Submitted:
23 April 2023
Posted:
24 April 2023
You are already at the latest version
Abstract
Keywords:
Introduction
Cardiotoxicity
Definition
Chemotherapeutic drugs
Anthracyclines
Nucleotide synthesis inhibitors
Alkylating agents
Tyrosine kinase inhibitors
Anti- microtubule agents
Cisplatin
Monoclonal antibodies
Proteasome inhibitors
Risk factors
Imaging
Biomarkers
Omics
Proteomics
Metabolomics
Conclusions
Funding
Disclosure of interest
Abbreviations
| ABC | Adenosine triphosphate-binding cassette transporter |
| ABCC2 | ATP Binding Cassette Subfamily C Member 2 |
| ACT | Anthracycline-related cardiotoxicity |
| ALL | Acute lymphoblastic leukemia |
| BNP | B-type natriuretic peptide |
| CBR | Carbonyl reductase |
| CELF4 | CUGBP Elav-Like Family Member 4 |
| CHF | Congestive heart failure |
| CP | Cyclophosphamide |
| CMR | Cardiac magnetic resonance imaging |
| CRP | C-reactive protein |
| CVAEs | Cardiovascular adverse events |
| DOX | Doxorubicin |
| ECG | Electrocardiography |
| EVs | Extracellular vesicles |
| GC | Gas chromatography |
| GDF-15 | Growth/differentiation factor 15 |
| GLS | Global systolic longitudinal myocardial strain |
| HER2 | Human epidermal growth factor receptor 2 |
| HF | Heart failure |
| IFO | Ifosfamide |
| LC | Liquid chromatography high performance |
| LC-MS | Liquid chromatography-mass spectrometry |
| LPC | Lysophosphatidylcholine |
| LV | Left verticular |
| LVD | Left ventricular dysfunction |
| LVEF | Left ventricular ejection fraction |
| miRNAs | MicroRNAs |
| mRNAs | Messenger RNAs |
| MPI | Myocardial perfusion imaging |
| MS | Molecular mass spectrometry |
| MUGA | Nuclear cardiac imaging |
| NMR | Nuclear magnetic resonance spectrometry |
| NOTCH1 | Neurogenic locus notch homolog protein 1 |
| NT-proBNP | N-terminal pro b-natriuretic peptide |
| PET | Position emission tomography |
| PYGB | Glycogen phosphorylase |
| RARG | Retinoic acid receptor gamma |
| SAL | Saline |
| SLC | Solute carrier transporters |
| SNP | Single-nucleotide polymorphism |
| SPECT | Single photon emission computed tomography |
| SVM | Vector machine |
| TKI | Tyrosine kinase inhibitors |
| TCA | Tricarboxylic acid |
| TnT | Troponin T |
| TOP2 | Topoisomerase II |
| Top2β | Topoisomerase-II β |
| UGT1A6 | Glucuronosyltransferase family |
| UPLC-QqTOF HRMS | Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry |
| VEGF | Vascular endothelial growth factor |
| vWF | Von Willebrand factor |
| 2D | Two-dimensional Echocardiography |
| 5-FU | Fluorouracil |
References
- Pritchard-Jones, K.; Bergeron, C.; de Camargo, B.; van den Heuvel-Eibrink, M.M.; Acha, T.; Godzinski, J.; Oldenburger, F.; Boccon-Gibod, L.; Leuschner, I.; Vujanic, G.; et al. Omission of doxorubicin from the treatment of stage II–III, intermediate-risk Wilms’ tumour (SIOP WT 2001): an open-label, non-inferiority, randomised controlled trial. Lancet 2015, 386, 1156–1164. [Google Scholar] [CrossRef]
- Ampatzidou, M.; Kelaidi, C.; Dworzak, M.N.; Polychronopoulou, S. Adolescents and young adults with acute lymphoblastic leukemia and acute myeloid leukemia. memo - Mag. Eur. Med Oncol. 2017, 11, 47–53. [Google Scholar] [CrossRef]
- Ampatzidou, M.; Panagiotou, J.P.; Paterakis, G.; Papadakis, V.; Papadhimitriou, S.I.; Parcharidou, A.; Papargyri, S.; Rigatou, E.; Avgerinou, G.; Tsitsikas, K.; et al. Childhood acute lymphoblastic leukemia: 12 years of experience, using a Berlin–Frankfurt–Münster approach, in a Greek center. Leuk. Lymphoma 2014, 56, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Polychronopoulou, S.; Baka, M.; Servitzoglou, M.; Papadakis, V.; Pourtsidis, A.; Avgerinou, G.; Abatzidou, M.; Kosmidis, H. Treatment and clinical results in childhood AML in Greece. memo - Mag. Eur. Med Oncol. 2013, 7, 50–55. [Google Scholar] [CrossRef]
- Georgakis, M.K.; Karalexi, M.A.; Agius, D.; Antunes, L.; Bastos, J.; Coza, D.; Demetriou, A.; Dimitrova, N.; Eser, S.; Florea, M.; et al. Incidence and time trends of childhood lymphomas: findings from 14 Southern and Eastern European cancer registries and the Surveillance, Epidemiology and End Results, USA. Cancer Causes Control. 2016, 27, 1381–1394. [Google Scholar] [CrossRef] [PubMed]
- Petridou, E.T.; Dimitrova, N.; Eser, S.; Kachanov, D.; Karakilinc, H.; Varfolomeeva, S.; Belechri, M.; Baka, M.; Moschovi, M.; Polychronopoulou, S.; et al. Childhood leukemia and lymphoma: time trends and factors affecting survival in five Southern and Eastern European Cancer Registries. Cancer Causes Control. 2013, 24, 1111–1118. [Google Scholar] [CrossRef]
- Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, Boriani G, Cardinale D, Cordoba R, Cosyns B, Cutter DJ, de Azambuja E, de Boer RA, Dent SF, Farmakis D, Gevaert SA, Gorog DA, Herrmann J, Lenihan D, Moslehi J, Moura B, Salinger SS, Stephens R, Suter TM, Szmit S, Tamargo J, Thavendiranathan P, Tocchetti CG, van der Meer P, van der Pal HJH; ESC Scientific Document Group. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022, 43, 4229–4361.
