of species (static variable). |
| P. vivax | P. falciparum | ||||||
|---|---|---|---|---|---|---|---|
| Cluster Time | Observed cases | Expected cases | Risk | Cluster Time | Observed cases | Expected cases | Risk |
| (1) 2013-2017 | 353,973 | 231,923.58 | 1.53 | (1) 2013-2018 | 83,331 | 47,915.42 | 1.74 |
| (2) 2010-2011 | 163,179 | 86,675.19 | 1.88 | (2) 2009-2012 | 65,919 | 38,388.91 | 1.72 |
| (3) 2007-2008 | 136,239 | 81,743.78 | 1.67 | (3) 2007-2008 | 21,794 | 9,446.12 | 2.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
