Submitted:
25 April 2023
Posted:
26 April 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Farms and herds
2.2. Milk sampling strategy and clinical diagnosis
2.3. Microbiological culture
2.4. Statistical analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fredebeul-Krein, F.; Schmenger, A.; Wente, N.; Zhang, Y.; Krömker, V.; Zhang, Y. Factors Associated with the Severity of Clinical Mastitis. Pathogens 2022, 11. [Google Scholar] [CrossRef] [PubMed]
- Watts, J.L. Etiological Agents of Bovine Mastitis. Vet Microbiol 1988, 16, 41–66. [Google Scholar] [CrossRef]
- Ruegg, P.L. The Bovine Milk Microbiome – an Evolving Science. Domest Anim Endocrinol 2022, 79, 106708. [Google Scholar] [CrossRef]
- Quigley, L.; O’Sullivan, O.; Stanton, C.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. The Complex Microbiota of Raw Milk. FEMS Microbiol Rev 2013, 37, 664–698. [Google Scholar] [CrossRef]
- Verbeke, J.; Piepers, S.; Supré, K.; de Vliegher, S. Pathogen-Specific Incidence Rate of Clinical Mastitis in Flemish Dairy Herds, Severity, and Association with Herd Hygiene. J Dairy Sci 2014, 97, 6926–6934. [Google Scholar] [CrossRef] [PubMed]
- Levison, L.J.; Miller-Cushon, E.K.; Tucker, A.L.; Bergeron, R.; Leslie, K.E.; Barkema, H.W.; DeVries, T.J. Incidence Rate of Pathogen-Specific Clinical Mastitis on Conventional and Organic Canadian Dairy Farms. J Dairy Sci 2016, 99, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Vakkamäki, J.; Taponen, S.; Heikkilä, A.M.; Pyörälä, S. Bacteriological Etiology and Treatment of Mastitis in Finnish Dairy Herds. Acta Vet Scand 2017, 59. [Google Scholar] [CrossRef] [PubMed]
- Cobirka, M.; Tancin, V.; Slama, P. Epidemiology and Classification of Mastitis. Animals 2020, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Skeie, S.B.; Håland, M.; Thorsen, I.M.; Narvhus, J.; Porcellato, D. Bulk Tank Raw Milk Microbiota Differs within and between Farms: A Moving Goalpost Challenging Quality Control. J Dairy Sci 2019, 102, 1959–1971. [Google Scholar] [CrossRef] [PubMed]
- Pinzón-Sánchez, C.; Ruegg, P.L. Risk Factors Associated with Short-Term Post-Treatment Outcomes of Clinical Mastitis. J Dairy Sci 2011, 94, 3397–3410. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, A.; Imran, M. Diagnosis of Bovine Mastitis: From Laboratory to Farm. Trop Anim Health Prod 2018, 50, 1193–1202. [Google Scholar] [CrossRef]
- BRASIL INSTRUÇÃO NORMATIVA No 77, DE 26 DE NOVEMBRO DE 2018. Available online: https://www.in.gov.br/web/dou/-/instrucao-normativa-n-77-de-26-de-novembro-de-2018-52749887 (accessed on 27 February 2023).
- Guerra, S.T.; Orsi, H.; Joaquim, S.F.; Guimarães, F.F.; Lopes, B.C.; Dalanezi, F.M.; Leite, D.S.; Langoni, H.; Pantoja, J.C.F.; Rall, V.L.M.; et al. Short Communication: Investigation of Extra-Intestinal Pathogenic Escherichia Coli Virulence Genes, Bacterial Motility, and Multidrug Resistance Pattern of Strains Isolated from Dairy Cows with Different Severity Scores of Clinical Mastitis. J Dairy Sci 2020, 103, 3606–3614. [Google Scholar] [CrossRef]
- Hope, A. Laboratory Handbook on Bovine Mastitis. Aust Vet J 2000, 78, 488–488. [Google Scholar] [CrossRef]
- Andrews Id, T.; Id, D.A.N.; Weicht, T.R.; Barlow, J.W. Mammary Microbiome of Lactating Organic Dairy Cows Varies by Time, Tissue Site, and Infection Status. PLoS One 2019, 14. [Google Scholar] [CrossRef]
