Submitted:
09 April 2023
Posted:
10 April 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Lin, M.-W.; Chen, J.-S. Image-guided techniques for localizing pulmonary nodules in thoracoscopic surgery. Journal of Thoracic Disease 2016, 8, S749. [Google Scholar] [CrossRef]
- Migliore, M.; Palmucci, S.; Nardini, M.; Basile, A. Imaging patterns of early stage lung cancer for the thoracic surgeon. Journal of Thoracic Disease 2020, 12, 3349. [Google Scholar] [CrossRef]
- Park, C.H.; Han, K.; Hur, J.; Lee, S.M.; Lee, J.W.; Hwang, S.H.; Seo, J.S.; Lee, K.H.; Kwon, W.; Kim, T.H. Comparative effectiveness and safety of preoperative lung localization for pulmonary nodules: a systematic review and meta-analysis. Chest 2017, 151, 316–328. [Google Scholar] [CrossRef]
- Fang, H.-Y.; Chang, K.-W.; Chao, Y.-K. Hybrid operating room for the intraoperative CT-guided localization of pulmonary nodules. Annals of Translational Medicine 2019, 7. [Google Scholar] [CrossRef]
- Chao, Y.-K.; Pan, K.-T.; Wen, C.-T.; Fang, H.-Y.; Hsieh, M.-J. A comparison of efficacy and safety of preoperative versus intraoperative computed tomography-guided thoracoscopic lung resection. The Journal of Thoracic and Cardiovascular Surgery 2018, 156, 1974–1983. [Google Scholar] [CrossRef]
- Kwok, Y.; Irani, F.; Tay, K.; Yang, C.; Padre, C.; Tan, B. Effective dose estimates for cone beam computed tomography in interventional radiology. European radiology 2013, 23, 3197–3204. [Google Scholar] [CrossRef]
- Hu, M.-C.; Yang, Y.-L.; Chen, T.-T.; Lee, C.-I.; Tam, K.-W. Recruitment maneuvers to reduce pulmonary atelectasis after cardiac surgery: A meta-analysis of randomized trials. The Journal of Thoracic and Cardiovascular Surgery 2022, 164, 171–181. [Google Scholar] [CrossRef]
- Oh, E.J.; Lee, E.J.; Heo, B.-y.; Huh, J.; Min, J.-J. Physiological benefits of lung recruitment in the semi-lateral position after laparoscopic surgery: a randomized controlled study. Scientific Reports 2022, 12, 3909. [Google Scholar] [CrossRef]
- Pei, S.; Wei, W.; Yang, K.; Yang, Y.; Pan, Y.; Wei, J.; Yao, S.; Xia, H. Recruitment Maneuver to reduce postoperative pulmonary complications after laparoscopic abdominal surgery: a systematic review and meta-analysis. Journal of Clinical Medicine 2022, 11, 5841. [Google Scholar] [CrossRef]
- Suzuki, K.; Watanabe, S.-i.; Wakabayashi, M.; Saji, H.; Aokage, K.; Moriya, Y.; Yoshino, I.; Tsuboi, M.; Nakamura, S.; Nakamura, K. A single-arm study of sublobar resection for ground-glass opacity dominant peripheral lung cancer. The Journal of thoracic and cardiovascular surgery 2022, 163, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Cao, R.; Li, G.; Gong, T.; Ou, Y.; Huang, J. The effect of lung recruitment maneuvers on post-operative pulmonary complications for patients undergoing general anesthesia: a meta-analysis. PLoS One 2019, 14, e0217405. [Google Scholar] [CrossRef] [PubMed]
- Hartland, B.L.; Newell, T.J.; Damico, N.J.R.c. Alveolar recruitment maneuvers under general anesthesia: a systematic review of the literature. 2015, 60, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Reinius, H.; Jonsson, L.; Gustafsson, S.; Sundbom, M.; Duvernoy, O.; Pelosi, P.; Hedenstierna, G.; Freden, F. Prevention of atelectasis in morbidly obese patients during general anesthesia and paralysis: a computerized tomography study. The Journal of the American Society of Anesthesiologists 2009, 111, 979–987. [Google Scholar]
