Submitted:
13 April 2023
Posted:
14 April 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Treatment Strategy
3. Treatments of COVID-19-Associated Taste Disorders
3.1. Tetracycline
3.1.1. Viral Cellular Entry, Inflammatory Cell Death, and Neuropathy
3.1.2. Treatment with Tetracyclines and Outcome
3.2. Corticosteroid
3.2.1. Inflammation of Taste Buds and Papillae
3.2.2. Treatment with Corticosteroid and Outcome
3.3. Zinc
3.3.1. Zinc Deficiency Induced by SARS-CoV-2 Infection
3.3.2. Supplementation with Zinc and Outcome
3.4. Stellate Ganglion Block
3.4.1. Dysautonomia
3.4.2. Stellate Ganglion Block and Outcome
3.5. Phytochemical
3.5.1. Multiple Pathogenic Mechanisms
3.5.2. Treatment with Curcumin and Outcome
3.6. Herbal Medicine
3.6.1. Multiple Pathogenic Mechanisms
3.6.2. Treatment with Herbal Medicine and Outcome
3.7. Nutraceutical
3.7.1. Association with Disease Severity and Multiple Pathogenic Mechanisms
3.7.2. Supplementation with Vitamin D and Outcome
3.8. Photobiomodulation
3.8.1. Multiple Pathogenic Mechanisms
3.8.2. Photobiomodulation and Outcome
3.9. Alternative Medicine
3.9.1. Multiple Pathogenic Mechanisms
3.9.2. Acupuncture and Moxibustion and Expected Outcome
4. Treatments of COVID-19-Associated Saliva Secretory Disorders
4.1. Corticosteroid
4.1.1. Viral Cellular Entry and Inflammation of Salivary Glands
4.1.2. Treatment with Corticosteroid and Outcome
4.2. Zinc
4.2.1. Zinc Deficiency Induced by SARS-CoV-2 Infection
4.2.2. Supplementation with Zinc and Expected Outcome
4.3. Antiviral Drug
4.3.1. Viral Invasion to Salivary Glands and Induced Inflammation
4.3.2. Treatment with Antiviral Drug and Outcome
4.4. Photobiomodulation
4.4.1. Multiple Pathogenic Mechanisms
4.4.2. Photobiomodulation and Expected Outcome
4.5. Sialagogue
4.5.1. Promotion of Salivary Secretion
4.5.2. Treatment with Malic Acid Sialagogue and Expected Outcome
4.6. Artificial Saliva
4.6.1. Substitution for Saliva
4.6.2. Use of Artificial Saliva and Outcome
4.7. Chewing Gum
4.7.1. Mechanical Stimulation of Salivary Glands
4.7.2. Use of Chewing Gum and Expected Outcome
4.8. Alternative Medicine
4.8.1. Multiple Pathogenic Mechanisms
4.8.2. Acupuncture and Expected Outcome
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johns Hopkins University & Medicine Coronavirus Resource Center Website. Available online: https://coronavirus.jhu.edu/map.html (accessed on 10 March 2023).
- Worldometer, a reference website of live world statistics. Available online: www.worldometers.info/coronavirus/ (accessed on 10 April 2023).
- Tsuchiya, H. Oral symptoms associated with COVID-19 and their pathogenic mechanisms: A literature review. Dent. J. 2021, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, H. Characterization and pathogenic speculation of xerostomia associated with COVID-19: A narrative review. Dent. J. 2021, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- Kalak, G.; Jarjou'i, A.; Bohadana, A.; Wild, P.; Rokach, A.; Amiad, N.; Abdelrahman, N.; Arish, N.; Chen-Shuali, C.; Izbicki, G. Prevalence and persistence of symptoms in adult COVID-19 survivors 3 and 18 months after discharge from hospital or corona hotels. J. Clin. Med. 2022, 11, 7413. [Google Scholar] [CrossRef] [PubMed]
- Ferdeghini, C.; Mirabelli, L.; Bianco, E.; Hari, S.; Maddalone, M. Oral manifestations in hospitalized COVID patients. World J. Dent. 2022, 13, 434–440. [Google Scholar] [CrossRef]
- Binmadi, N.O.; Aljohani, S.; Alsharif, M.T.; Almazrooa, S.A.; Sindi, A.M. Oral manifestations of COVID-19: A cross-sectional study of their prevalence and association with disease severity. J. Clin. Med. 2022, 11, 4461. [Google Scholar] [CrossRef] [PubMed]
- Al-Magsoosi, M.J.N.; Al-Asadi, O.K.B.; Al-Quraine, N.T.; Sami, S.M.; Haider, J. Oral manifestations associated with COVID-19 infection: A cross-sectional study of recovered Iraqi patients. Int. J. Dent. 2023, 2023, 4288182. [Google Scholar] [CrossRef]
- Amorim Dos Santos, J.; Normando, A.G.C.; Carvalho da Silva, R.L.; Acevedo, A.C.; De Luca Canto, G.; Sugaya, N.; Santos-Silva, A.R.; Guerra, E.N.S. Oral manifestations in patients with COVID-19: A living systematic review. J. Dent. Res. 2021, 100, 141–154. [Google Scholar] [CrossRef]
- Fathi, Y.; Hoseini, E.G.; Atoof, F.; Mottaghi, R. Xerostomia (dry mouth) in patients with COVID-19: A case series. Future Virol. 2021, 16, 315–319. [Google Scholar] [CrossRef]
- Biadsee, A.; Dagan, O.; Ormianer, Z.; Kassem, F.; Masarwa, S.; Biadsee, A. Eight-month follow-up of olfactory and gustatory dysfunctions in recovered COVID-19 patients. Am. J. Otolaryngol. 2021, 42, 103065. [Google Scholar] [CrossRef] [PubMed]
- Vaira, L.A.; De Vito, A.; Lechien, J.R.; Chiesa-Estomba, C.M.; Mayo-Yàñez, M.; Calvo-Henrìquez, C.; Saussez, S.; Madeddu, G.; Babudieri, S.; Boscolo-Rizzo, P.; et al. New onset of smell and taste loss are common findings also in patients with symptomatic COVID-19 after complete vaccination. Laryngoscope 2022, 132, 419–421. [Google Scholar] [CrossRef]
- Tsuchiya, H. Gustatory and saliva secretory dysfunctions in COVID-19 patients with zinc deficiency. Life 2022, 12, 353. [Google Scholar] [CrossRef] [PubMed]
- Barbara, J.M.; Gatt, J.; Xuereb, R.A.; Tabone Adami, N.; Darmanin, J.; Erasmi, R.; G Xuereb, R.; Barbara, C.; Stephen, F.; Jane Magri, C. Clinical outcomes at medium-term follow-up of COVID-19. J. R. Coll. Physicians Edinb. 2022, 52, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Bek, L.M.; Berentschot, J.C.; Heijenbrok-Kal, M.H.; Huijts, S.; van Genderen, M.E.; Vlake, J.H.; van Bommel, J.; Aerts, J.G.J.V.; Ribbers, G.M.; van den Berg-Emons, R.J.G.; et al. Symptoms persisting after hospitalisation for COVID-19: 12 months interim results of the CO-FLOW study. ERJ. Open Res. 2022, 8, 00355–2022. [Google Scholar] [CrossRef]
- Boscolo-Rizzo, P.; Guida, F.; Polesel, J.; Marcuzzo, A.V.; Capriotti, V.; D'Alessandro, A.; Zanelli, E.; Marzolino, R.; Lazzarin, C.; Antonucci, P.; et al. Sequelae in adults at 12 months after mild-to-moderate coronavirus disease 2019 (COVID-19). Int. Forum Allergy Rhinol. 2021, 11, 1685–1688. [Google Scholar] [CrossRef] [PubMed]
- Gebretsadik, H.G. An update on oral clinical courses among patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A clinical follow-up (a prospective prevalent cohort) study. PLoS One 2022, 17, e0275817. [Google Scholar] [CrossRef] [PubMed]
- Muthyam, A.K.; Reddy, M.P.; Kulkarni, S.; Srilatha, A.; Sahithi, K.; Satyanarayana, D. Oral manifestations in COVID-19 patients: An observational study. J. Family Med. Prim. Care 2022, 11, 1000–1005. [Google Scholar] [CrossRef] [PubMed]
