Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Transcriptome Analysis Reveals the Difference of Gene Expression in Muscle of the Brown-Marbled Grouper (Epinephelus fuscoguttatus) With Different Growth Rates

Version 1 : Received: 19 April 2023 / Approved: 19 April 2023 / Online: 19 April 2023 (05:19:32 CEST)

A peer-reviewed article of this Preprint also exists.

Wang, T.; Yang, Y.; Gong, S.; Wu, X.; Zeng, L.; Tao, Y.; Zhong, C.; Song, L.; Liu, X. Transcriptome Analysis Reveals Differences in Gene Expression in the Muscle of the Brown-Marbled Grouper (Epinephelus fuscoguttatus) with Different Growth Rates. Fishes 2023, 8, 309. Wang, T.; Yang, Y.; Gong, S.; Wu, X.; Zeng, L.; Tao, Y.; Zhong, C.; Song, L.; Liu, X. Transcriptome Analysis Reveals Differences in Gene Expression in the Muscle of the Brown-Marbled Grouper (Epinephelus fuscoguttatus) with Different Growth Rates. Fishes 2023, 8, 309.

Abstract

Brown-marbled grouper is one of the most important mariculture species in China, which is used as an important crossbreeding parent in grouper industry. Enhancing growth rates is a key target in fish breeding, and gaining insight into the underlying mechanisms responsible for growth differences among individuals can aid in the improvement of grouper growth rates. However, the mechanism behind this difference in growth in this fish is unclear. The difference of transcriptome profiles of muscle tissue between fast- and slow-growing brown-marbled grouper was analyzed by RNA-Seq. 77 significantly up-regulated genes and 92 significantly down-regulated genes were identified in the growth extreme groups. The up-regulated of ghr and tnni2 and the down-regulated of stc2 led to the growth advantages of brown-marbled grouper. The differently expressed genes (DEGs) were used for GO and KEGG enrichment analysis. The results of GO enrichments indicated that the significantly upregulated genes in the fast-growing group were involved in protein folding, actin cytoskeleton, myosin complex, etc. The results of KEGG enrichments indicated that the significantly upregulated genes in the fast-growing group were involved in glycolysis/ gluconeogenesis, adipocytokine signaling pathway, MAPK signaling pathway, carbon metabolism, PI3K-Akt signaling pathway, etc. To analysis the difference gene sets between fast- and slow-growing group, the RNA-seq data were used by gene set enrichment analysis (GSEA). The results showed that the PI3K/AKT/mTOR pathway was up-regulated in the fast-growing group. The up-regulated of this pathway could lead to higher nutrient absorption efficiency and lead to muscle growth in the fast-growing group. These results contribute to understanding of the molecular mechanisms of fast growth and regulative pathways regulating growth in brown-marbled grouper.

Keywords

Brown-marbled grouper; muscle; growth; RNA-seq

Subject

Biology and Life Sciences, Aquatic Science

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.