- Hunt, K.M.; Foster, J.A.; Forney, L.J.; Schütte, U.M.E.; Beck, D.L.; Abdo, Z.; Fox, L.K.; Williams, J.E.; McGuire, M.K.; McGuire, M.A. Characterization of the Diversity and Temporal Stability of Bacterial Communities in Human Milk. PLoS One 2011, 6, e21313. [Google Scholar] [CrossRef]
- Cabrera-Rubio, R.; Collado, M.C.; Laitinen, K.; Salminen, S.; Isolauri, E.; Mira, A. The Human Milk Microbiome Changes over Lactation and Is Shaped by Maternal Weight and Mode of Delivery. Am J Clin Nutr 2012, 96, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, G.; Machado, V.S.; Santisteban, C.; Schukken, Y.H.; Bicalho, R.C. Microbial Diversity of Bovine Mastitic Milk as Described by Pyrosequencing of Metagenomic 16s RDNA. PLoS One 2012, 7, e47671. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, G.; Bicalho, M.L.; Meira, E.; Rossi, R.E.; Foditsch, C.; Machado, V.S.; Teixeira, A.G.V.; Santisteban, C.; Schukken, Y.H.; Bicalho, R.C. Microbiota of Cow’s Milk; Distinguishing Healthy, Sub-Clinically and Clinically Diseased Quarters. PLoS One 2014, 9, e85904. [Google Scholar] [CrossRef] [PubMed]
- Addis, M.F.; Tanca, A.; Uzzau, S.; Oikonomou, G.; Bicalho, R.C.; Moroni, P. The Bovine Milk Microbiota: Insights and Perspectives from -Omics Studies. Mol Biosyst 2016, 12, 2359–2372. [Google Scholar] [CrossRef] [PubMed]
- Derakhshani, H.; Fehr, K.B.; Sepehri, S.; Francoz, D.; De Buck, J.; Barkema, H.W.; Plaizier, J.C.; Khafipour, E. Invited Review: Microbiota of the Bovine Udder: Contributing Factors and Potential Implications for Udder Health and Mastitis Susceptibility. J Dairy Sci 2018, 101, 10605–10625. [Google Scholar] [CrossRef] [PubMed]
- Ganda, E.K.; Bisinotto, R.S.; Lima, S.F.; Kronauer, K.; Decter, D.H.; Oikonomou, G.; Schukken, Y.H.; Bicalho, R.C. Longitudinal Metagenomic Profiling of Bovine Milk to Assess the Impact of Intramammary Treatment Using a Third-Generation Cephalosporin. Scientific Reports 2016 6:1 2016, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jamali, H.; Barkema, H.W.; Jacques, M.; Lavallée-Bourget, E.M.; Malouin, F.; Saini, V.; Stryhn, H.; Dufour, S. Invited Review: Incidence, Risk Factors, and Effects of Clinical Mastitis Recurrence in Dairy Cows. J Dairy Sci 2018, 101, 4729–4746. [Google Scholar] [CrossRef] [PubMed]
- Ruegg, P.L. A 100-Year Review: Mastitis Detection, Management, and Prevention. J Dairy Sci 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [PubMed]
- Swinkels, J.M.; Lam, T.J.G.M.; Green, M.J.; Bradley, A.J. Effect of Extended Cefquinome Treatment on Clinical Persistence or Recurrence of Environmental Clinical Mastitis. The Veterinary Journal 2013, 197, 682–687. [Google Scholar] [CrossRef]
- Bertolini, A.B.; Prado, A.M.; Thyssen, P.J.; de Souza Ribeiro Mioni, M.; de Gouvea, F.L.R.; da Silva Leite, D.; Langoni, H.; de Figueiredo Pantoja, J.C.; Rall, V.M.; Guimarães, F.F.; et al. Prevalence of Bovine Mastitis-Related Pathogens, Identified by Mass Spectrometry in Flies (Insecta, Diptera) Captured in the Milking Environment. Lett Appl Microbiol 2022, 75, 1232–1245. [Google Scholar] [CrossRef]
- Ruegg, P.L. The Bovine Milk Microbiome – an Evolving Science. Domest Anim Endocrinol 2022, 79, 106708. [Google Scholar] [CrossRef]