- Anaya, J.M.; Rojas, M.; Salinas, M.L.; Rodríguez, Y.; Roa, G.; Lozano, M.; Rodríguez-Jiménez, M.; Montoya, N.; Zapata, E.; Post-COVID study group; et al. Post-COVID syndrome. A case series and comprehensive review. Autoimmun. Rev. 2021, 20, 102947. [Google Scholar] [CrossRef]
- Ercoli, T.; Masala, C.; Pinna, I.; Orofino, G.; Solla, P.; Rocchi, L.; Defazio, G. Qualitative smell/taste disorders as sequelae of acute COVID-19. Neurol. Sci. 2021, 42, 4921–4926. [Google Scholar] [CrossRef] [PubMed]
- Vaira, L.A.; Gessa, C.; Deiana, G.; Salzano, G.; Maglitto, F.; Lechien, J.R.; Saussez, S.; Piombino, P.; Biglio, A.; Biglioli, F.; et al. The effects of persistent olfactory and gustatory dysfunctions on quality of life in long-COVID-19 patients. Life 2022, 12, 141. [Google Scholar] [CrossRef]
- Oliveira, W.Q.; Sousa, P.H.M.; Pastore, G.M. Olfactory and gustatory disorders caused by COVID-19: How to regain the pleasure of eating? Trends Food Sci. Technol. 2022, 122, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Yom-Tov, E.; Lekkas, D.; Jacobson, N.C. Association of COVID19-induced anosmia and ageusia with depression and suicidal ideation. J. Affect. Disord. Rep. 2021, 5, 100156. [Google Scholar] [CrossRef] [PubMed]
- Kapourani, A.; Kontogiannopoulos, K.N.; Manioudaki, A.E.; Poulopoulos, A.K.; Tsalikis, L.; Assimopoulou, A.N.; Barmpalexis, P. A review on xerostomia and its various management strategies: The role of advanced polymeric materials in the treatment approaches. Polymers 2022, 14, 850. [Google Scholar] [CrossRef]
- Neta, F.I.; Fernandes, A.C.L.; Vale, A.J.M.; Pinheiro, F.I.; Cobucci, R.N.; Azevedo, E.P.; Guzen, F.P. Pathophysiology and possible treatments for olfactory-gustatory disorders in patients affected by COVID-19. Curr. Res. Pharmacol. Drug Discov. 2021, 2, 100035. [Google Scholar] [CrossRef] [PubMed]
- Khani, E.; Khiali, S.; Beheshtirouy, S.; Entezari-Maleki, T. Potential pharmacologic treatments for COVID-19 smell and taste loss: A comprehensive review. Eur. J. Pharmacol. 2021, 912, 174582. [Google Scholar] [CrossRef] [PubMed]
- Vaira, L.A.; Salzano, G.; Fois, A.G.; Piombino, P.; De Riu, G. Potential pathogenesis of ageusia and anosmia in COVID-19 patients. Int. Forum Allergy Rhinol. 2020, 10, 1103–1104. [Google Scholar] [CrossRef] [PubMed]
- Lechien, J.R.; Chiesa-Estomba, C.M.; De Siati, D.R.; Horoi, M.; Le Bon, S.D.; Dodriguez, A.; Dequanter, D.; Blecic, S.; El Afia, F.; Distinguin, L.; et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): A multicenter European study. Eur. Arch. Otorhinolaryngol. 2020, 277, 2251–2261. [Google Scholar] [CrossRef]
- Passarelli, P.C.; Lopez, M.A.; Mastandrea Bonaviri, G.N.; Garcia-Godoy, F.; D'Addona, A. Taste and smell as chemosensory dysfunctions in COVID-19 infection. Am. J. Dent. 2020, 33, 135–137. [Google Scholar]
- Moraschini, V.; Reis, D.; Sacco, R.; Calasans-Maia, M.D. Prevalence of anosmia and ageusia symptoms among long-term effects of COVID-19. Oral Dis. 2022, 28 Suppl 2, 2533–2537. [Google Scholar] [CrossRef]
- Vaira, L.A.; Salzano, G.; Deiana, G.; De Riu, G. Anosmia and ageusia: common findings in COVID-19 patients. Laryngoscope 2020, 130, 1787. [Google Scholar] [CrossRef]
- Asadi, M.M.; Shankayi, Z.; Bahrami, F.; Mohammadzadeh, T.; Amini, H.; Naderi, M. Quantitative analysis of taste disorder in COVID-19 patients, the hypersensitivity to salty quality. New Microbes New Infect. 2021, 43, 100919. [Google Scholar] [CrossRef]
- Saniasiaya, J.; Islam, M.A.; Abdullah, B. Prevalence and characteristics of taste disorders in cases of COVID-19: A meta-analysis of 29,349 patients. Otolaryngol. Head Neck Surg. 2021, 165, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, A.; Kumar, S.; Kaur, A.; Chaudhry, K.; Kumar, P.; Dutt, N.; Nag, V.L.; Garg, M.K. Oral manifestations of COVID-19 infection: An analytical cross-sectional study. J. Maxillofac. Oral Surg. 2022, 21, 1326–1335. [Google Scholar] [CrossRef] [PubMed]
- Cremaschi, R.C.; Bahi, C.A.S.; Paola, A.A.V.; Arakaki, J.S.O.; Ferreira, P.R.A.; Bellei, N.C.J.; Borges, V.; Coelho, F.M.S. Neurological symptoms and comorbidity profile of hospitalized patients with COVID-19. Arq. Neuropsiquiatr. 2023, 81, 146–154. [Google Scholar] [CrossRef]
- Okada, Y.; Yoshimura, K.; Toya, S.; Tsuchimochi, M. Pathogenesis of taste impairment and salivary dysfunction in COVID-19 patients. Jpn. Dent. Sci. Rev. 2021, 57, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Leng, A.; Shah, M.; Ahmad, S.A.; Premraj, L.; Wildi, K.; Li Bassi, G.; Pardo, C.A.; Choi, A.; Cho, S.M. Pathogenesis underlying neurological manifestations of long COVID syndrome and potential therapeutics. Cells 2023, 12, 816. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef]
- Sakaguchi, W.; Kubota, N.; Shimizu, T.; Saruta, J.; Fuchida, S.; Kawata, A.; Yamamoto, Y.; Sugimoto, M.; Yakeishi, M.; Tsukinoki, K. Existence of SARS-CoV-2 entry molecules in the oral cavity. Int. J. Mol. Sci. 2020, 21, 6000. [Google Scholar] [CrossRef]
- Doyle, M.E.; Appleton, A.; Liu, Q.R.; Yao, Q.; Mazucanti, C.H.; Egan, J.M. Human type II taste cells express angiotensin-converting enzyme 2 and are infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Am. J. Pathol. 2021, 191, 1511–1519. [Google Scholar] [CrossRef]
- Cazzolla, A.P.; Lovero, R.; Spirito, F.; Di Cosola, M.; Santacroce, L.; Lo Muzio, E.; Ciavarella, D.; Dioguardi, M.; Crincoli, V.; Pepe, M.; et al. Evaluation of qualitative and quantitative taste alterations in COVID-19. Biomol. Biomed. 2023, 23, 344–350. [Google Scholar] [CrossRef]
- Catton, G.; Gardner, A. COVID-19 induced taste dysfunction and recovery: Association with smell dysfunction and oral health behaviour. Medicina 2022, 58, 715. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Zhang, S.; Wang, Q.; Anang, S.; Wang, J.; Ding, H.; Kappes, J.C.; Sodroski, J. Spike glycoprotein and host cell determinants of SARS-CoV-2 entry and cytopathic effects. J. Virol. 2020, 95, e02304–20. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J.; Stollberger, C. Causes of hypogeusia/hyposmia in SARS-CoV2 infected patients. J. Med. Virol. 2020, 92, 1793–1794. [Google Scholar] [CrossRef] [PubMed]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Kesavardhana, S.; Malireddi, R.K.S.; Kanneganti, T.D. Caspases in cell death, inflammation, and pyroptosis. Annu. Rev. Immunol. 2020, 38, 567–595. [Google Scholar] [CrossRef]
- Finsterer, J.; Scorza, F.A.; Scorza, C.; Fiorini, A. COVID-19 associated cranial nerve neuropathy: A systematic review. Bosn. J. Basic Med. Sci. 2022, 22, 39–45. [Google Scholar] [CrossRef]