- Herrmann, J.; Lenihan, D.; Armenian, S.; Barac, A.; Blaes, A.; Cardinale, D.; Carver, J.; Dent, S.; Ky, B.; Lyon, A.R.; et al. Defining cardiovascular toxicities of cancer therapies: an International Cardio-Oncology Society (IC-OS) consensus statement. Eur. Hear. J. 2021, 43, 280–299. [Google Scholar] [CrossRef]
- Chow, E.J.; Leger, K.J.; Bhatt, N.S.; A Mulrooney, D.; Ross, C.J.; Aggarwal, S.; Bansal, N.; Ehrhardt, M.J.; Armenian, S.H.; Scott, J.M.; et al. Paediatric cardio-oncology: epidemiology, screening, prevention, and treatment. Cardiovasc. Res. 2019, 115, 922–934. [Google Scholar] [CrossRef]
- Madeddu, C.; Deidda, M.; Piras, A.; Cadeddu, C.; Demurtas, L.; Puzzoni, M.; Piscopo, G.; Scartozzi, M.; Mercuro, G. Pathophysiology of cardiotoxicity induced by nonanthracycline chemotherapy. J. Cardiovasc. Med. 2016, 17, e12–e18. [Google Scholar] [CrossRef]
- Franco VI, Lipshultz SE. Cardiac complications in childhood cancer survivors treated with anthracyclines. Cardiol Young 2015, 25, 107–116. [CrossRef] [PubMed]
- Ward, E.; DeSantis, C.; Robbins, A.; Kohler, B.; Jemal, A. Childhood and adolescent cancer statistics, 2014. CA: A Cancer J. Clin. 2014, 64, 83–103. [Google Scholar] [CrossRef] [PubMed]
- Mulrooney, D.A.; Yeazel, M.W.; Leisenring, W.M.; Kawashima, T.; Mertens, A.C.; Mitby, P.; Stovall, M.; Donaldson, S.S.; Green, D.M.; Sklar, C.A; et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ 2009, 339, b4606. [Google Scholar] [CrossRef] [PubMed]
- Bansal, N.; Amdani, S.; Lipshultz, E.R.; Lipshultz, S.E. Chemotherapy-induced cardiotoxicity in children. Expert Opin. Drug Metab. Toxicol. 2017, 13, 817–832. [Google Scholar] [CrossRef] [PubMed]
- Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacol. Rev. 2004, 56, 185–229. [Google Scholar] [CrossRef] [PubMed]
- Sawyer DB, Peng X, Chen B, Pentassuglia L, Lim CC. Mechanisms of anthracycline cardiac injury: can we identify strategies for cardioprotection? Prog Cardiovasc Dis. 2010, 53, 105–113. [CrossRef]
- Simbre VC, Duffy SA, Dadlani GH, Miller TL, Lipshultz SE. Cardiotoxicity of cancer chemotherapy: implications for children. Paediatr Drugs 2005, 7, 187–202.
- Herrmann, J.; Lerman, A.; Sandhu, N.P.; Villarraga, H.R.; Mulvagh, S.L.; Kohli, M. Evaluation and Management of Patients With Heart Disease and Cancer: Cardio-Oncology. Mayo Clin. Proc. 2014, 89, 1287–1306. [Google Scholar] [CrossRef]
- Sayed-Ahmed, M.M.; Aldelemy, M.L.; Al-Shabanah, O.A.; Hafez, M.M.; Al-Hosaini, K.A.; Al-Harbi, N.O.; Al-Sharary, S.D.; Al-Harbi, M.M. Inhibition of Gene Expression of Carnitine Palmitoyltransferase I and Heart Fatty Acid Binding Protein in Cyclophosphamide and Ifosfamide-Induced Acute Cardiotoxic Rat Models. Cardiovasc. Toxicol. 2014, 14, 232–242. [Google Scholar] [CrossRef]
- Rhea, I.B.; Oliveira, G.H. Cardiotoxicity of Novel Targeted Chemotherapeutic Agents. Curr. Treat. Options Cardiovasc. Med. 2018, 20, 53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Heidrich, F.M.; DeGray, B.; Boehmerle, W.; Ehrlich, B.E. Paclitaxel accelerates spontaneous calcium oscillations in cardiomyocytes by interacting with NCS-1 and the InsP3R. J. Mol. Cell. Cardiol. 2010, 49, 829–835. [Google Scholar] [CrossRef]
- Takahashi, K.; Inukai, T.; Imamura, T.; Yano, M.; Tomoyasu, C.; Lucas, D.M.; Nemoto, A.; Sato, H.; Huang, M.; Abe, M.; et al. Anti-leukemic activity of bortezomib and carfilzomib on B-cell precursor ALL cell lines. PLOS ONE 2017, 12, e0188680–e0188680. [Google Scholar] [CrossRef]
- Shah C, Bishnoi R, Jain A, Bejjanki H, Xiong S, Wang Y, Zou F, Moreb JS. Cardiotoxicity associated with carfilzomib: systematic review and meta-analysis. Leuk Lymphoma 2018, 59, 2557–2569. [CrossRef]
- Waxman, A.J.; Clasen, S.C.; Garfall, A.L.; Carver, J.R.; Vogl, D.T.; O’Quinn, R.; Cohen, A.D.; Stadtmauer, E.A.; Ky, B.; Weiss, B.M. Carfilzomib-associated cardiovascular adverse events: A systematic review and meta-analysis. J. Clin. Oncol. 2017, 35, 8018–8018. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Karnik, R.; Sambatakos, P.; Franco, V.I.; Ross, S.W.; Miller, T.L. Anthracycline-related cardiotoxicity in childhood cancer survivors. Curr. Opin. Cardiol. 2014, 29, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Manrique CR, Park M, Tiwari N, Plana JC, and Garcia MJ: Diagnostic strategies for early recognition of cancer therapeutics-related cardiac dysfunction. Clin Med Insights Cardiol 2017, 11, 1179546817697983.
- Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M and Muggia FM: Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 1979, 91, 710–717.
- Nysom K, Holm K, Lipsitz SR, Mone SM, Co- lan SD, Orav EJ, Sallan SE, Olsen JH, Hertz H, Jacobsen JR, Lipshultz SE: Relationship be- tween cumulative anthracycline dose and late cardiotoxicity in childhood acute lympho- blastic leukemia. J Clin Oncol 1998, 16, 545–550.