- Hedenstierna, G.; Tokics, L.; Reinius, H.; Rothen, H.U.; Östberg, E.; Öhrvik, J. Higher age and obesity limit atelectasis formation during anaesthesia: an analysis of computed tomography data in 243 subjects. British journal of anaesthesia 2020, 124, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Pépin, J.L.; Timsit, J.F.; Tamisier, R.; Borel, J.C.; Lévy, P.; Jaber, S. Prevention and care of respiratory failure in obese patients. The lancet Respiratory medicine 2016, 4, 407–418. [Google Scholar] [CrossRef]
- Almarakbi, W.; Fawzi, H.; Alhashemi, J. Effects of four intraoperative ventilatory strategies on respiratory compliance and gas exchange during laparoscopic gastric banding in obese patients. British journal of anaesthesia 2009, 102, 862–868. [Google Scholar] [CrossRef]
- Pang, C.; Yap, J.; Chen, P. The effect of an alveolar recruitment strategy on oxygenation during laparascopic cholecystectomy. Anaesthesia and intensive care 2003, 31, 176–180. [Google Scholar] [CrossRef]
- Severgnini, P.; Selmo, G.; Lanza, C.; Chiesa, A.; Frigerio, A.; Bacuzzi, A.; Dionigi, G.; Novario, R.; Gregoretti, C.; de Abreu, M.G. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology 2013, 118, 1307–1321. [Google Scholar] [CrossRef]
- Borges, J.B.; Okamoto, V.N.; Matos, G.F.; Caramez, M.P.; Arantes, P.R.; Barros, F.; Souza, C.E.; Victorino, J.A.; Kacmarek, R.M.; Barbas, C.S. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. American journal of respiratory and critical care medicine 2006, 174, 268–278. [Google Scholar] [CrossRef]
- Costa, E.L.; Borges, J.B.; Melo, A.; Suarez-Sipmann, F.; Toufen, C.; Bohm, S.H.; Amato, M.B. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Applied Physiology in Intensive Care Medicine 1: Physiological Notes-Technical Notes-Seminal Studies in Intensive Care 2012, 165–170.
- Zaman, M.; Bilal, H.; Woo, C.Y.; Tang, A. In patients undergoing video-assisted thoracoscopic surgery excision, what is the best way to locate a subcentimetre solitary pulmonary nodule in order to achieve successful excision? Interactive cardiovascular and thoracic surgery 2012, 15, 266–272. [Google Scholar] [CrossRef]
- Hsu, P.-K.; Wu, Y.-C. Electromagnetic navigation-guided one-stage dual localization of small pulmonary nodules. Chest 2018, 154, 1462–1463. [Google Scholar] [CrossRef]
- Hwang, S.; Kim, T.G.; Song, Y.G. Comparison of hook wire versus coil localization for video-assisted thoracoscopic surgery. Thoracic cancer 2018, 9, 384–389. [Google Scholar] [CrossRef]
- Kleedehn, M.; Kim, D.H.; Lee, F.T.; Lubner, M.G.; Robbins, J.B.; Ziemlewicz, T.J.; Hinshaw, J.L. Preoperative pulmonary nodule localization: a comparison of methylene blue and hookwire techniques. American Journal of Roentgenology 2016, 207, 1334–1339. [Google Scholar] [CrossRef]
- Ehrenfeld, J.M.; Funk, L.M.; Van Schalkwyk, J.; Merry, A.F.; Sandberg, W.S.; Gawande, A. The incidence of hypoxemia during surgery: evidence from two institutions. Canadian journal of anaesthesia= Journal canadien d'anesthesie 2010, 57, 888. [Google Scholar] [CrossRef]
- Yuan, X.; Lee, J.W.; Bowser, J.L.; Neudecker, V.; Sridhar, S.; Eltzschig, H.K. Targeting hypoxia signaling for perioperative organ injury. Anesthesia and analgesia 2018, 126, 308. [Google Scholar] [CrossRef]
- Moller, J.; Johannessen, N.; Berg, H.; Espersen, K.; Larsen, L. Hypoxaemia during anaesthesia—an observer study. British Journal of Anaesthesia 1991, 66, 437–444. [Google Scholar] [CrossRef]