- Schukken, Y.; Chuff, M.; Moroni, P.; Gurjar, A.; Santisteban, C.; Welcome, F.; Zadoks, R. The “Other” Gram-Negative Bacteria in Mastitis. Klebsiella, Serratia, and More. Veterinary Clinics of North America - Food Animal Practice 2012, 28, 239–256. [Google Scholar] [CrossRef]
- Klaas, I.C.; Zadoks, R.N. An Update on Environmental Mastitis: Challenging Perceptions. Transbound Emerg Dis 2018, 65, 166–185. [Google Scholar] [CrossRef]
- Hogan, J.; Smith, K.L. Managing Environmental Mastitis. Veterinary Clinics of North America - Food Animal Practice 2012, 28, 217–224. [Google Scholar] [CrossRef]
- El-Sayed, A.; Awad, W.; Abdou, N.E.; Castañeda Vázquez, H. Molecular Biological Tools Applied for Identification of Mastitis Causing Pathogens. Int J Vet Sci Med 2017, 5, 89–97. [Google Scholar] [CrossRef]
- Petersson-Wolfe, C.S.; Adams, S.; Wolf, S.L.; Hogan, J.S. Genomic Typing of Enterococci Isolated from Bovine Mammary Glands and Environmental Sources. J Dairy Sci 2008, 91, 615–619. [Google Scholar] [CrossRef]
- Hogan, J.S.; Smith, K.; HOBlET, K.H.; Todhunter, D.A.; Schoenberger, P.S.; Hueston, W.D.; Pritchard, D.E.; Bowman, G.; Heider, L.E.; Brockett, B.L.; et al. Bacterial Counts in Bedding Materials Used on Nine Commercial Dairies. J Dairy Sci 1989, 72, 250–258. [Google Scholar] [CrossRef]
- El-Sayed, A.; Kamel, M. Bovine Mastitis Prevention and Control in the Post-Antibiotic Era. Tropical Animal Health and Production 2021 53:2 2021, 53, 1–16. [Google Scholar] [CrossRef]
- Cheng, W.N.; Han, S.G. Bovine Mastitis: Risk Factors, Therapeutic Strategies, and Alternative Treatments — A Review. Asian-Australas J Anim Sci 2020, 33, 1699–1713. [Google Scholar] [CrossRef]
- Jørgensen, H.J.; Nordstoga, A.B.; Sviland, S.; Zadoks, R.N.; Sølverød, L.; Kvitle, B.; Mørk, T. Streptococcus Agalactiae in the Environment of Bovine Dairy Herds – Rewriting the Textbooks? Vet Microbiol 2016, 184, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Denamur, E.; Clermont, O.; Bonacorsi, S.; Gordon, D. The Population Genetics of Pathogenic Escherichia Coli. Nat Rev Microbiol 2021, 19, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Effah, C.Y.; Sun, T.; Liu, S.; Wu, Y. Klebsiella Pneumoniae: An Increasing Threat to Public Health. Ann Clin Microbiol Antimicrob 2020, 19, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tomazi, T.; Tomazi, A.C.C.H.; Silva, J.C.C.; Bringhenti, L.; Bravo, M.L.M.C.; Rodrigues, M.X.; Bicalho, R.C. Immunization with a Novel Recombinant Protein (YidR) Reduced the Risk of Clinical Mastitis Caused by Klebsiella Spp. and Decreased Milk Losses and Culling Risk after Escherichia Coli Infections. J Dairy Sci 2021, 104, 4787–4802. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.G.; de Morais, A.B.C.; Alves, A.C.; Bolaños, C.A.D.; de Paula, C.L.; Portilho, F.V.R.; de Nardi Júnior, G.; Lara, G.H.B.; de Souza Araújo Martins, L.; Moraes, L.S.; et al. Klebsiella-Induced Infections in Domestic Species: A Case-Series Study in 697 Animals (1997–2019). Brazilian Journal of Microbiology 2022, 53, 455. [Google Scholar] [CrossRef]
- Kano, R. Emergence of Fungal-Like Organisms: Prototheca. Mycopathologia 2019, 185, 747–754. [Google Scholar] [CrossRef]