- Vandecruys E, Mondelaers V, De Wolf D, Benoit Y, Suys B: Late cardiotoxicity after low dose of anthracycline therapy for acute lymphoblastic leukemia in childhood. J Cancer Surviv 2012, 6, 95–101. [CrossRef] [PubMed]
- Lipshultz SE, Adams MJ: Cardiotoxicity after childhood cancer: beginning with the end in mind. J Clin Oncol 2010, 28, 1276–1281. [CrossRef] [PubMed]
- Van der Pal HJ, van Dalen EC, Hauptmann M, Kok WE, Caron HN, van den Bos C, Ol- denburger F, Koning CC, van Leeuwen FE, Kremer LC: Cardiac function in 5-year survivors of childhood cancer: a long-term follow- up study. Arch Intern Med 2010, 170, 1247–1255.
- Brickler, M.; Raskin, A.; Ryan, T.D. Current State of Pediatric Cardio-Oncology: A Review. Children 2022, 9, 127. [Google Scholar] [CrossRef] [PubMed]
- Loar, R.W.; Noel, C.V.; Tunuguntla, H.; Colquitt, J.L.; Pignatelli, R.H. State of the art review: Chemotherapy-induced cardiotoxicity in children. Congenit. Hear. Dis. 2017, 13, 5–15. [Google Scholar] [CrossRef]
- Mornoş, C.; Manolis, A.J.; Cozma, D.; Kouremenos, N.; Zacharopoulou, I.; Ionac, A. The value of left ventricular global longitudinal strain assessed by three-dimensional strain imaging in the early detection of anthracyclinemediated cardiotoxicity. . 2014, 55, 235–44. [Google Scholar] [PubMed]
- Lipshultz SE, Miller TL, Scully RE, Lipsitz SR, Rifai N, Silverman LB, et al Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes., J Clin Oncol. 2012; 30:1042-9.
- Mavinkurve-Groothuis, A.M.; Groot-Loonen, J.; Bellersen, L.; Pourier, M.S.; Feuth, T.; Bokkerink, J.P.; Hoogerbrugge, P.M.; Kapusta, L. Abstract 5949: Abnormal NT-Pro-BNP Levels in Asymptomatic Long Term Survivors of Childhood Cancer Treated with Anthracyclines. Circulation 2008, 118. [Google Scholar] [CrossRef]
- Sherief, L.M.; Kamal, A.G.; Khalek, E.A.; Kamal, N.M.; Soliman, A.A.A.; Esh, A.M. Biomarkers and early detection of late onset anthracycline-induced cardiotoxicity in children. Hematology 2012, 17, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.B.; Howell, C.R.; Lu, L.; Plana, J.C.; Joshi, V.M.; Luepker, R.V.; Durand, J.B.; Ky, B.; Lenihan, D.J.; Jefferies, J.L.; et al. Cardiac biomarkers and association with subsequent cardiomyopathy and mortality among adult survivors of childhood cancer: A report from the St. Jude Lifetime Cohort. Cancer 2020, 127, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Armenian, S.H.; Gelehrter, S.K.; Vase, T.; Venkatramani, R.; Landier, W.; Wilson, K.D.; Herrera, C.; Reichman, L.; Menteer, J.-D.; Mascarenhas, L.; et al. Screening for Cardiac Dysfunction in Anthracycline-Exposed Childhood Cancer Survivors. Clin. Cancer Res. 2014, 20, 6314–6323. [Google Scholar] [CrossRef] [PubMed]
- Lam, E.; Higgins, V.; Zhang, L.; Chan, M.K.; Bohn, M.K.; Trajcevski, K.; Liu, P.; Adeli, K.; Nathan, P.C. Normative Values of High-Sensitivity Cardiac Troponin T and N-Terminal pro-B-Type Natriuretic Peptide in Children and Adolescents: A Study from the CALIPER Cohort. J. Appl. Lab. Med. 2020, 6, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Dhssraj Singh, Akanksha Thakur, and W. H. Wilson Tang, Kaufman Utilizing Cardiac Biomarkers to Detect and Prevent Chemotherapy-induced Cardiomyopathy, Clin Biochem. 2015 March; 48(0): 223–235.
- Christenson, E.S.; James, T.; Agrawal, V.; Park, B.H. Use of biomarkers for the assessment of chemotherapy-induced cardiac toxicity. Clin. Biochem. 2014, 48, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, D.; Biasillo, G.; Salvatici, M.; Sandri, M.T.; Cipolla, C.M. Using biomarkers to predict and to prevent cardiotoxicity of cancer therapy. Expert Rev. Mol. Diagn. 2017, 17, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Horacek, J.M.; Jebavy, L.; Vasatova, M.; Pudil, R.; Tichy, M.; Jakl, M.; Maly, J. Glycogen phosphorylase BB as a potential marker of cardiac toxicity in patients treated with anthracyclines for acute leukemia. Bratisl. Med J. 2013, 114, 708–710. [Google Scholar] [CrossRef] [PubMed]
- Horacek, J.; Vasatova, M.; Tichy, M.; Pudil, R.; Jebavy, L.; Malý, J. The use of cardiac biomarkers in detection of cardiotoxicity associated with conventional and high-dose chemotherapy for acute leukemia. . 2010, 32. [Google Scholar]
- Horacek JM1, Tichy M, Jebavy L, Pudil R, Ulrychova M, Maly Use of multiple biomarkers for evaluation of anthracycline-induced cardiotoxicity in patients with acute myeloid leukemia. J. Exp Oncol. 2008 Jun;30(2):157-9.
- Horacek JM1, Vasatova M, Pudil R, Tichy M, Zak P, Jakl M, Jebavy L, Maly J. Biomarkers for the early detection of anthracycline-induced cardiotoxicity: current status. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2014 Dec;158(4):511-7. 2014.
- Cao, L.; Zhu, W.; Wagar, E.A.; Meng, Q.H. Biomarkers for monitoring chemotherapy-induced cardiotoxicity. Crit. Rev. Clin. Lab. Sci. 2016, 54, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Arslan D1, Cihan T, Kose D, Vatansev H, Cimen D, Koksal Y, Oran B, Akyurek F Growth-differentiation factor-15 and tissue doppler ımaging in detection of asymptomatic anthracycline cardiomyopathy in childhood cancer survivors. Clin Biochem. 2013 Sep;46(13-14):1239-43. 2013.
- Armenian, S.; Bhatia, S. Predicting and Preventing Anthracycline-Related Cardiotoxicity. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Aminkeng F, Bhavsar AP, Visscher H, Rassekh SR, Li Y, Lee JW, Brunham LR, Caron HN, van Dalen EC, Kremer LC, van der Pal HJ, Amstutz U, Rieder MJ, Bernstein D, Carleton BC, Hayden MR, Ross CJ, Canadian Pharmacogenomics Network for Drug Safety Consortium. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat Genet. 2015 Sep;47(9):1079-84.