- Tonkal, A.; Alamri, A.A.; AlMaghrabi, S.J.; Mozahim, N.F.; Mozahim, S.F.; Alsubaie, S.A.; Alsehly, A.A.; Alshuaibi, R.O.; Alotaibi, L.A.; Qashgari, F.S. Cranial nerve impairment associated with COVID-19 infections: A systematic review. Cureus 2022, 14, e31997. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Kim, M.G.; Jung, J.; Kim, S.S.; Jung, A.R.; Kim, S.H.; Yeo, S.G. Effect of age and severity of facial palsy on taste thresholds in Bell's palsy patients. J. Audiol. Otol. 2017, 21, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L.; Hawkes, C.H. Chemosensory dysfunction in neurodegenerative diseases. Handb. Clin. Neurol. 2019, 164, 325–360. [Google Scholar] [CrossRef]
- Gromova, O.A.; Torshin, I.Y.; Semenov, V.A.; Putilina, M.V.; Chuchalin, A.G. Direct and indirect neurological signs of COVID-19. Neurosci. Behav. Physiol. 2021, 51, 856–866. [Google Scholar] [CrossRef] [PubMed]
- Paderno, A.; Mattavelli, D.; Piazza, C. Long-term olfactory and gustatory dysfunction may be related to neural damage. Otolaryngol. Head Neck Surg. 2021, 165, 755. [Google Scholar] [CrossRef]
- Sodhi, M.; Etminan, M. Therapeutic potential for tetracyclines in the treatment of COVID-19. Pharmacotherapy 2020, 40, 487–488. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.Y.; Patankar, N.A. Tetracycline as an inhibitor to the SARS-CoV-2. J. Cell. Biochem. 2021, 122, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Gendrot, M.; Andreani, J.; Jardot, P.; Hutter, S.; Delandre, O.; Boxberger, M.; Mosnier, J.; Le Bideau, M.; Duflot, I.; Fonta, I.; et al. In vitro antiviral activity of doxycycline against SARS-CoV-2. Molecules 2020, 25, 5064. [Google Scholar] [CrossRef] [PubMed]
- Henehan, M.; Montuno, M.; De Benedetto, A. Doxycycline as an anti-inflammatory agent: updates in dermatology. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 1800–1808. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Lin, R.; Chen, Y.; Lv, Q.; Zhang, J.; Zhai, J.; Xu, W.; Wang, W. SARS-CoV-2 induces "cytokine storm" hyperinflammatory responses in RA patients through pyroptosis. Front. Immunol. 2022, 13, 1058884. [Google Scholar] [CrossRef] [PubMed]
- Mosquera-Sulbaran, J.A.; Hernández-Fonseca, H. Tetracycline and viruses: A possible treatment for COVID-19? Arch. Virol. 2021, 166, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, M.; Negro Álvarez, S.E.; Hernández, E.B. The potential use of tetracyclines in neurodegenerative diseases and the role of nano-based drug delivery systems. Eur. J. Pharm. Sci. 2022, 175, 106237. [Google Scholar] [CrossRef]
- Gironi, L.C.; Damiani, G.; Zavattaro, E.; Pacifico, A.; Santus, P.; Pigatto, P.D.M.; Cremona, O.; Savoia, P. Tetracyclines in COVID-19 patients quarantined at home: Literature evidence supporting real-world data from a multicenter observational study targeting inflammatory and infectious dermatoses. Dermatol. Ther. 2021, 34, e14694. [Google Scholar] [CrossRef]
- Cazzolla, A.P.; Lovero, R.; Lo Muzio, L.; Testa, N.F.; Schirinzi, A.; Palmieri, G.; Pozzessere, P.; Procacci, V.; Di Comite, M.; Ciavarella, D.; et al. Taste and smell disorders in COVID-19 patients: Role of interleukin-6. ACS. Chem. Neurosci. 2020, 11, 2774–2781. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhou, M.; Brand, J.; Huang, L. Inflammation activates the interferon signaling pathways in taste bud cells. J. Neurosci. 2007, 27, 10703–10713. [Google Scholar] [CrossRef]
- Henin, D.; Pellegrini, G.; Carmagnola, D.; Lanza Attisano, G.C.; Lopez, G.; Ferrero, S.; Amendola, A.; De Angelis, D.; Tanzi, E.; Dellavia, C. Morphological and immunopathological aspects of lingual tissues in COVID-19. Cells 2022, 11, 1248. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.V.; Jain, S.; Parveen, S. The outcome of fluticasone nasal spray on anosmia and triamcinolone oral paste in dysgeusia in COVID-19 patients. Am. J. Otolaryngol. 2021, 42, 102892. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.V.; Jain, S.; Parveen, S.; Deshmukh, P. The outcome of fluticasone nasal spray on anosmia and triamcinolone oral paste in taste dysgeusia in COVID-19 patients. Am. J. Otolaryngol. 2021, 42, 103009. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.R.; Gupta, N.; Singh, M. Letter to the editor regarding "The outcome of fluticasone nasal spray on anosmia and triamcinolone oral paste in dysgeusia in COVID-19 patients". Am. J. Otolaryngol. 2021, 42, 103103. [Google Scholar] [CrossRef]
- Gamil, Y.; Ismail, R.M.; Abdou, A.; Shabaan, A.A.; Hamed, M.G. Association between administration of systemic corticosteroids and the recovery of olfactory and/or gustatory functions in patients with COVID-19: A prospective cohort study. Open Access Maced. J. Med. Sci. 2022, 10, 538–542. [Google Scholar] [CrossRef]
- Fiani, B.; Covarrubias, C.; Desai, A.; Sekhon, M.; Jarrah, R. A contemporary review of neurological sequelae of COVID-19. Front. Neurol. 2020, 11, 640. [Google Scholar] [CrossRef]
- Basheikh, M. Reactive arthritis after COVID-19: A case report. Cureus 2022, 14, e24096. [Google Scholar] [CrossRef]
- Chou, H.C.; Chien, C.L.; Huang, H.L.; Lu, K.S. Effects of zinc deficiency on the vallate papillae and taste buds in rats. J. Formos. Med. Assoc. 2001, 100, 326–335. [Google Scholar]
- Fromonot, J.; Gette, M.; Ben Lassoued, A.; Guéant, J.L.; Guéant-Rodriguez, R.M.; Guieu, R. Hypozincemia in the early stage of COVID-19 is associated with an increased risk of severe COVID-19. Clin. Nutr. 2022, 41, 3115–3119. [Google Scholar] [CrossRef]
- Gonçalves, T.J.M.; Gonçalves, S.E.A.B.; Guarnieri, A.; Risegato, R.C.; Guimarães, M.P.; de Freitas, D.C.; Razuk-Filho, A.; Junior, P.B.B.; Parrillo, E.F. Association between low zinc levels and severity of acute respiratory distress syndrome by new coronavirus SARS-CoV-2. Nutr. Clin. Pract. 2021, 36, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Lozada-Nur, F.; Chainani-Wu, N.; Fortuna, G.; Sroussi, H. Dysgeusia in COVID-19: Possible mechanisms and implications. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 130, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Yagi, T.; Asakawa, A.; Ueda, H.; Ikeda, S.; Miyawaki, S.; Inui, A. The role of zinc in the treatment of taste disorders. Recent Pat. Food Nutr. Agric. 2013, 5, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Henkin, R.I.; Martin, B.M.; Agarwal, R.P. Decreased parotid saliva gustin/carbonic anhydrase VI secretion: An enzyme disorder manifested by gustatory and olfactory dysfunction. Am. J. Med. Sci. 1999, 318, 380–391. [Google Scholar] [CrossRef]