- Jagielski, T.; Krukowski, H.; Bochniarz, M.; Piech, T.; Roeske, K.; Bakuła, Z.; Wlazło, Ł.; Woch, P. Prevalence of Prototheca Spp. on Dairy Farms in Poland – a Cross-Country Study. Microb Biotechnol 2019, 12, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Jagielski, T.; Bakuła, Z.; Gawor, J.; Maciszewski, K.; Kusber, W.H.; Dyląg, M.; Nowakowska, J.; Gromadka, R.; Karnkowska, A. The Genus Prototheca (Trebouxiophyceae, Chlorophyta) Revisited: Implications from Molecular Taxonomic Studies. Algal Res 2019, 43. [Google Scholar] [CrossRef]
- Alves, A.C.; Capra, E.; Morandi, S.; Cremonesi, P.; Pantoja, J.C.F.; Langoni, H.; de Vargas, A.P.C.; da Costa, M.M.; Jagielski, T.; Bolaños, C.A.D.; et al. In Vitro Algicidal Effect of Guanidine on Prototheca Zopfii Genotype 2 Strains Isolated from Clinical and Subclinical Bovine Mastitis. Lett Appl Microbiol 2017, 64, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Fidelis, C.E.; Franke, M.; de Abreu, L.C.R.; Jagielski, T.; Ribeiro, M.G.; dos Santos, M.V.; Gonçalves, J.L. MALDI-TOF MS Identification of Prototheca Algae associated with Bovine Mastitis. J Vet Diagn Invest 2021, 33, 1168. [Google Scholar] [CrossRef] [PubMed]
- Tashakkori, N.; Rahmani, H.K.; Khoramian, B. Genotypic and Phenotypic Diversity of Prototheca Spp. Recovered from Bovine Mastitis in Terms of Antimicrobial Resistance and Biofilm Formation Ability. BMC Vet Res 2022, 18. [Google Scholar] [CrossRef] [PubMed]
- Morandi, S.; Cremonesi, P.; Capra, E.; Silvetti, T.; Decimo, M.; Bianchini, V.; Alves, A.; Vargas, A.; Costa, G.; Ribeiro, M.; et al. Molecular Typing and Differences in Biofilm Formation and Antibiotic Susceptibilities among Prototheca Strains Isolated in Italy and Brazil. J Dairy Sci 2016, 99, 6436–6445. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.G. Protothecosis in Animals - Generalized Conditions - MSD Veterinary Manual. Available online: https://www.msdvetmanual.com/generalized-conditions/protothecosis/protothecosis-in-animals (accessed on 12 April 2023).
- QUINN, P.J.; MARKEY, B.K.; LEONARD, F.C.; HARTIGAN, P.; FANNING, S.; FITZPATRICK, E.S. Veterinary Microbiology and Microbial Disease. Available online: https://books.google.com.br/books?hl=pt-BR&lr=&id=L3tQmr5YGXQC&oi=fnd&pg=PR10&dq=Veterinary+microbiology+and+microbial+diseases.+2nd+Edition.+&ots=380ZiTA4sv&sig=wnysp2qsYSehHKHmWYrvn41UOOs&redir_esc=y#v=onepage&q=Veterinary%20microbiology%20and%20microbial%20diseases.%202nd%20Edition.&f=false (accessed on 11 April 2023).
- Campos, B.; Pickering, A.C.; Souza Rocha, L.; Pereira Aguilar, A.; Fabres-Klein, M.H.; Antônio De Oliveira Mendes, T.; Fitzgerald, J.R.; De Oliveira, A.; Ribon, B. Diversity and Pathogenesis of Staphylococcus Aureus from Bovine Mastitis: Current Understanding and Future Perspectives. BMC Veterinary Research 2022 18:1 2022, 18, 1–16. [Google Scholar] [CrossRef]
- Ribeiro, M.G.; Risseti, R.M.; Bolaños, C.A.D.; Caffaro, K.A.; de Morais, A.C.B.; Lara, G.H.B.; Zamprogna, T.O.; Paes, A.C.; Listoni, F.J.P.; Franco, M.M.J. Trueperella Pyogenes Multispecies Infections in Domestic Animals: A Retrospective Study of 144 Cases (2002 to 2012). http://dx.doi.org/10.1080/01652176.2015.1022667 2015, 35, 82–87. [Google Scholar] [CrossRef]
- Suojala, L.; Pohjanvirta, T.; Simojoki, H.; Myllyniemi, A.L.; Pitkälä, A.; Pelkonen, S.; Pyörälä, S. Phylogeny, Virulence Factors and Antimicrobial Susceptibility of Escherichia Coli Isolated in Clinical Bovine Mastitis. Vet Microbiol 2011, 147, 383–388. [Google Scholar] [CrossRef]