- Madonna R (2017) Early diagnosis and prediction of anticancer drug-induced cardiotoxicity: from cardiac imaging to “Omics” technologies. Rev Espanol Cardiol 70(7):576–582.
- Linschoten M, Teske AJ, Cramer MJ, van der Wall E, Asselbergs FW., Chemotherapy-Related Cardiac Dysfunction: A Systematic Review of Genetic Variants Modulating Individual Risk. Circ Genom Precis Med. e: 2018 Jan;11(1), 2018.
- H. Visscher, MD,C.J.D. Ross, PhD, S.R. Rassekh, MD, MHSc, G.S.S. Sandor, MB, ChB, H.N. Caron, MD, PhD,E.C. van Dalen, MD, PhD,L.C. Kremer, MD, PhD,H.J. van der Pal, MD, P.C. Rogers, MB, ChB, MBA, M.J. Rieder, MD, PhD, B.C. Validation of Variants in SLC28A3 and UGT1A6 as Genetic Markers Predictive of Anthracycline-Induced Cardiotoxicity in Children, Carleton, PharmD,M.R. 1: Hayden, MB, ChB, PhD, and the CPNDS Consortium, Pediatr Blood Cancer 2013;60, 2013.
- Visscher H, Rassekh SR, Sandor GS, et al; CPNDS Consorum. Genec variants in SLC22A17 and SLC22A7 are associated with anthracycline- induced cardiotoxicity in children. Pharmacogenomics. 2015; 16:1065- 1076.
- Henk Visscher, Colin J.D. Ross, S. Rod Rassekh, Amina Barhdadi, Marie-Pierre Dube´, Hesham Al-Saloos, S. Sandor, Huib N. Caron, Elvira C. van Dalen, Leontien C. Kremer, Helena J. van der Pal, Andrew M.K. Brown, Paul C. Rogers, Michael S. Phillips, Michael J. Rieder, Bruce C. Carleton, Michael R. Hayden, and Canadian Pharmacogenomics Network for Drug Safety Consortium, Pharmacogenomic Prediction of Anthracycline-Induced Cardiotoxicity in Children, J Clin Oncol 30:1422-1428.
- Sági, J.C.; Egyed, B.; Kelemen, A.; Kutszegi, N.; Hegyi, M.; Gézsi, A.; Herlitschke, M.A.; Rzepiel, A.; Fodor, L.E.; Ottóffy, G.; et al. Possible roles of genetic variations in chemotherapy related cardiotoxicity in pediatric acute lymphoblastic leukemia and osteosarcoma. BMC Cancer 2018, 18, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Aminkeng, F.; Ross, C.J.D.; Rassekh, S.R.; Hwang, S.; Rieder, M.J.; Bhavsar, A.P.; Smith, A.; Sanatani, S.; Gelmon, K.A.; Bernstein, D.; et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br. J. Clin. Pharmacol. 2016, 82, 683–695. [Google Scholar] [CrossRef]
- Marcoux, S.; Drouin, S.; Laverdière, C.; Alos, N.; Andelfinger, G.U.; Bertout, L.; Curnier, D.; Friedrich, M.G.; Kritikou, E.A.; Lefebvre, G.; et al. The PETALE study: Late adverse effects and biomarkers in childhood acute lymphoblastic leukemia survivors. Pediatr. Blood Cancer 2016, 64. [Google Scholar] [CrossRef]
- Kashyap V, Laursen KB, Brenet F, Viale AJ, Scandura JM, Gudas LJ. RARgamma is essential for retinoic acid induced chromatin remodeling and transcriptional activation in embryonic stem cells. J Cell Sci 2013; 126: 999–1008.
- Krajinovic, M.; Elbared, J.; Drouin, S.; Bertout, L.; Rezgui, A.; Ansari, M.; Raboisson, M.-J.; E Lipshultz, S.; Silverman, L.B.; E Sallan, S.; et al. Polymorphisms of ABCC5 and NOS3 genes influence doxorubicin cardiotoxicity in survivors of childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2015, 16, 530–535. [Google Scholar] [CrossRef]
- Semsei, A.F.; Erdelyi, D.J.; Ungvari, I.; Csagoly, E.; Hegyi, M.Z.; Kiszel, P.S.; Lautner-Csorba, O.; Szabolcs, J.; Masat, P.; Fekete, G.; et al. ABCC1 polymorphisms in anthracycline-induced cardiotoxicity in childhood acute lymphoblastic leukaemia. Cell Biol. Int. 2012, 36, 79–86. [Google Scholar] [CrossRef]
- Wojnowski, L.; Kulle, B.; Schirmer, M.; Schlüter, G.; Schmidt, A.; Rosenberger, A.; Vonhof, S.; Bickeböller, H.; Toliat, M.R.; Suk, E.-K.; et al. NAD(P)H Oxidase and Multidrug Resistance Protein Genetic Polymorphisms Are Associated With Doxorubicin-Induced Cardiotoxicity. Circ. 2005, 112, 3754–3762. [Google Scholar] [CrossRef] [PubMed]
- Vulsteke, C.; Pfeil, A.M.; Maggen, C.; Schwenkglenks, M.; Pettengell, R.; Szucs, T.D.; Lambrechts, D.; Dieudonné, A.-S.; Hatse, S.; Neven, P.; et al. Clinical and genetic risk factors for epirubicin-induced cardiac toxicity in early breast cancer patients. Breast Cancer Res. Treat. 2015, 152, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Blanco, J.G.; Leisenring, W.M.; Gonzalez-Covarrubias, V.M.; Kawashima, T.I.; Davies, S.M.; Relling, M.V.; Robison, L.L.; Sklar, C.A.; Stovall, M.; Bhatia, S. Genetic polymorphisms in the carbonyl reductase 3 geneCBR3 and the NAD(P)H:quinone oxidoreductase 1 geneNQO1 in patients who developed anthracycline-related congestive heart failure after childhood cancer. Cancer 2008, 112, 2789–2795. [Google Scholar] [CrossRef] [PubMed]
- Blanco JG, Sun CL, Landier W, et al. Anthracycline-related cardiomyopathy aer childhood cancer: role of polymorphisms in carbonyl reductase genes—a report from the Children’s Oncology Group. J Clin Oncol. 1: 2012; 30, 2012.