- Badahdah, A.A.; Al-Ghamdi, S.; Banjar, A.; Elfirt, E.; Almarghlani, A.; Elfert, A.; Bahanan, L. The association between salivary zinc levels and dysgeusia in COVID-19 patients. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 6885–6891. [Google Scholar] [CrossRef] [PubMed]
- Henkin, R.I.; Martin, B.M.; Agarwal, R.P. Efficacy of exogenous oral zinc in treatment of patients with carbonic anhydrase VI deficiency. Am. J. Med. Sci. 1999, 318, 392–405. [Google Scholar] [CrossRef] [PubMed]
- Hozumi, I.; Suzuki, J.S.; Kanazawa, H.; Hara, A.; Saio, M.; Inuzuka, T.; Miyairi, S.; Naganuma, A.; Tohyama, C. Metallothionein-3 is expressed in the brain and various peripheral organs of the rat. Neurosci. Lett. 2008, 438, 54–58. [Google Scholar] [CrossRef]
- Fan, D.; Chettouh, Z.; Consalez, G.G.; Brunet, J.F. Taste bud formation depends on taste nerves. Elife 2019, 8, e49226. [Google Scholar] [CrossRef]
- Santos, H.O. Therapeutic supplementation with zinc in the management of COVID-19-related diarrhea and ageusia/dysgeusia: Mechanisms and clues for a personalized dosage regimen. Nutr. Rev. 2022, 80, 1086–1093. [Google Scholar] [CrossRef]
- Abdelmaksoud, A.A.; Ghweil, A.A.; Hassan, M.H.; Rashad, A.; Khodeary, A.; Aref, Z.F.; Sayed, M.A.A.; Elsamman, M.K.; Bazeed, S.E.S. Olfactory disturbances as presenting manifestation among Egyptian patients with COVID-19: Possible role of zinc. Biol. Trace Elem. Res. 2021, 199, 4101–4108. [Google Scholar] [CrossRef]
- Finzi, E. Treatment of SARS-CoV-2 with high dose oral zinc salts: A report on four patients. Int. J. Infect. Dis. 2020, 99, 307–309. [Google Scholar] [CrossRef]
- Ben Abdallah, S.; Mhalla, Y.; Trabelsi, I.; Sekma, A.; Youssef, R.; Bel Haj Ali, K.; Ben Soltane, H.; Yacoubi, H.; Msolli, M.A.; Stambouli, N.; et al. Twice-daily oral zinc in the treatment of patients with coronavirus disease 2019: A randomized double-blind controlled trial. Clin. Infect. Dis. 2023, 76, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Finzi, E.; Harrington, A. Zinc treatment of outpatient COVID-19: A retrospective review of 28 consecutive patients. J. Med. Virol. 2021, 93, 2588–2590. [Google Scholar] [CrossRef] [PubMed]
- Citu, I.M.; Citu, C.; Margan, M.M.; Craina, M.; Neamtu, R.; Gorun, O.M.; Burlea, B.; Bratosin, F.; Rosca, O.; Grigoras, M.L.; et al. Calcium, magnesium, and zinc supplementation during pregnancy: The additive value of micronutrients on maternal immune response after SARS-CoV-2 infection. Nutrients 2022, 14, 1445. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Patel, D.; Bittel, B.; Wolski, K.; Wang, Q.; Kumar, A.; Il'Giovine, Z.J.; Mehra, R.; McWilliams, C.; Nissen, S.E.; et al. Effect of high-dose zinc and ascorbic acid supplementation vs usual care on symptom length and reduction among ambulatory patients with SARS-CoV-2 infection: The COVID A to Z randomized clinical trial. JAMA Netw. Open. 2021, 4, e210369. [Google Scholar] [CrossRef] [PubMed]
- Gadoth, N.; Mass, E.; Gordon, C.R.; Steiner, J.E. Taste and smell in familial dysautonomia. Dev. Med. Child Neurol. 1997, 39, 393–397. [Google Scholar] [PubMed]
- Porzionato, A.; Emmi, A.; Barbon, S.; Boscolo-Berto, R.; Stecco, C.; Stocco, E.; Macchi, V.; De Caro, R. Sympathetic activation: A potential link between comorbidities and COVID-19. FEBS J. 2020, 287, 3681–3688. [Google Scholar] [CrossRef] [PubMed]
- Dani, M.; Dirksen, A.; Taraborrelli, P.; Torocastro, M.; Panagopoulos, D.; Sutton, R.; Lim, P.B. Autonomic dysfunction in 'long COVID': Rationale, physiology and management strategies. Clin. Med. 2021, 21, e63–e67. [Google Scholar] [CrossRef]
- Eldokla, A.M.; Mohamed-Hussein, A.A.; Fouad, A.M.; Abdelnaser, M.G.; Ali, S.T.; Makhlouf, N.A.; Sayed, I.G.; Makhlouf, H.A.; Shah, J.; Aiash, H. Prevalence and patterns of symptoms of dysautonomia in patients with long-COVID syndrome: A cross-sectional study. Ann. Clin. Transl. Neurol. 2022, 9, 778–785. [Google Scholar] [CrossRef]
- Liu, L.D.; Duricka, D.L. Stellate ganglion block reduces symptoms of Long COVID: A case series. J. Neuroimmunol. 2022, 362, 577784. [Google Scholar] [CrossRef]
- Chauhan, G.; Upadhyay, A.; Khanduja, S.; Emerick, T. Stellate ganglion block for anosmia and dysgeusia due to long COVID. Cureus 2022, 14, e27779. [Google Scholar] [CrossRef]
- Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res. 2020, 10, 354–367. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Mizogami, M. Interaction of drugs with lipid raft membrane domains as a possible target. Drug Target Insights 2020, 14, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Naoi, M.; Shamoto-Nagai, M.; Maruyama, W. Neuroprotection of multifunctional phytochemicals as novel therapeutic strategy for neurodegenerative disorders: Antiapoptotic and antiamyloidogenic activities by modulation of cellular signal pathways. Future Neurol. 2019, 14, FNL9. [Google Scholar] [CrossRef]
- Cárdenas-Rodríguez, N.; Bandala, C.; Vanoye-Carlo, A.; Ignacio-Mejía, I.; Gómez-Manzo, S.; Hernández-Cruz, E.Y.; Pedraza-Chaverri, J.; Carmona-Aparicio, L.; Hernández-Ochoa, B. Use of antioxidants for the neuro-therapeutic management of COVID-19. Antioxidants 2021, 10, 971. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Sarmah, S.; Lyndem, S.; Singha Roy, A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J. Biomol. Struct. Dyn. 2021, 39, 3347–3357. [Google Scholar] [CrossRef] [PubMed]
- Koyama, S.; Kondo, K.; Ueha, R.; Kashiwadani, H.; Heinbockel, T. Possible use of phytochemicals for recovery from COVID-19-induced anosmia and ageusia. Int. J. Mol. Sci. 2021, 22, 8912. [Google Scholar] [CrossRef]
- Jena, A.B.; Kanungo, N.; Nayak, V.; Chainy, G.B.N.; Dandapat, J. Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: Insights from computational studies. Sci. Rep. 2021, 11, 2043. [Google Scholar] [CrossRef]
- Marín-Palma, D.; Tabares-Guevara, J.H.; Zapata-Cardona, M.I.; Flórez-Álvarez, L.; Yepes, L.M.; Rugeles, M.T.; Zapata-Builes, W.; Hernandez, J.C.; Taborda, N.A. Curcumin inhibits in vitro SARS-CoV-2 infection in Vero E6 cells through multiple antiviral mechanisms. Molecules 2021, 26, 6900. [Google Scholar] [CrossRef]
- Bormann, M.; Alt, M.; Schipper, L.; van de Sand, L.; Le-Trilling, V.T.K.; Rink, L.; Heinen, N.; Madel, R.J.; Otte, M.; Wuensch, K.; et al. Turmeric root and its bioactive ingredient curcumin effectively neutralize SARS-CoV-2 in vitro. Viruses 2021, 13, 1914. [Google Scholar] [CrossRef] [PubMed]
- Chabot, A.B.; Huntwork, M.P. Turmeric as a possible treatment for COVID-19-induced anosmia and ageusia. Cureus 2021, 13, e17829. [Google Scholar] [CrossRef]
- Wanjarkhedkar, P.; Sarade, G.; Purandare, B.; Kelkar, D. A prospective clinical study of an Ayurveda regimen in COVID 19 patients. J. Ayurveda Integr. Med. 2022, 13, 100365. [Google Scholar] [CrossRef] [PubMed]