- Aakerlund, L.; Rosenberg, J. Postoperative delirium: treatment with supplementary oxygen. BJA: British Journal of Anaesthesia 1994, 72, 286–290. [Google Scholar] [CrossRef]
- Gill, N.; Wright, B.; Reilly, C. Relationship between hypoxaemic and cardiac ischaemic events in the perioperative period. British journal of anaesthesia 1992, 68, 471–473. [Google Scholar] [CrossRef]
- Duggan, M.; McNamara, P.J.; Engelberts, D.; Pace-Asciak, C.; Babyn, P.; Post, M.; Kavanagh, B.P. Oxygen attenuates atelectasis-induced injury in the in vivo rat lung. The Journal of the American Society of Anesthesiologists 2005, 103, 522–531. [Google Scholar] [CrossRef]
- Gunnarsson, L.; Tokics, L.; Gustavsson, H.; Hedenstierna, G. Influence of age on atelectasis formation and gas exchange impairment during general anaesthesia. BJA: British Journal of Anaesthesia 1991, 66, 423–432. [Google Scholar] [CrossRef]
- Ueda, K.; Kaneda, Y.; Sudou, M.; Jinbo, M.; Li, T.-S.; Suga, K.; Tanaka, N.; Hamano, K. Prediction of hypoxemia after lung resection surgery. Interactive CardioVascular and Thoracic Surgery 2005, 4, 85–89. [Google Scholar] [CrossRef]
- Mori, S.; Shibazaki, T.; Noda, Y.; Kato, D.; Nakada, T.; Asano, H.; Matsudaira, H.; Ohtsuka, T. Recovery of pulmonary function after lung wedge resection. Journal of Thoracic Disease 2019, 11, 3738. [Google Scholar] [CrossRef]
- Danish, M.A. Preoxygenation and anesthesia: A detailed review. Cureus 2021, 13. [Google Scholar]
- Joyce, C.; Williams, A. Kinetics of absorption atelectasis during anesthesia: a mathematical model. Journal of applied physiology 1999, 86, 1116–1125. [Google Scholar] [CrossRef]
- Joyce, C.; Baker, A.; Kennedy, R. Gas uptake from an unventilated area of lung: computer model of absorption atelectasis. Journal of Applied Physiology 1993, 74, 1107–1116. [Google Scholar] [CrossRef]
- Magnusson, L.; Spahn, D. New concepts of atelectasis during general anaesthesia. British journal of anaesthesia 2003, 91, 61–72. [Google Scholar] [CrossRef]
- Eger, E.; Severinghaus, J. The rate of rise of PaCO2 in the apneic anesthetized patient. In Proceedings of the The Journal of the American Society of Anesthesiologists; 1961; pp. 419–425. [Google Scholar]
- Oczenski, W.; Hörmann, C.; Keller, C.; Lorenzl, N.; Kepka, A.; Schwarz, S.; Fitzgerald, R.D. Recruitment maneuvers during prone positioning in patients with acute respiratory distress syndrome. Critical care medicine 2005, 33, 54–61. [Google Scholar] [CrossRef]
- Wesselink, E.; Kappen, T.; Torn, H.; Slooter, A.; Van Klei, W. Intraoperative hypotension and the risk of postoperative adverse outcomes: a systematic review. British journal of anaesthesia 2018, 121, 706–721. [Google Scholar] [CrossRef]


| Non-recruitment group (N =69) |
Recruitment group (N =23) |
p value | |
|---|---|---|---|
| Age, median (IQR) | 53 (47 - 63) | 57 (49 - 66) | 0.281 |
| Gender | †0.778 | ||
| Female | 52 (75.4%) | 18 (78.3%) | |
| Male | 17 (25.6%) | 5 (21.7%) | |
| Height, median (IQR) | 160.0 (156.0 – 166.0) | 160.0 (155.0 – 163.0) | 0.857 |
| Weight, median (IQR) | 63.0 (55.0 – 70.0) | 57.0 (52.0 – 69.0) | 0.328 |
| BMI | 24.20 (22.20 – 26.20) | 22.80 (20.30 – 26.00) | 0.229 |
| Preoperative lung function | |||
| FVC | 102 (94 – 110) | 103 (96 – 108) | 0.921 |
| FEV1 | 97 (88 – 107) | 103 (91 – 108) | 0.195 |
| DLCO | 94 (85 – 102) | 99 (90 – 104) | 0.116 |