- Wang X, Sun CL, Quiñones-Lombraña A, et al. CELF4 variant and anthracycline-related cardiomyopathy: a Children’s Oncology Group genome-wide associaon study. J Clin Oncol. 2016; 34:863-870.
- Vos, H.I.; Coenen, M.J.; Guchelaar, H.-J.; Loo, D.M.W.T. The role of pharmacogenetics in the treatment of osteosarcoma. Drug Discov. Today 2016, 21, 1775–1786. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.L.; Chaiyakunapruk, N.; Lee, S.W.H. Candidate Gene Association Studies of Anthracycline-induced Cardiotoxicity: A Systematic Review and Meta-analysis. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
- McOwan, T.N.; Craig, L.A.; Tripdayonis, A.; Karavendzas, K.; Cheung, M.M.; Porrello, E.R.; Conyers, R.; Elliott, D.A. Evaluating anthracycline cardiotoxicity associated single nucleotide polymorphisms in a paediatric cohort with early onset cardiomyopathy. Cardio-Oncology 2020, 6, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Petrykey K, Andelfinger GU, Laverdière C, Sinnett D, Krajinovic M. Genetic factors in anthracycline-induced cardiotoxicity in patients treated for pediatric cancer. Expert Opin Drug Metab Toxicol. 8: 2020 Oct;16(10), 2020.
- Lipshultz SE, Lipsitz SR, Kutok JL, et al. Impact of hemochromatosis gene mutations on cardiac status in doxorubicin-treated survivors of childhood high-risk leukemia. Cancer. 2013;119(19):3555-3562.
- Oatmen, K.E.; Toro-Salazar, O.H.; Hauser, K.; Zellars, K.N.; Mason, K.C.; Hor, K.; Gillan, E.; Zeiss, C.J.; Gatti, D.M.; Spinale, F.G. Identification of a novel microRNA profile in pediatric patients with cancer treated with anthracycline chemotherapy. Am. J. Physiol. Circ. Physiol. 2018, 315, H1443–H1452. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Carvalho V, Ferreira LRP, Bocchi EA (2015) Circulating mir-208a fails as a biomarker of doxorubicin-induced cardiotoxicity in breast cancer patients. J Appl Toxicol 35(9):1071–1072.
- Oikonomou, E.; Siasos, G.; Tousoulis, D.; Kokkou, E.; Genimata, V.; Zisimos, K.; Latsios, G.; Stefanadis, C. Diagnostic and therapeutic potentials of microRNAs in heart failure. Curr. Top. Med. Chem. 2013, 13, 1548–1558. [Google Scholar] [CrossRef]
- Papageorgiou, N.; Tousoulis, D.; Androulakis, E.; Siasos, G.; Briasoulis, A.; Vogiatzi, G.; Kampoli, A.-M.; Tsiamis, E.; Tentolouris, C.; Stefanadis, C. The role of microRNAs in cardiovascular disease. Curr. Med. Chem. 2012, 19, 2605–2610. [Google Scholar] [CrossRef]
- Ruggeri C, Gioffre S, Achilli F, Colombo GI, D’Alessandra Y (2018) Role of microRNAs in doxorubicin-induced cardiotoxicity: an overview of preclinical models and cancer patients. Heart Fail Rev 23(1):109–122.
- Holmgren G, Synnergren J, Andersson CX, Lindahl A, Sartipy P (2016) MicroRNAs as potential biomarkers for doxorubicininduced cardiotoxicity. Toxicol In Vitro 34:26–34.
- Ludwig N, Leidinger P, Becker K et al (2016) Distribution of miRNA expression across human tissues. Nucleic Acids Res 44(8):3865– 3877.
- Skala Mikulas, Barbora Hanouskova Lenka Skalova Petra Matouskova.
- MicroRNAs in the diagnosis and prevention of drug-induced Cardiotoxicity, Archives of Toxicology, November 2018.
- Shan-shan ZHOU, Jing-peng JIN Ji-qun WANG, Zhi-guo ZHANG1, Jonathan H FREEDMAN4, Yang ZHENG1, Lu CAI, MiRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges, Acta Pharmacol Sin. 2018 Jul;39(7):1073-1084. 2018.
- Pellegrini, L.; Sileno, S.; D’agostino, M.; Foglio, E.; Florio, M.C.; Guzzanti, V.; Russo, M.A.; Limana, F.; Magenta, A. MicroRNAs in Cancer Treatment-Induced Cardiotoxicity. Cancers 2020, 12, 704. [Google Scholar] [CrossRef]
- Kuwabara Y, Ono K, Horie T et al (2011) Increased MicroRNA-1 and MicroRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 4(4):446–454.
- Rigaud VOC, Ferreira LRP, Ayub-Ferreira SM et al (2017) Circulating miR-1 as a potential biomarker of doxorubicin-induced cardiotoxicity in breast cancer patients. Oncotarget 8(4):6994–7002.
- Leger, K.J.; Leonard, D.; Nielson, D.; de Lemos, J.A.; Mammen, P.P.; Winick, N.J. Circulating microRNAs: Potential Markers of Cardiotoxicity in Children and Young Adults Treated With Anthracycline Chemotherapy. J. Am. Hear. Assoc. 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Suresh N Kumar 1, Eugene A Konorev, Deepika Aggarwal, Balaraman Kalyanaraman, Analysis of Proteome Changes in Doxorubicin-Treated Adult Rat Cardiomyocyte, J Proteomics 2011 ;74(5):683-97. Epub 2011 Feb 19. 1 May.
- Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 2012 Feb 3;110(3):483-95.
- Todorova VK, Makhoul I, Wei JN, Klimberg VS (2017) Circulating miRNA profiles of doxorubicin-induced cardiotoxicity in breast cancer patients. 1: Ann Clin Lab Sci 47(2).
- Zhao ZY, He J, Zhang J et al (2014) Dysregulated miR1254 and miR579 for cardiotoxicity in patients treated with bevacizumab in colorectal cancer. Tumor Biol 35(6):5227–5235.