- Parekar, R.R.; Bolegave, S.S.; Marathe, P.A.; Rege, N.N. Experimental evaluation of analgesic, anti-inflammatory and anti-platelet potential of Dashamoola. J. Ayurveda Integr. Med. 2015, 6, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Radujkovic, A.; Hippchen, T.; Tiwari-Heckler, S.; Dreher, S.; Boxberger, M.; Merle, U. Vitamin D deficiency and outcome of COVID-19 patients. Nutrients 2020, 12, 2757. [Google Scholar] [CrossRef] [PubMed]
- Musavi, H.; Abazari, O.; Barartabar, Z.; Kalaki-Jouybari, F.; Hemmati-Dinarvand, M.; Esmaeili, P.; Mahjoub, S. The benefits of Vitamin D in the COVID-19 pandemic: Biochemical and immunological mechanisms. Arch. Physiol. Biochem. 2020, 8, 1–9. [Google Scholar] [CrossRef]
- Xu, Y.; Baylink, D.J.; Chen, C.S.; Reeves, M.E.; Xiao, J.; Lacy, C.; Lau, E.; Cao, H. The importance of vitamin d metabolism as a potential prophylactic, immunoregulatory and neuroprotective treatment for COVID-19. J. Transl. Med. 2020, 18, 322. [Google Scholar] [CrossRef] [PubMed]
- Sabico, S.; Enani, M.A.; Sheshah, E.; Aljohani, N.J.; Aldisi, D.A.; Alotaibi, N.H.; Alshingetti, N.; Alomar, S.Y.; Alnaami, A.M.; Amer, O.E.; et al. Effects of a 2-week 5000 IU versus 1000 IU vitamin D3 supplementation on recovery of symptoms in patients with mild to moderate Covid-19: A randomized clinical trial. Nutrients 2021, 13, 2170. [Google Scholar] [CrossRef]
- Gaylis, N.B.; Kreychman, I.; Sagliani, J.; Mograbi, J.; Gabet, Y. The results of a unique dietary supplement (nutraceutical formulation) used to treat the symptoms of long-haul COVID. Front. Nutr. 2022, 9, 1034169. [Google Scholar] [CrossRef]
- Dompe, C.; Moncrieff, L.; Matys, J.; Grzech-Leśniak, K.; Kocherova, I.; Bryja, A.; Bruska, M.; Dominiak, M.; Mozdziak, P.; Skiba, T.H.I.; et al. Photobiomodulation―Underlying mechanism and clinical applications. J. Clin. Med. 2020, 9, 1724. [Google Scholar] [CrossRef] [PubMed]
- Nejatifard, M.; Asefi, S.; Jamali, R.; Hamblin, M.R.; Fekrazad, R. Probable positive effects of the photobiomodulation as an adjunctive treatment in COVID-19: A systematic review. Cytokine 2021, 137, 155312. [Google Scholar] [CrossRef]
- Ramezani, F.; Neshasteh-Riz, A.; Ghadaksaz, A.; Fazeli, S.M.; Janzadeh, A.; Hamblin, M.R. Mechanistic aspects of photobiomodulation therapy in the nervous system. Lasers Med. Sci. 2022, 37, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Venture, R.D. A review on photobiomodulation therapy for olfactory dysfunction caused by COVID-19. Med. Lasers 2022, 11, 72–77. [Google Scholar] [CrossRef]
- Pacheco, J.A.; Schapochnik, A.; Conforto de Sa, C. Successful management of dysgeusia by photobiomodulation (PBM) in a cancer patient. Med. Case Rep. J. 2019, 1, 114. [Google Scholar] [CrossRef]
- de Souza, V.B.; Ferreira, L.T.; Sene-Fiorese, M.; Garcia, V.; Rodrigues, T.Z.; de Aquino Junior, A.E.; Bagnato, V.S.; Panhoca, V.H. Photobiomodulation therapy for treatment olfactory and taste dysfunction COVID-19-related: A case report. J. Biophotonics 2022, 15, e202200058. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.E. Acupuncture treatment of long-COVID: A narrative review of selected case studies and review articles. Asian J. Complement. Altern. Med. 2022, 10, 95–97. [Google Scholar] [CrossRef]
- Deng, H.; Shen, X. The mechanism of moxibustion: Ancient theory and modern research. Evid. Based Complement. Alternat. Med. 2013, 2013, 379291. [Google Scholar] [CrossRef]
- Chao, Y.; Zhang, L.; Chen, Q.; Chen, B.; Yu, Y.; Chen, S. The efficacy and safety of acupuncture in the treatment of taste disorders after rehabilitation from COVID-19: A protocol for systematic review and meta-analysis. Medicine 2022, 101, e31649. [Google Scholar] [CrossRef]
- Luo, D.; Liu, B.; Wang, P.; Liao, H.; Mao, S.; Chen, H.; Huang, Y.; Liu, L.; Lan, W.; Liu, F. Traditional Chinese medicine combined with Moxibustion in the treatment of "long-COVID": A protocol for systematic review and meta-analysis. Medicine 2022, 101, e31447. [Google Scholar] [CrossRef]
- Au, S.; Baraniya, D.; Dao, J.; Awan, S.B.; Alvarez, J.; Sklar, S.; Chen, T.; Puri, S.; Al-Hebshi, N.N. Prolonged mask wearing does not alter the oral microbiome, salivary flow rate or gingival health status – A pilot study. Front. Cell, Infect, Microbiol. 2022, 12, 1039811. [Google Scholar] [CrossRef]
- Saniasiaya, J. Xerostomia and COVID-19: Unleashing pandora's box. Ear Nose Throat J. 2021, 100, 139S. [Google Scholar] [CrossRef]
- Soares, C.D.; Mosqueda-Taylor, A.; Hernandez-Guerrero, J.C.; de Carvalho, M.G.F.; de Almeida, O.P. Immunohistochemical expression of angiotensin-converting enzyme 2 in minor salivary glands during SARS-CoV-2 infection. J. Med. Virol. 2021, 93, 1905–1906. [Google Scholar] [CrossRef]
- Matuck, B.F.; Dolhnikoff, M.; Duarte-Neto, A.N.; Maia, G.; Gomes, S.C.; Sendyk, D.I.; Zarpellon, A.; de Andrade, N.P.; Monteiro, R.A.; Pinho, J.R.R.; et al. Salivary glands are a target for SARS-CoV-2: A source for saliva contamination. J. Pathol. 2021, 254, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Pérez, P.; Kato, T.; Mikami, Y.; Okuda, K.; Gilmore, R.C.; Conde, C.D.; Gasmi, B.; Stein, S.; Beach, M.; et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat. Med. 2021, 27, 892–903. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, H. The oral cavity potentially serving as a reservoir for SARS-CoV-2 but not necessarily facilitating the spread of COVID-19 in dental practice. Eur. J. Dent. 2022; Online ahead of print. [Google Scholar] [CrossRef]
- Wang, C.; Wu, H.; Ding, X.; Ji, H.; Jiao, P.; Song, H.; Li, S.; Du, H. Does infection of 2019 novel coronavirus cause acute and/or chronic sialadenitis? Med. Hypotheses 2020, 140, 109789. [Google Scholar] [CrossRef] [PubMed]
- Lim, Z.Y.; Ang, A.; Cross. G.B. COVID-19 associated parotitis. IDCases 2021, 24, e01122. [Google Scholar] [CrossRef]
- Maegawa, K.; Nishioka, H. COVID-19-associated parotitis and sublingual gland sialadenitis. BMJ Case Rep. 2022, 15, e251730. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, X.; Lv, T. Prolonged SARS-CoV-2 RNA shedding: Not a rare phenomenon. J. Med. Virol. 2020, 92, 2286–2287. [Google Scholar] [CrossRef]
- Díaz Rodríguez, M.; Jimenez Romera, A.; Villarroel, M. Oral manifestations associated with COVID-19. Oral Dis. 2022, 28 (Suppl 1), 960–962. [Google Scholar] [CrossRef]
- Razonable, R.R.; Henault, M.; Watson, H.L.; Paya, C.V. Nystatin induces secretion of interleukin (IL)-1beta, IL-8, and tumor necrosis factor alpha by a toll-like receptor-dependent mechanism. Antimicrob. Agents Chemother. 2005, 49, 3546–3549. [Google Scholar] [CrossRef]