- Hertl, J.A.; Schukken, Y.H.; Tauer, L.W.; Welcome, F.L.; Gröhn, Y.T. Association of Pathogen-Specific Clinical Mastitis in the First 100 Days of First Lactation with Productive Lifetime: An Observational Study Comparing Competing Risks Models for Death and Sale with the Cox Model. Prev Vet Med 2023, 213, 105879. [Google Scholar] [CrossRef]
- Tsugami, Y.; Chiba, T.; Obayashi, T.; Higuchi, H.; Watanabe, A.; Isobe, N.; Kawai, K. Differences in Antimicrobial Components between Bacterial Culture-Positive and Culture-Negative Bovine Clinical Mastitis Milk. Animal Science Journal 2022, 93, e13771. [Google Scholar] [CrossRef] [PubMed]
| Frequency | ||
|---|---|---|
| Cultured Pathogens | n | % |
| Negative | 2084 | 48.8 |
| Contaminated | 649 | 15.2 |
| Catalase-negative cocci 1 | 499 | 11.7 |
| Coliforms 2 | 341 | 8.0 |
| NAS 3 | 245 | 5.7 |
| Prototheca spp. | 112 | 2.6 |
| Yeast | 64 | 1.5 |
| Others 4 | 58 | 1.4 |
| Trueperella pyogenes | 47 | 1.1 |
| Pseudomonas spp. | 30 | 0.7 |
| Staphylococcus aureus | 30 | 0.7 |
| Bacillus spp. | 28 | 0.6 |
| Unidentified gram-negative rod | 26 | 0.6 |
| Streptococcus agalactiae | 22 | 0.5 |
| Corynebacterium spp. | 20 | 0.5 |
| Fungi | 18 | 0.4 |
| Total | 4273 | 100 |
| Mastitis severity score | |||||||
|---|---|---|---|---|---|---|---|
| 1 * | 2 * | 3 * | |||||
| Pathogens | n | % | N | % | n | % | |
| Negative | 591 | 71.7 | 212 | 25.7 | 21 | 2.6 | |
| Catalase-negative cocci 1 | 188 | 67.9 | 83 | 30.0 | 6 | 2.1 | |
| Coliforms 2 | 89 | 45.4 | 91 | 46.4 | 16 | 8.2 | |
| NAS 3 | 76 | 79.2 | 17 | 17.7 | 3 | 3.1 | |
| Prototheca sp. | 54 | 81.8 | 11 | 16.7 | 1 | 1.5 | |
| Yeast | 22 | 66.7 | 8 | 24.2 | 3 | 9.1 | |
| Others 4 | 21 | 77.8 | 6 | 22.2 | 0 | 0.0 | |
| Trueperella pyogenes | 23 | 69.7 | 10 | 30.3 | 0 | 0.0 | |
| Pseudomonas sp.5 | 22 | 78.6 | 6 | 21.4 | 0 | 0.0 | |
| Staphylococcus aureus | 13 | 72.2 | 4 | 22.2 | 1 | 5.6 | |
| Bacillus sp.6 | 12 | 70.6 | 4 | 23.5 | 1 | 5.9 | |
| Unidentified gram-negative rod | 10 | 76.9 | 3 | 23.1 | 0 | 0.0 | |
| Streptococcus agalactiae | 11 | 91.7 | 1 | 8.3 | 0 | 0.0 | |
| Corynebacterium sp. | 3 | 42.9 | 3 | 42.9 | 1 | 14.2 | |
| Fungi | 2 | 25.0 | 6 | 75.0 | 0 | 0.0 | |
| Total | 1137 | 465 | 53 | ||||
| DIM 1 ≤ 100 days | DIM 1 101 – 200 days | DIM 1 ≥ 201 days | ||||
|---|---|---|---|---|---|---|
| Pathogens | n | % | n | % | n | % |
| Negative | 1780 | 85.4 | 124 | 6.0 | 180 | 8.6 |
| Catalase-negative cocci | 388 | 77.8 | 49 | 9.8 | 62 | 12.4 |
| Coliforms | 262 | 76.8 | 32 | 9.4 | 47 | 13.8 |
| NAS 1 | 208 | 84.9 | 15 | 6.1 | 22 | 9.0 |
| Prototheca sp. | 94 | 83.9 | 12 | 10.7 | 6 | 5.4 |
| Yeast | 50 | 78.1 | 6 | 9.4 | 8 | 12.5 |
| Others | 46 | 79.3 | 4 | 6.9 | 8 | 13.8 |
| Trueperella pyogenes | 36 | 76.6 | 5 | 10.6 | 6 | 12.8 |
| Pseudomonas sp. | 28 | 93.3 | 2 | 6.7 | 0 | 0.0 |
| Staphylococcus aureus | 23 | 76.7 | 4 | 13.3 | 3 | 10.0 |
| Bacillus sp. | 24 | 85.7 | 1 | 3.6 | 3 | 10.7 |
| Unidentified gram-negative rod | 23 | 88.5 | 3 | 11.5 | 0 | 0.0 |
| Streptococcus agalactiae | 19 | 86.4 | 1 | 4.5 | 2 | 9.1 |
| Corynebacterium sp. | 19 | 95.0 | 0 | 0.0 | 1 | 5.0 |
| Fungi | 15 | 83.3 | 1 | 5.6 | 2 | 11.1 |
| Total | 3015 | 259 | 350 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