- Petricoin, E.F.; Rajapaske, V.; Herman, E.H.; Arekani, A.M.; Ross, S.; Johann, D.; Knapton, A.; Zhang, J.; Hitt, B.A.; Conrads, T.P.; et al. Toxicoproteomics: Serum Proteomic Pattern Diagnostics for Early Detection of Drug Induced Cardiac Toxicities and Cardioprotection. Toxicol. Pathol. 2004, 32, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Ohyama, K.; Tomonari, M.; Ichibangase, T.; To, H.; Kishikawa, N.; Nakashima, K.; Imai, K.; Kuroda, N. A toxicoproteomic study on cardioprotective effects of pre-administration of docetaxel in a mouse model of adriamycin-induced cardiotoxicity. Biochem. Pharmacol. 2010, 80, 540–547. [Google Scholar] [CrossRef]
- Desai, V.G.; Lee, T.; Moland, C.L.; Vijay, V.; Han, T.; Lewis, S.M.; Herman, E.H.; Fuscoe, J.C. Candidate early predictive plasma protein markers of doxorubicin-induced chronic cardiotoxicity in B6C3F1 mice. Toxicol. Appl. Pharmacol. 2018, 363, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Chontida Yarana, Dustin Carroll, Jing Chen, Luksana Chaiswing, Yanming Zhao, Teresa Noel, Michael Alstott, Younsoo Bae, Emily V Dressler, Jeffrey A Moscow, D Allan Butterfield, Haining Zhu, Daret K St Clair, Extracellular Vesicles Released by Cardiomyocytes in a Doxorubicin-Induced Cardiac Injury Mouse Model Contain Protein Biomarkers of Early Cardiac Injury, Clin Cancer Res,2018 Apr 1;24(7):1644-1653. Epub 2017 Oct 25.
- Wederson, M. Claudino a, Priscila H. Goncalves b, Angelo di Leo c, Philip A. Philip b, Fazlul H. A: Sarkar d, Metabolomics in cancer, 2012. [Google Scholar]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Lewis GD, Asnani A, Gerszten RE. Application of metabolomics to cardiovascular biomarker and pathway discovery. J Am Coll Cardiol. 2008, 52, 117–123. [CrossRef]
- Deidda, M.; Mercurio, V.; Cuomo, A.; Noto, A.; Mercuro, G.; Dessalvi, C.C. Metabolomic Perspectives in Antiblastic Cardiotoxicity and Cardioprotection. Int. J. Mol. Sci. 2019, 20, 4928. [Google Scholar] [CrossRef]
- Saro H. Armenian, Sarah K. Gelehrter, Tabitha Vase, Rajkumar Venkatramani, Wendy Landier, Karla D. Wilson, Claudia Herrera, Leah Reichman, John-David Menteer, Leo Mascarenhas, David R. Freyer, Kalyanasundaram Venkataraman, Smita Bhatia, Carnitine and cardiac dysfunction in childhood cancer survivors treated with anthracyclines. Cancer Epidemiol Biomarkers Prev. 2014, 23, 1109–1114.
- Li, Y.; Ju, L.; Hou, Z.; Deng, H.; Zhang, Z.; Wang, L.; Yang, Z.; Yin, J.; Zhang, Y. Screening, Verification, and Optimization of Biomarkers for Early Prediction of Cardiotoxicity Based on Metabolomics. J. Proteome Res. 2015, 14, 2437–2445. [Google Scholar] [CrossRef]
- Schnackenberg, L.K.; Pence, L.; Vijay, V.; Moland, C.L.; George, N.; Cao, Z.; Yu, L.-R.; Fuscoe, J.C.; Beger, R.D.; Desai, V.G. Early metabolomics changes in heart and plasma during chronic doxorubicin treatment in B6C3F1mice. J. Appl. Toxicol. 2016, 36, 1486–1495. [Google Scholar] [CrossRef]
- Tan, G.; Lou, Z.; Liao, W.; Zhu, Z.; Dong, X.; Zhang, W.; Li, W.; Chai, Y. Potential Biomarkers in Mouse Myocardium of Doxorubicin-Induced Cardiomyopathy: A Metabonomic Method and Its Application. PLOS ONE 2011, 6, e27683. [Google Scholar] [CrossRef] [PubMed]
- Andreadou I, Papaefthimiou M, Constantinou M, Sigala F, Skaltsounis AL, Tsantili-Kakoulidou A, Iliodromitis EK, Kremastinos DT, Mikros E., Metabolomic identification of novel biomarkers in doxorubicin cardiotoxicity and protective eggect of the natural antioxidant oleuropein, ΝΜR Biomed, 2009 Jul;22(6):585-92.
- Andreadou, I.; Mikros, E.; Ioannidis, K.; Sigala, F.; Naka, K.; Kostidis, S.; Farmakis, D.; Tenta, R.; Kavantzas, N.; Bibli, S.-I.; et al. Oleuropein prevents doxorubicin-induced cardiomyopathy interfering with signaling molecules and cardiomyocyte metabolism. J. Mol. Cell. Cardiol. 2014, 69, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Geng, C.; Cui, C.; Wang, C.; Lu, S.; Zhang, M.; Chen, D.; Jiang, P. Systematic Evaluations of Doxorubicin-Induced Toxicity in Rats Based on Metabolomics. ACS Omega 2020, 6, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Tantawy, M.; Chekka, L.M.; Huang, Y.; Garrett, T.J.; Singh, S.; Shah, C.P.; Cornell, R.F.; Baz, R.C.; Fradley, M.G.; Waheed, N.; et al. Lactate Dehydrogenase B and Pyruvate Oxidation Pathway Associated With Carfilzomib-Related Cardiotoxicity in Multiple Myeloma Patients: Result of a Multi-Omics Integrative Analysis. Front. Cardiovasc. Med. 2021, 8. [Google Scholar] [CrossRef] [PubMed]
- Yin, J. , Xie J., Guo X., Ju L., Li Y., Zhang Y. J. Chromatogr. B Anal. Plasma metabolic profiling analysis of cyclophosphamide-induced cardiotoxicity using metabolomics coupled with UPLC/Q-TOF-MS and ROC curve. Technol. Biomed. Life Sci. 2016; 1033:428–435.
- ensen BC, Parry TL, Huang W, Ilaiwy A, Bain JR, Muehlbauer MJ, O’Neal SK, Patterson C, Johnson GL, Willis MS. Non-Targeted Metabolomics Analysis of the Effects of Tyrosine Kinase Inhibitors Sunitinib and Erlotinib on Heart, Muscle, Liver and Serum Metabolism In Vivo. Metabolites 2017, 7, E31.
- Jensen B.C., Parry T.L., Huang W., Beak J.Y., Ilaiwy A., Bain J.R., Newgard C.B., Muehlbauer M.J., Patterson C., Johnson G.L., et al Br. J Effects of the kinase inhibitor sorafenib on heart, muscle, liver, and plasma metabolism in vivo using non-targeted metabolomics analysis. Pharmacol. 2017, 174, 4797–4811.