- Tanaka, M. Secretory function of the salivary gland in patients with taste disorders or xerostomia: correlation with zinc deficiency. Acta Otolaryngol. 2002, Suppl 546, 134–141. [Google Scholar] [CrossRef]
- Goto, T.; Komai, M.; Bryant, B.P.; Furukawa, Y. Reduction in carbonic anhydrase activity in the tongue epithelium and submandibular gland in zinc-deficient rats. Int. J. Vitam. Nutr. Res. 2000, 70, 110–118. [Google Scholar] [CrossRef]
- Fábián, T.K.; Beck, A.; Fejérdy, P.; Hermann, P.; Fábián, G. Molecular mechanisms of taste recognition: considerations about the role of saliva. Int. J. Mol. Sci. 2015, 16, 5945–5974. [Google Scholar] [CrossRef] [PubMed]
- Ishii, K.; Sato, M.; Akita, M.; Tomita, H. Localization of zinc in the rat submandibular gland and the effect of its deficiency on salivary secretion. Ann. Otol. Rhinol. Laryngol. 1999, 108, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Lane, H.W.; Warren, D.C.; Squyres, N.S.; Cotham, A.C. Zinc concentrations in hair, plasma, and saliva and changes in taste acuity of adults supplemented with zinc. Biol. Trace Elem. Res. 1982, 4, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Arbabi-kalati, F.; Arbabi-kalati, F.; Deghatipour, M.; Ansari Moghadam, A. Evaluation of the efficacy of zinc sulfate in the prevention of chemotherapy-induced mucositis: a double-blind randomized clinical trial. Arch. Iran. Med. 2012, 15, 413–417. [Google Scholar] [PubMed]
- Kim, Y.J.; Jo, Y.; Lee, Y.H.; Park, K.; Park, H.K.; Choi, S.Y. Zn2+ stimulates salivary secretions via metabotropic zinc receptor ZnR/GPR39 in human salivary gland cells. Sci. Rep. 2019, 9, 17648. [Google Scholar] [CrossRef]
- Wessels, I.; Rolles, B.; Rink, L. The potential impact of zinc supplementation on COVID-19 pathogenesis. Front. Immunol. 2020, 11, 1712. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, S.; Han, J.; Yi, Y.; Zhou, H.; Li, J. Paxlovid administration in elderly patient with COVID-19 caused by Omicron BA.2.0: A case report. Medicine 2022, 101, e31361. [Google Scholar] [CrossRef] [PubMed]
- Cvancara, D.J.; Baertsch, H.C.; Lehmann, A.E.; Humphreys, I.M.; Farrell, N.F.; Marshall, T.B.; Bhatt, N.K.; Abuzeid, W.M.; Jafari, A. Postmarketing reporting of Paxlovid-related dysgeusia: A real-world pharmacovigilance study. Otolaryngol. Head Neck Surg. [CrossRef]
- Lin, C.Y.; Cassidy, A.G.; Li, L.; Prahl, M.K.; Golan, Y.; Gaw, S.L. Nirmatrelvir-ritonavir (Paxlovid) for mild coronavirus disease 2019 (COVID-19) in pregnancy and lactation. Obstet. Gynecol. Online ahead of print.. 2023. [Google Scholar] [CrossRef]
- Sousa, A.S.; Silva, J.F.; Pavesi, V.C.S.; Carvalho, N.A.; Ribeiro-Júnior, O.; Varellis, M.L.Z.; Prates, R.A.; Bussadori, S.K.; Gonçalves, M.L.L.; Horliana, A.C.R.T.; et al. Photobiomodulation and salivary glands: a systematic review. Lasers Med. Sci. 2020, 35, 777–788. [Google Scholar] [CrossRef]
- Abueva, C. Photobiomodulation therapy in the treatment of salivary dysfunction. Med. Lasers 2022, 11, 15–20. [Google Scholar] [CrossRef]
- Palma, L.F.; Gonnelli, F.A.S.; Marcucci, M.; Dias, R.S.; Giordani, A.J.; Segreto, R.A.; Segreto, H.R.C. Impact of low-level laser therapy on hyposalivation, salivary pH, and quality of life in head and neck cancer patients post-radiotherapy. Lasers Med. Sci. 2017, 32, 827–832. [Google Scholar] [CrossRef]
- Ferrandez-Pujante, A.; Pons-Fuster, E.; López-Jornet, P. Efficacy of photobiomodulation in reducing symptomatology and improving the quality of life in patients with xerostomia and hyposalivation: A randomized controlled trial. J. Clin. Med. 2022, 11, 3414. [Google Scholar] [CrossRef]
- Alhejoury, H.A.; Mogharbel, L.F.; Al-Qadhi, M.A.; Shamlan, S.S.; Alturki, A.F.; Babatin, W.M.; Mohammed Alaishan, R.A.; Pullishery, F. Artificial saliva for therapeutic management of xerostomia: A narrative review. J. Pharm. Bioallied Sci. 2021, 13 (Suppl 2), S903–S907. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Qiu, X.; Tan, X.; Miao, R.; Tian, W.; Jing, W. Efficacy of a 1% malic acid spray for xerostomia treatment: A systematic review and meta-analysis. Oral Dis. 2023, 29, 862–872. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Moreno, G.; Guardia, J.; Aguilar-Salvatierra, A.; Cabrera-Ayala, M.; Maté-Sánchez de-Val, J.E.; Calvo-Guirado, J.L. Effectiveness of malic acid 1% in patients with xerostomia induced by antihypertensive drugs. Med. Oral Patol. Oral Cir. Bucal. 2013, 18, e49–55. [Google Scholar] [CrossRef]
- Gómez-Moreno, G.; Aguilar-Salvatierra, A.; Guardia, J.; Uribe-Marioni, A.; Cabrera-Ayala, M.; Delgado-Ruiz, R.A.; Calvo-Guirado, J.L. The efficacy of a topical sialogogue spray containing 1% malic acid in patients with antidepressant-induced dry mouth: A double-blind, randomized clinical trial. Depress Anxiety 2013, 30, 137–142. [Google Scholar] [CrossRef]
- Gómez-Moreno, G.; Cabrera-Ayala, M.; Aguilar-Salvatierra, A.; Guardia, J.; Ramírez-Fernández, M.P.; González-Jaranay, M.; Calvo-Guirado, J.L. Evaluation of the efficacy of a topical sialogogue spray containing malic acid 1% in elderly people with xerostomia: A double-blind, randomized clinical trial. Gerodontology 2014, 31, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Kho, H.S. Understanding of xerostomia and strategies for the development of artificial saliva. Chin. J. Dent. Res. 2014, 17, 75–83. [Google Scholar]
- Eduardo, F.P.; Bezinelli, L.M.; Gobbi, M.F.; Bergamin, L.G.; de Carvalho, D.L.C.; Corrêa, L. Oral lesions and saliva alterations of COVID-19 patients in an intensive care unit: A retrospective study. Spec. Care Dentist. 2022, 42, 494–502. [Google Scholar] [CrossRef]
- Ozen, N.; Aydin Sayilan, A.; Mut, D.; Sayilan, S.; Avcioglu, Z.; Kulakac, N.; Ecder, T.; Akyolcu, N. The effect of chewing gum on dry mouth, interdialytic weight gain, and intradialytic symptoms: A prospective, randomized controlled trial. Hemodial. Int. 2021, 25, 94–103. [Google Scholar] [CrossRef]
- Naik, P.N.; Kiran, R.A.; Yalamanchal, S.; Kumar, V.A.; Goli, S.; Vashist, N. Acupuncture: An alternative therapy in dentistry and its possible applications. Med. Acupunct. 2014, 26, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Blom, M.; Lundeberg, T. Long-term follow-up of patients treated with acupuncture for xerostomia and the influence of additional treatment. Oral Dis. 2000, 6, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Trager, R.J.; Brewka, E.C.; Kaiser, C.M.; Patterson, A.J.; Dusek, J.A. Acupuncture in multidisciplinary treatment for post-COVID-19 syndrome. Med. Acupunct. 2022, 34, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, P.A.; Peng, Y.P.; May, B.C.; Inouye, W.S.; Niemtzow, R.C. Acupuncture for pilocarpine-resistant xerostomia following radiotherapy for head and neck malignancies. Int. J. Radiat. Oncol. Biol. Phys. 2001, 50, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Fu, C.; Deng, Y.; Huang, W.; Wang, J.; Jiao, Y. Acupuncture therapy for radiotherapy-induced adverse effect: A systematic review and network meta-analysis. Front. Public Health 2022, 10, 1026971. [Google Scholar] [CrossRef]