| History of lung contralateral wedge resection | 17 (24.6%) | 4 (17.4%) | †0.473 |
| Ventilation mode | †0.441 | ||
| VCV | 8 (11.6%) | 1 (4.3%) | |
| PCVVG | 61 (88.4%) | 22 (95.7%) | |
|
Tidal volume during procedure Median (IQR) |
550 (525 - 600) | 550 (500 - 600) | 0.281 |
| Lesions | †0.394 | ||
| 2 lesions | 47 (68.1%) | 16 (69.6%) | |
| 3 lesions | 12 (17.4%) | 6 (26.1%) | |
| 4 lesions | 10 (14.5%) | 1 (4.3%) | |
| Size (mm) | 6.90 (5.70 – 8.30) | 6.50 (5.50 – 8.20) | 0.850 |
| Dye/ hook localization | †0.146 | ||
| Dye localization | 26 (37.7%) | 13 (56.5%) | |
| Hook localization | 43 (62.3%) | 10 (43.5%) | |
| Depth, median (IQR) | 70.0 (55.0 – 80.0) | 65.0 (51.7 – 75.0) | 0.691 |
| Puncture times | †0.326 | ||
| 1 time | 64 (92.8%) | 23 (100%) | |
| > 1 time | 5 (7.2%) | 0 | |
| Extent of resection | †> 0.999 | ||
| Wedge resection | 64 (92.8%) | 21 (91.3%) | |
|
Segmentectomy + Wedge resection |
2 (2.9%) | 1 (4.3%) | |
|
Lobectomy + Wedge resection |
3 (4.3%) | 1 (4.3%) | |
| Diagnosis | †0.591 | ||
| Invasive adenocarcinoma | 6 (3.5%) | 3 (5.6%) | |
| Adenocarcinoma in situ (AIS) | 81 (47.6%) | 21 (38.9%) | |
| Minimally invasive adenocarcinoma (MIA) | 51 (30.0%) | 15 (18.5%) | |
| Secondary pulmonary malignancy | 3 (1.8%) | 2 (3.7%) | |
| Benign lesion | 29 (17.1%) | 13 (24.1%) | |
| Min, minutes; IQR, interquartile range BMI, Body mass index, FVC, forced vital capacity; FEV1, forced expiratory volume in one second; DLCO, Diffusion capacity of carbon monoxide VCV: Volume control mode PCV-VG: Pressure control and volume guarantee mode †Fisher's exact test/ Chi square test Mann-Whitney U test | |||
| Outcome Setting | Non-recruitment Group (N =69) |
Recruitment Group (N =23) |
p value | |
|---|---|---|---|---|
|
Apnea time (Min, Median, IQR) |
5.60 (4.60 – 6.80) | 5.90 (4.80 – 6.30) | 0.658 | |
| SpO2 (%, Median, IQR) | 88.0 (84.0 – 93.0) | 94.0 (87.0 – 97.0) | 0.016 | |
| Re-inflation | †0.033 | |||
| No need for inflation | 36 (52.2%) | 17 (73.9%) | ||
| Need for inflation | 33 (35.9%) | 6 (26.1%) | ||
|
Procedure time (Min, Median, IQR) |
19.0 (15.0 – 24.0) | 17.0 (14.0 – 19.0) | 0.043 | |
| Pneumothorax | †0.610 | |||
| Pneumothorax | 46 (66.7%) | 17 (73.9%) | ||
| No pneumothorax | 23 (33.3%) | 6 (26.1%) | ||
| Accuracy (5 mm) | 38 (55.1%) | 19 (82.6%) | †0.025 | |
| Accuracy | Univariant logistic regression analysis | Multivariant logistic regression analysis | ||
|---|---|---|---|---|
| Odds ratio (95% CI) |
p value | Odds ratio (95% CI) |
p value | |
| Pre-localization recruitment | 0.26 (0.08 – 0.84) |
0.024 | 0.23 (0.06 -0.82) |
0.024 |
| Lesions | 0.61 (0.33 – 1.11) |
0.106 | ||
| History of lung contralateral wedge resection | 0.29 (0.09 – 0.94) |
0.039 | 0.25 (0.07 – 0.90) |
0.033 |
| BMI | 0.76 (0.64 – 0.89) |
0.001 | 0.76 (0.64 – 0.90) |
0.002 |
| Ventilation mode | 2.43 (0.48 – 12.41) |
0.286 | ||
| Re-inflation | Univariant regression analysis | Multivariant regression analysis | ||
|---|---|---|---|---|
| Odds ratio (95% CI) |
p value | Odds ratio (95% CI) |
p value | |
| Pre-localization recruitment | 3.09 (1.08 - 8.78) |
0.034 | 2.99 (1.04 – 8.64) |
0.043 |
| Lesions | 1.87 (1.01 – 3.47) |
0.048 | 1.84 (0.97 – 3.48) |
0.084 |
| Previous lung operation | 0.43 (0.16 – 1.16) |
0.093 | ||
| BMI | 1.15 (0.99 – 1.32) |
0.055 | ||
| Ventilation mode | 0.31 (0.06 – 1.57) |
0.156 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