- Chaudhari, U.; Ellis, J.K.; Wagh, V.; Nemade, H.; Hescheler, J.; Keun, H.C.; Sachinidis, A. Metabolite signatures of doxorubicin induced toxicity in human induced pluripotent stem cell-derived cardiomyocytes. Amino Acids 2017, 49, 1955–1963. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sun, C.-L.; Quiñones-Lombraña, A.; Singh, P.; Landier, W.; Hageman, L.; Mather, M.; Rotter, J.I.; Taylor, K.D.; Chen, Y.-D.I.; et al. CELF4 Variant and Anthracycline-Related Cardiomyopathy: A Children’s Oncology Group Genome-Wide Association Study. J. Clin. Oncol. 2016, 34, 863–870. [Google Scholar] [CrossRef]
- Park, B.; Sim, S.H.; Lee, K.S.; Kim, H.J.; Park, I.H. Genome-wide association study of genetic variants related to anthracycline-induced cardiotoxicity in early breast cancer. Cancer Sci. 2020, 111, 2579–2587. [Google Scholar] [CrossRef]
- Rochette, L.; Guenancia, C.; Gudjoncik, A.; Hachet, O.; Zeller, M.; Cottin, Y.; Vergely, C. Anthracyclines/trastuzumab: new aspects of cardiotoxicity and molecular mechanisms. Trends Pharmacol. Sci. 2015, 36, 326–348. [Google Scholar] [CrossRef]
| Medicine/Cardiotoxicity | Incidence (%) | Arrhythmia | Myocardial ischemia | Vascular toxicity | Heart failure | QT prolongation | Arterial Hypertension |
|---|---|---|---|---|---|---|---|
| Anthracyclines | |||||||
| Doxorubicin | 3-26 | ××× | X | NE | Xxx | NE | X |
| DoxorubicinLiposomal | 2 | × | xx | NE | x | NE | X |
| Epirubicin | 0,9-3,3 | × | X | NE | X | NE | X |
| Daunorubicin | ×× | X | NE | X | NE | X | |
| Idarubicin | 5-18 | ××× | X | NE | xx | NE | X |
| Antibiotics | |||||||
| Mitoxantrone | 0,2-30 | ××× | xx | NE | Xx | NE | Xx |
| Mitomycin-c | 10 | Xx | xx | NE | Xx | NE | |
| Monoclonal antibody | |||||||
| Trastuzumab | 1,7-8 | Xx | X | Xx | Xxx | NE | Xx |
| Bevacizumab | 1,6-4 | Xx | xx | xxx | xx | NE | Xx |
| Pertuzumab | 0,7-1,2 | X | X | X | Xx | NE | x |
| dinutuximab beta | NE | xx | NE | Xx | NE | Xx | |
| Rituximab | X | xx | Xxx | X | NE | Xx | |
| Tyrosine kinase inhibitors | |||||||
| Dasatinib | 2-4 | xxx | xx | Xx | Xx | xx | Xx |
| Nilotinib | 1 | xx | NE | x | Xx | xx | Xxx |
| Vermurafenib | xx | xx | Xx | x | NE | Xx | |
| Sorafenib | 2-28 | X | xx | Xx | Xx | NE | xx |
| Sunitinib | 2,7-15 | X | xx | Xx | Xxx | x | Xxx |
| Erlotinib | 7-11 | NE | xx | Xx | NE | NE | NE |
| Lapatinib | 0,2-1,5 | NE | xx | X | NE | xxx | NE |
| Pazopanib | 7-11 | NE | xx | Xx | X | NE | Xxx |
| Imatinib | 0,2-2,7 | NE | xxx | Xx | Xx | NE | NE |
| Proteasome inhibitors | |||||||
| Bortezomib | 2-5 | X | X | X | X | NE | X |
| Carfilzomib | 11-25 | Xx | xx | NE | X | NE | X |
| Antimetabolite | |||||||
| 5-fluorouracil | 2-20 | xxx | xxx | NE | X | NE | NE |
| Capecitabine | xxx | xxx | Xx | NE | NE | NE | |
| Clofarabine | 27 | NE | |||||
| Alkylating agents | |||||||
| Cyclophosphamide | 7-28 | NE | NE | X | NE | NE | NE |
| Ifosfamide | 0,5-17 | NE | NE | X | Xx | NE | NE |
| Cisplatin | rare | NE | NE | Xx | NE | NE | NE |
| Antimicrotubule agent | |||||||
| Paclitaxel | <1 | xx | X | NE | X | NE | x |
| nab-paclitaxel | xx | NE | X | NE | NE | X | |
| Docetaxel | 2,3-13 | xx | xx | NE | X | NE | Xx |
| Alkaloids of vinca | |||||||
| Vincristine | 25 | xx | X | NE | NE | xx | X |
| Vinblastine | NE | X | NE | NE | NE | X | |
| Vindesin | NE | NE | NE | NE | NE | NE | |
| Vinorelbin | NE | X | NE | NE | NE | NE |
| Risk factors related in child | Risk factors related in therapy |
|---|---|
|
|
| MiRNA | Drug | Modulation | Species | System | References |
|---|---|---|---|---|---|
| miR-1 | doxorubicin | increase | female patients | plasma | Riguad et al, Oncotarget 2017 |
| miR-1, miR-29b, miR-499 |
anthracyclines | increase | children and young adult | plasma | Leger et al, J Am Heart Assoc. 2017 |
| miR1254 | bevacizumab | increase | Humans | plasma | Zhao et al, Tumour Biol. 2014 |
| miR29 miR499 |
doxorubicin | increase | Children | plasma | Oatmen et al, Am J Physiol Heart Circ Physiol, 2018 |
| miR208 | doxorubicin | nothing | female patients | plasma | Calvalho et al, J Appl Toxicol 2015 |
| Metabolite | Plasma | Stem cell | Heart | Mice | People | XRT | Medicine | Dose | Biomarker | References |
|---|---|---|---|---|---|---|---|---|---|---|
| proline | ↓//↑ | ↑ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | |||
| LPC 20:3 | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| linoleic acid | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| l-carnitine | ↑//↑ | Yes | no | cyclophosphamide/doxo/isoprotenerol/5-fluorouracil | 200mg/kg//20mg/kg//5mg/kg//125mg/kg | Li et al, J Proteome Res, 2015 | ||||
| 19-hydroxycorticosterone | ↑//↓ | Yes | no | cyclophosphamide/doxo/isoprotenerol/5-fluorouracil | 200mg/kg//20mg/kg//5mg/kg//125mg/kg | Li et al, J Proteome Res, 2015 | ||||
| phytophingosine | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| cholid acid | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| LPC 14:0 | ↓//↓ | Yes | no | cyclophosphamide/doxo/isoprotenerol/5-fluorouracil | 200mg/kg//20mg/kg//5mg/kg//125mg/kg | Li et al, J Proteome Res, 2015 | ||||
| LPC 18:3 | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| LPC 16:1 | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| LPE 18:2 | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| LPC 22:5 | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| LPC 22:6 | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| LPC 22:4 | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| LPC 20:2 | ↓//↓ | Yes | no | cyclophosphamide/doxo/isoprotenerol/5-fluorouracil | 200mg/kg//20mg/kg//5mg/kg//125mg/kg | Li et al, J Proteome Res, 2015 | ||||