| Type | Mechanism | Method | Subject | Outcome | Reference |
|---|---|---|---|---|---|
| Tetracycline | Antiviral Anti-inflammatory Neuroprotective Anti-apoptotic |
Oral administration of either doxycycline (100 mg/day or 100 mg twice a day) or minocycline (50 mg/day, 100 mg/day, or 100 mg twice a day) | COVID-19 patients (n = 38, female: 52.6%, age: 21–67 years) with the mild disease quarantined at home | Ageusia disappeared in all patients within 7 days after treatment. | Gironi et al. [60] |
| Corticosteroid | Anti-inflammatory | Local application of triamcinolone oral paste (0.1% triamcinolone acetonide) | COVID-19 patients (n = 60, female: 25.0%, mean age: 50.9 years) | Sweet, bitter, salty, and sour taste were improved in 83.3–91.7% of patients on day 5 of treatment. | Singh et al. [64] |
| Oral administration of corticosteroid (10 mg/day for the first week and reduced to 5 mg in the second week) | COVID-19 patients (n = 34, female: 55.9% and n = 33, female: 57.6%; grouped according to the different duration of taste disorders) | At weekly follow-ups up to 3 months, all patients recovered from ageusia at the end of treatment without no side-effects. | Gamil et al. [67] | ||
| Zinc | Compensation for deficient zinc | Supplementation with 220 mg zinc sulfate (corresponding to elemental zinc of 50 mg) twice a day | COVID-19 patients (n = 49) with different disease severity | When followed up until the pharyngeal swabs became negative, the duration of tase function recovery was shortened compared with control subjects (n = 56). | Abdelmaksoud et al. [81] |
| Taking lozenges of zinc citrate (corresponding to elemental zinc of 23 mg), zinc citrate/zinc gluconate (23 mg), or zinc acetate (15 mg) every 2–4 hours | COVID-19 outpatients (n = 4) | All patients showed symptomatic and objective improvements. | Finzi [82] | ||
| Type | Mechanism | Method | Subject | Outcome | Reference |
| Supplementation with elemental zinc of 25 mg twice a day for 15 days | Ambulatory and hospitalized COVID-19 patients (n = 231, female: 47.6%, mean age: 54.6 years) | The symptom duration was shortened. | Ben Abdallah et al. [83] | ||
| Taking 6–12 lozenges of zinc gluconate/citrate (corresponding to elemental zinc of 23 mg) or zinc acetate (corresponding to elemental zinc of 15 mg) once a day | COVID-19 patients (n = 28, female: 60.7%, mean age: 40 years) | Symptoms including ageusia were improved 7 days after treatment and zinc gluconate was better tolerated than zinc acetate. | Finzi and Harrington [84] | ||
| Supplementation with a combination of zinc, magnesium, and calcium | COVID-19 pregnant patients (n = 74) | Ageusia/anosmia was reported by 41.9% of patients with zinc treatment, but by 57.2% of patients without zinc treatment. | Citu et al. [85] | ||
| Stellate ganglion block | Treatment of dysautonomia | Right-sided stellate ganglion block with a local anesthetic and left-sided stellate ganglion block 2 days later | COVID-19 patient, a 42-year-old female who recovered from the disease but had continued to suffer from dysgeusia and anosmia | Immediately after treatment, dysgeusia and anosmia were improved and taste/smell functions were normal at 2-week follow-up. | Liu and Duricka [91] |
| Right-sided stellate ganglion block, followed by left-sided stellate ganglion block on the next day | COVID-19 patient, a 44-year-old female with taste and smell loss who contracted the disease approximately 8 months ago | Within minutes after treatment, dysgeusia was drastically improved and taste function was normal at 60-day follow-up. | Liu and Duricka [91] | ||
| Right-sided stellate ganglion block with 4 ml of 0.25% bupivacaine and left-sided stellate ganglion block after 3 days | COVID-19 patient, a 48-year-old female who recovered from the disease before 4 months but had altered taste to various types of foods | Taste disorders were improved a few days after treatment. | Chauhan et al. [92] | ||
| Phytochemical: Curcumin |
Antiviral Anti-inflammatory Neuroprotective Anti-apoptotic Antioxidant |
Oral administration of capsule containing 1000 mg turmeric extract (95% curcuminoids) and 10 mg black pepper extract | COVID-19 patient, a 25-year-old male with ageusia persisting for 46 days | The patient experienced the complete recovery of taste function 10 min after treatment. | Chabot and Huntwork [102] |
| Type | Mechanism | Method | Subject | Outcome | Reference |
| Oral administration of capsule containing 1000 mg turmeric extract (95% curcuminoids), 15 mg black pepper extract, and 1000 mg Boswellia serrata plant extract | COVID-19 patient, a 28-year-old male complaining of ageusia | Taste sensation was improved 12 hours after treatment and completely restored 3 days later. | Chabot and Huntwork [102] | ||
| Traditional herbal medicine: Ayurveda |
Antiviral Anti-inflammatory |
Oral administration of one tablet of 900 mg Dasamoolkaduthrayam Kashaya and one tablet of 600 mg Guluchyadi Kwatham 12-hourly after meal for 7 days in addition to the Standard of Care as the Indian Council of Medical Research guidelines | COVID-19 patients (n = 60, mean age: 44.0 years) with ageusia due to the mild to moderate disease | The ageusia prevalence of 75% on day 1 was reduced to 25% on day 3 and 3.3% on day 7, whereas 35.9% on day 3 and 25.6% on day 7 in the control group (n = 39, mean age: 41.6 years) who received only the Standard of Care. | Wanjarkhedkar et al. [103] |
| Vitamin D | Nutraceutical supplementation | Oral administration of either 5000 IU vitamin D3 or 1000 IU vitamin D3 once a day for 2 weeks | COVID-19 patients with the mild to moderate disease: 5000 IU vitamin D3 for patients (n = 36, female: 41.7%, mean age: 46.3 years) or 1000 IU vitamin D3 for patients (n = 33, female: 60.6%, mean age: 53.5 years) | When received 5000 IU vitamin D3, the time to recovery from ageusia was significantly reduced to mean 11.4 days compared with mean 16.9 days for 1000 IU vitamin D3. | Sabico et al. [108] |