| PLE 20:3 | ↓ | Yes | no | cyclophosphamide | 200mg/kg | Li et al, J Proteome Res, 2015 | ||||
| pyruvate | ↑ | Doxorubicin | 20mg/kg | troponine TLDH | Andreadou et al, ΝΜR Biomed, 2009 /Chauhari et al, Amino Acids 2017 |
|||||
| acetate | ↑ | ↑ | Yes | doxorubicin | 20mg/kg | troponine TLDH | Andreadou et al, ΝΜR Biomed, 2009 /Chauhari et al, Amino Acids 2017 |
|||
| formate | ↑ | Doxorubicin | 20mg/kg | troponine TLDH | Andreadou et al, ΝΜR Biomed, 2009 /Chauhari et al, Amino Acids 2017 |
|||||
| succinate | ↑ | ↑ | Yes | Doxorubicin | 20mg/kg | troponine TLDH | Andreadou et al, ΝΜR Biomed, 2009/Chauhari et al, Amino Acids 2017 | |||
| lactate | ↑//↑ | ↓ | Yes | Doxorubicin | 20mg/kg | troponine T | Andreadou et al, ΝΜR Biomed, 2009 | |||
| alanine | ↑//↑ | ↑//↑ | Yes | Doxorubicin | 20mg/kg | troponine T | Andreadou et al, ΝΜR Biomed, 2009 | |||
| glutamine | ↑ | ↓ | Yes | Doxorubicin | 20mg/kg | troponine T | Andreadou et al, ΝΜR Biomed, 2009 | |||
| glutamate | ↑ | no | Yes | ↑ | Doxorubicin | 20mg/kg | troponine T | Andreadou et al, ΝΜR Biomed, 2009 | ||
| creatine | no | Yes | Doxorubicin | 20mg/kg | troponine T | Andreadou et al, ΝΜR Biomed, 2009 | ||||
| taurine | no | Yes | ↓ | Doxorubicin | 20mg/kg | troponine T | Andreadou et al, ΝΜR Biomed, 2009 | |||
| valine | ↑ | ↓ | Yes | ↑ | Doxorubicin | 20mg/kg | troponine T | Andreadou et al, ΝΜR Biomed, 2009 | ||
| leuline | ↑ | ↓ | Yes | Doxorubicin | 20mg/kg | troponine T | Andreadou et al, ΝΜR Biomed, 2009 | |||
| isoleukine | ↑ | ↓ | Yes | ↑ | Doxorubicin | 20mg/kg | troponine T | Andreadou et al, ΝΜR Biomed, 2009 | ||
| carnitine | ↓//↑ | ↓ | Yes | yes | anthracyclines//doxorubicin | troponine T | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | |||
| threitol | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| mannose | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| pyroglutamine | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| n-acetylalanine | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| creatine | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| eicosenoate | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| stearidonate | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| arachidonate | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| dihomo-linoleate | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| l-stearoylglcerophoinositol | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| dehydroisoandrosterone sulfate | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| pregnen-dio; disulfate | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| pregn steroid monosulfate | ↓ | yes | anthracyclines | Armenian et al, Cancer Epidemiol Biomarkers Prev. 2014 | ||||||
| arginine | ↑ | ↑ | Yes | Doxorubicin | Schnackenberg et al, Appl. Toxicol. 2016 | |||||
| asparagine | ↑ | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| citrulline | ↑ | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| glycine | ↑ | ↑ | Yes | ↑ | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | |||
| histidine | ↑ | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| lysine | ↑ | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| methionine | ↑ | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| ornithine | ↑ | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| phenylalanine | ↑ | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| serine | ↑ | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| threonine | ↑ | ↑ | Yes | ↑ | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | |||
| trptophan | ↑ | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| tyrosine | ↑ | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| acetylornithine | ↑ | ↓ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| hydroxproline | ↑ | no | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| citrate | no | no | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| propionylcarnitine | ↑ | no | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| serotonine | no | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| putrescine | no | ↑ | Yes | Doxorubicin | troponine T | Schnackenberg et al, Appl. Toxicol. 2016 | ||||
| malate | ↑ | ↑ | Yes | Doxorubicin | Tan et al, PLoS One 2011 | |||||
| fructose | ↑ | Yes | Doxorubicin | Tan et al, PLoS One 2011 | ||||||
| glycose | ↑ | Yes | Doxorubicin | Tan et al, PLoS One 2011 | ||||||
| cholesterol | ↑ | Yes | Doxorubicin | Tan et al, PLoS One 2011 | ||||||
| alanine | ↑ | Yes | Doxorubicin | Tan et al, PLoS One 2011 | ||||||
| glutamine | Yes | ↓ | Doxorubicin | Tan et al, PLoS One 2011 | ||||||
| docosahexaenoic acid | ↓ | Yes | Sunitinib | Jencen et al, Metabolites. 2017 | ||||||
| arachidonic acid/eicosapetaenoic acid | ↓ | Yes | Sunitinib | Jencen et al, Metabolites. 2017 | ||||||
| 6-hydroxynicotinic acid | ↓ | Yes | Sunitinib | Jencen et al, Metabolites. 2017 | ||||||
| o-phosphocolamine | ↓ | Yes | Sunitinib | Jencen et al, Metabolites. 2017 | ||||||
| ethanolamine | ↑ | Yes | Sunitinib | Jencen et al, Metabolites. 2017 | ||||||
| xenobiotics |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