| Oral administration twice a day of 1000 IU vitamin D, 40 mg β-caryophyllene, 40 mg pregnenolone, 30 mg dehydroepiandrosterone, 416 mg bromelain, 150 mg St. John’s Wort extract, 100 mg Boswellia serrata gum/resin extract, 40 mg quercetin, and 12 mg zinc picolinate | COVID-19 patients (n = 51, female: approximately 67%, age: 21–73 year) suffering from various symptoms including ageusia for at least 3 months after SARS-CoV-2 infection | Taste/smell loss became significantly milder after 2 weeks and the symptoms were further improved in 72–84% of subjects after 4 weeks. | Gaylis et al. [109] | ||
| Type | Mechanism | Method | Subject | Outcome | Reference |
| Photobiomodulation | Stimulation of cell proliferation and differentiation Anti-inflammatory Increase of neurogenesis Immune modulation Apoptosis inhibition Promotion of tissue repair |
Illumination of 3 laser beams (680 nm) and 3 laser beams (808 nm) for 2 min on the back of the tongue and the skin surface of the cheeks, consisting of 10 sessions: Performed over 25 days with a minimum interval of 48 hours between sessions | COVID-19 patient, a 34-year-old female with ageusia | Taste function was improved with each session and back to normal after the last session. | de Souza et al. [115] |
| Type | Mechanism | Method | Subject | Outcome | Reference |
|---|---|---|---|---|---|
| Corticosteroid | Anti-inflammatory | Nystatin solution rinses 4 times a day for 15 days for intraoral lesions and ointments containing triamcinolone acetonide, neomycin, and nystatin for angular cheilitis | COVID-19 patient, a 78-year-old female who had suffered from mouth dryness, tongue and palate lesions, and angular cheilitis since hospitalization | Dry mouth and salivary secretion were improved along with disappearence of intraoral lesions. | Díaz Rodríguez et al. [130] |
| Zinc | Compensation for deficient zinc | Oral administration of zinc sulfate (300 mg/day) for 6 months | Non-COVID-19 patients (n = 93) with oral symptoms | Xerostomia and hypogeusia were relieved in 57.9–72.7% of patients. | Tanaka [132] |
| Oral ingestion of 15 mg zinc acetate with milk every morning | Non-COVID-19 subjects (n = 10, female: 50%, age: 17–37 years) | After 5 weeks, the flow rate of stimulated parotid saliva was increased along with an increase of blood zinc levels. | Lane et al. [136] | ||
| Taking 3 capsules (220 mg zinc sulfate) daily until the end of chemotherapy | Non-COVID-19 patients (n = 25, female: 48%, age: 18–70 years) undergoing chemotherapy | At 2–20 week follow-ups, the intensity of xerostomia was lower compared with control subjects. | Arbabi-kalati et al. [137] | ||
| Mouth rinsing with 0.25% ZnCl2 solution for 3 min | Non-COVID-19 patients (n = 29) with hyposalivation | Both unstimulated and mastication-stimulated saliva were increased. | Kim et al. [138] | ||
| Antiviral drug | Antiviral Inhibition of SARS-CoV-2 Mpro |
Oral administration of Paxlovid (two 150-mg tablets of nirmatrelvir and one 100-mg tablet of ritonavir) 12-hourly for 5 days | COVID-19 hospitalized patient, a 79-year-old female with the moderate disease complaining of xerostomia due to infection with the Omicron variant BA.2.0 of SARS-CoV-2 | Xerostomia was relieved on day 3 of treatment. | Zhang et al. [140] |
| Type | Mechanism | Method | Subject | Outcome | Reference |
| Photobiomodulation | Stimulation of cell proliferation and differentiation Anti-inflammatory Increase of ducts and epithelial cell mitoses Increase of salivary gland protein synthesis Increase of salivary gland blood circulation Increase of salivary flow rate |
Illumination of laser (808 nm) to 6 extraoral points on each parotid gland, 3 extraoral points on each submandibular gland, and 2 intraoral points on each sublingual gland: Illumination for 10 s per point with 2 laser sessions weekly during 3 months (a total of 24 sessions) | Non-COVID-19 patients (n = 29, female: 27.6%, age: ≥37 years) with persistent xerostomia after radiotherapy of head and neck cancer | Flow rates of both unstimulated and stimulated saliva were significantly increased. | Palma et al. [145] |
| External bilateral illumination of laser (810 nm) to the parotid gland on a continuous basis for 2.4 min and to the submandibular gland on a continuous basis for 1.2 min: One weekly session carried out for a total of 6 weeks | Non-COVID-19 patients (n = 30, female: 93.3%, mean age: 65.4 years) developing xerostomia due to drug use or Sjögren’s syndrome | Xerostomia was significantly improved compared with control xerostomic subjects (n = 30, female: 100%, mean age: 68.4 years) with simulated treatments. | Ferrandez-Pujante et al. [146] | ||
| Sialagogue: Malic acid |
Promotion of salivary secretion | Topical application of Xeros Dentaid® spray (1% malic acid, 10% xylitol, and 0.05% sodium fluoride) on demand with a maximum of 8 doses per day for 2 weeks | Non-COVID-19 patients (n = 25, female: 56%, mean age: 54.3 years) with xerostomia induced by using antihypertensive drugs | Flow rates of both unstimulated and stimulated saliva were significantly increased compared with a placebo group (n = 20, female: 45%, mean age: 51.8 years). | Gómez-Moreno et al. [149] |
| Type | Mechanism | Method | Subject | Outcome | Reference |
| Chewing gum | Mechanical stimulation of salivary glands | Chewing gum for 10 min 6 times a day and when feeling mouth dryness or thirsty | Non-COVID-19 patients (n = 22, female: 63.6%, mean age: 61.7 years) with chronic hemodialysis to cause xerostomia | At 3-month follow-up, xerostomia was alleviated and the flow rate of unstimulated saliva was increased compared with control subjects (n = 22, female: 36.4%, mean age: 61.4 years) who did not chew any gums. | Ozen et al. [154] |
| Alternative medicine: Acupuncture |
Anti-inflammatory Activation of parasympathetic nerves Restoration of autonomic nervous balance Stimulation of salivary glands via the cranial nerves |
Acupuncture performed by giving 24 treatments in 2 series (12 treatments in each series) | Non-COVID-19 patients (n = 70, female: 57.1%, age: 33–82 years) suffering from xerostomia due to Sjögren’s syndrome (n = 25, female: 92.0%, age: 33–72 years), irradiation (n = 38, female: 31.6%, age: 37–82 years), and other causes (n = 7, female: 71.4%, age: 38–73 years) | Flow rates of both unstimulated and stimulated saliva were increased after 6 months and the additional acupuncture maintained such effects for 3 years. | Blom and Lundeberg [156] |
| Acupuncture applied to 3 auricular points and 1 digital point bilaterally | Non-COVID-19 patients (n = 18) with pilocarpine-resistant xerostomia due to radiotherapy | Xerostomia was relieved in some patients. | Johnstone et al. [158] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
